Ecologically Coherent Population Structure of Uncultivated Bacterioplankton

Total Page:16

File Type:pdf, Size:1020Kb

Ecologically Coherent Population Structure of Uncultivated Bacterioplankton The ISME Journal (2021) 15:3034–3049 https://doi.org/10.1038/s41396-021-00985-z ARTICLE Ecologically coherent population structure of uncultivated bacterioplankton 1,2 1 1 1 Conny Sjöqvist ● Luis Fernando Delgado ● Johannes Alneberg ● Anders F. Andersson Received: 4 December 2020 / Revised: 31 March 2021 / Accepted: 9 April 2021 / Published online: 5 May 2021 © The Author(s) 2021. This article is published with open access Abstract Bacterioplankton are main drivers of biogeochemical cycles and important components of aquatic food webs. While sequencing-based studies have revealed how bacterioplankton communities are structured in time and space, relatively little is known about intraspecies diversity patterns and their ecological relevance. Here, we use the newly developed software POGENOM (POpulation GENomics from Metagenomes) to investigate genomic diversity and differentiation in metagenome-assembled genomes from the Baltic Sea, and investigate their genomic variation using metagenome data spanning a 1700 km transect and covering seasonal variation at one station. The majority of the investigated species, representing several major bacterioplankton clades, displayed population structures correlating significantly with 1234567890();,: 1234567890();,: environmental factors such as salinity and temperature. Population differentiation was more pronounced over spatial than temporal scales. We discovered genes that have undergone adaptation to different salinity regimes, potentially responsible for the populations’ existence along with the salinity range. This in turn implies the broad existence of ecotypes that may remain undetected by rRNA gene sequencing. Our findings emphasize the importance of physiological barriers, and highlight the role of adaptive divergence as a structuring mechanism of bacterioplankton species. Introduction these studies have demonstrated that 16S rRNA gene clusters (OTUs), or even specific 16S rRNA gene sequences Each liter of seawater contains around a billion bacterial and (amplicon sequence variants; ASVs), represent lineages archaeal cells (bacterioplankton) that play central roles in adapted to different habitats, the 16S rRNA gene does biogeochemical cycles, marine food webs and ecosystem generally not provide sufficient genetic resolution to reveal services [1, 2]. The diversity of aquatic prokaryotes is within-species (intraspecific) diversity patterns, since pro- immense [3]. How this diversity is generated and structured karyotes with identical 16S rRNA gene sequences may have is far from fully understood. Aquatic taxa are differentially highly divergent genomes and phenotypes [9]. distributed among habitats [4] and ribosomal RNA (rRNA) Comparative genomics of isolates, as well as metage- gene sequencing has shown that bacterioplankton commu- nomics on natural samples, have revealed sequence clusters nities are structured both in time and space [5–8]. While of >95% average nucleotide identity (which has emerged as an operational delineation of prokaryotic species [10]); however, it is not known to what extent this intraspecific genomic variation represents neutral diversity vs. adaptation Supplementary information The online version contains to different niches. Due to the technical challenges, rela- supplementary material available at https://doi.org/10.1038/s41396- tively little is known about intraspecific structuring of 021-00985-z. microbes, not least in the marine environment. However, * Anders F. Andersson pioneering studies have shown that genetic content of single [email protected] bacterial species may correlate with geographic distance [11], and that coexisting but ecologically differentiated 1 KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences strains may arise through resource partitioning [12]. For in Chemistry, Biotechnology and Health, Stockholm, Sweden example, the picocyanobacterium Prochlorococcus has fi 2 Åbo Akademi University, Faculty of Science and Engineering, been demonstrated to display ne-scale sequence clusters Environmental and Marine Biology, Åbo, Finland associated with different regimes in temperature and light- Ecologically coherent population structure of uncultivated bacterioplankton 3035 intensity, and single-cell sequencing has revealed distinct on an inbuilt algorithm. While MIDAS and inStrain provide genomic backbones within clusters and variation in acces- genome-wide and gene-specific diversity estimates, sory genes mainly between clusters [13]. The ubiquitous metaSNV reports genome-wide population differentiation and most abundant type of organism in the ocean, the (Manhattan distance). POGENOM outputs both diversity SAR11 clade, has undergone adaptive radiation in response and differentiation parameters, at the whole genome to temperature [14]. Apart from “genome streamlining” (nucleotide diversity and fixation index (FST)) and at the [14, 15], it has been postulated that the ecological success of gene level (nucleotide and amino acid diversity, pN/pS, and this organism is facilitated by its adaptive divergence into FST based on nucleotides and amino acids). POGENOM ecotypes specialized for specific environmental conditions also provides permuted gene-wise FST values, facilitating [6, 16]. However, it is not known if intraspecific niche- significance tests on gene-wise differentiation. differentiation is a general phenomenon in bacterioplankton We here use POGENOM to investigate patterns of or a characteristic of exceptionally abundant species. A genomic variation among a set of bacterioplankton species deeper understanding of intraspecific diversity, sometimes in the Baltic Sea. The Baltic Sea is a geologically young referred to as “microdiversity” [17], is of crucial importance ecosystem with pronounced gradients of salinity, tempera- if we want to understand the ecology, evolution, and spe- ture, and nutrient concentrations, and is often used as a ciation of bacterioplankton, and of prokaryotes in general. model for postglacial colonization and ecological differ- Studying genomic variation within a species can also reveal entiation [27, 28]. Marine macroorganisms display reduced genes involved in adaptation to specific environmental species richness and intraspecific diversity towards the factors, providing new clues on gene functions and cellular northern Baltic Sea, as the lower salinity of these waters mechanisms of adaptation. impose more challenging conditions. Likewise, freshwater The study of metagenomes has been predicted to offer a species diversity decreases with increasing salinity levels more realistic view of prokaryotic diversity [18, 19]as towards the south-west [29]. Moreover, population genetic compared to PCR-based surveys of the 16S rRNA gene. studies have shown that species of fish and macroalgae have Metagenomics offers different routes for addressing intras- distinct genetic populations in the Baltic Proper (central pecific variation. The first is to reconstruct genetic infor- Baltic Sea) compared to the Atlantic west of Sweden [30– mation of individual strains. By mapping reads from one or 32]. With respect to microorganisms, population genetic several samples to the reference genome(s) of a species, the data across the salinity regimes is only available for one gene complement and/or nucleotide sequences at variant eukaryote: the marine diatom Skeletonema marinoi [33]. It positions of the constituent strains can be inferred [20–22]. is evident that the species is locally adapted and genetically This approach is promising, but challenging, especially in differentiated into separate populations on each side of the cases of many coexisting strains. The second approach does Danish Straits, correlating with different salinity regimes not aim at reconstructing strains, but rather uses the reads and oceanographic connectivity. For bacterioplankton, mapped to a reference genome to quantify intra- and community composition has been shown to vary sig- intersample genomic variation of the species. This approach nificantly along the horizontal salinity gradient, as well as is more straightforward for analyzing population structure vertically along oxygen gradients, with the Baltic Proper and works well also in case of highly complex pan- being composed of a mixture of typical freshwater and genomes. Schloissnig et al. [23] conducted pioneering marine taxa [34, 35]. Using metagenomic binning and cross-continental comparative analyses of human gut fragment recruitment analysis, Hugerth et al. [36] showed microbiomes using this approach and showed that there is that the prokaryotic organisms in the Baltic Proper are more intraspecific genetic differentiation between habitats genetically differentiated from closely related marine and (human individuals) than within the same habitat over time. freshwater lineages while displaying high similarity to Similar approaches have been used by Nayfach et al. [11] sequences from North American brackish waters, suggest- and Delmont et al. [24] to show that gene content and amino ing that the Baltic Sea prokaryotes are members of a global acid composition, respectively, differ between oceanic meta-community adapted to brackish conditions. However, regions within individual bacterial species. it remains to be investigated whether the bacterioplankton Here we present the software POGENOM (POpulation species display genetically structured populations within the GENOmics from Metagenomes) that, similarly to MIDAS Baltic Sea ecosystem.
Recommended publications
  • The Subway Microbiome: Seasonal Dynamics and Direct Comparison Of
    Gohli et al. Microbiome (2019) 7:160 https://doi.org/10.1186/s40168-019-0772-9 RESEARCH Open Access The subway microbiome: seasonal dynamics and direct comparison of air and surface bacterial communities Jostein Gohli1* , Kari Oline Bøifot1,2, Line Victoria Moen1, Paulina Pastuszek3, Gunnar Skogan1, Klas I. Udekwu4 and Marius Dybwad1,2 Abstract Background: Mass transit environments, such as subways, are uniquely important for transmission of microbes among humans and built environments, and for their ability to spread pathogens and impact large numbers of people. In order to gain a deeper understanding of microbiome dynamics in subways, we must identify variables that affect microbial composition and those microorganisms that are unique to specific habitats. Methods: We performed high-throughput 16S rRNA gene sequencing of air and surface samples from 16 subway stations in Oslo, Norway, across all four seasons. Distinguishing features across seasons and between air and surface were identified using random forest classification analyses, followed by in-depth diversity analyses. Results: There were significant differences between the air and surface bacterial communities, and across seasons. Highly abundant groups were generally ubiquitous; however, a large number of taxa with low prevalence and abundance were exclusively present in only one sample matrix or one season. Among the highly abundant families and genera, we found that some were uniquely so in air samples. In surface samples, all highly abundant groups were also well represented in air samples. This is congruent with a pattern observed for the entire dataset, namely that air samples had significantly higher within-sample diversity. We also observed a seasonal pattern: diversity was higher during spring and summer.
    [Show full text]
  • Microbial Community and Geochemical Analyses of Trans-Trench Sediments for Understanding the Roles of Hadal Environments
    The ISME Journal (2020) 14:740–756 https://doi.org/10.1038/s41396-019-0564-z ARTICLE Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments 1 2 3,4,9 2 2,10 2 Satoshi Hiraoka ● Miho Hirai ● Yohei Matsui ● Akiko Makabe ● Hiroaki Minegishi ● Miwako Tsuda ● 3 5 5,6 7 8 2 Juliarni ● Eugenio Rastelli ● Roberto Danovaro ● Cinzia Corinaldesi ● Tomo Kitahashi ● Eiji Tasumi ● 2 2 2 1 Manabu Nishizawa ● Ken Takai ● Hidetaka Nomaki ● Takuro Nunoura Received: 9 August 2019 / Revised: 20 November 2019 / Accepted: 28 November 2019 / Published online: 11 December 2019 © The Author(s) 2019. This article is published with open access Abstract Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and fi 1234567890();,: 1234567890();,: Mariana Trenches. Tag-sequencing analyses showed speci c distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean.
    [Show full text]
  • Novel Insights Into the Thaumarchaeota in the Deepest Oceans: Their Metabolism and Potential Adaptation Mechanisms
    Zhong et al. Microbiome (2020) 8:78 https://doi.org/10.1186/s40168-020-00849-2 RESEARCH Open Access Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms Haohui Zhong1,2, Laura Lehtovirta-Morley3, Jiwen Liu1,2, Yanfen Zheng1, Heyu Lin1, Delei Song1, Jonathan D. Todd3, Jiwei Tian4 and Xiao-Hua Zhang1,2,5* Abstract Background: Marine Group I (MGI) Thaumarchaeota, which play key roles in the global biogeochemical cycling of nitrogen and carbon (ammonia oxidizers), thrive in the aphotic deep sea with massive populations. Recent studies have revealed that MGI Thaumarchaeota were present in the deepest part of oceans—the hadal zone (depth > 6000 m, consisting almost entirely of trenches), with the predominant phylotype being distinct from that in the “shallower” deep sea. However, little is known about the metabolism and distribution of these ammonia oxidizers in the hadal water. Results: In this study, metagenomic data were obtained from 0–10,500 m deep seawater samples from the Mariana Trench. The distribution patterns of Thaumarchaeota derived from metagenomics and 16S rRNA gene sequencing were in line with that reported in previous studies: abundance of Thaumarchaeota peaked in bathypelagic zone (depth 1000–4000 m) and the predominant clade shifted in the hadal zone. Several metagenome-assembled thaumarchaeotal genomes were recovered, including a near-complete one representing the dominant hadal phylotype of MGI. Using comparative genomics, we predict that unexpected genes involved in bioenergetics, including two distinct ATP synthase genes (predicted to be coupled with H+ and Na+ respectively), and genes horizontally transferred from other extremophiles, such as those encoding putative di-myo-inositol-phosphate (DIP) synthases, might significantly contribute to the success of this hadal clade under the extreme condition.
    [Show full text]
  • Dissertation Implementing Organic Amendments To
    DISSERTATION IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE Submitted by Erika J. Foster Graduate Degree Program in Ecology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2018 Doctoral Committee: Advisor: M. Francesca Cotrufo Louise Comas Charles Rhoades Matthew D. Wallenstein Copyright by Erika J. Foster 2018 All Rights Reserved i ABSTRACT IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE To sustain agricultural production into the future, management should enhance natural biogeochemical cycling within the soil. Strategies to increase yield while reducing chemical fertilizer inputs and irrigation require robust research and development before widespread implementation. Current innovations in crop production use amendments such as manure and biochar charcoal to increase soil organic matter and improve soil structure, water, and nutrient content. Organic amendments also provide substrate and habitat for soil microorganisms that can play a key role cycling nutrients, improving nutrient availability for crops. Additional plant growth promoting bacteria can be incorporated into the soil as inocula to enhance soil nutrient cycling through mechanisms like phosphorus solubilization. Since microbial inoculation is highly effective under drought conditions, this technique pairs well in agricultural systems using limited irrigation to save water, particularly in semi-arid regions where climate change and population growth exacerbate water scarcity. The research in this dissertation examines synergistic techniques to reduce irrigation inputs, while building soil organic matter, and promoting natural microbial function to increase crop available nutrients. The research was conducted on conventional irrigated maize systems at the Agricultural Research Development and Education Center north of Fort Collins, CO.
    [Show full text]
  • Downloaded from Mage and Compared
    bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta Florian U. Moeller1, Nicole S. Webster2,3, Craig W. Herbold1, Faris Behnam1, Daryl Domman1, 5 Mads Albertsen4, Maria Mooshammer1, Stephanie Markert5,8, Dmitrij Turaev6, Dörte Becher7, Thomas Rattei6, Thomas Schweder5,8, Andreas Richter9, Margarete Watzka9, Per Halkjaer Nielsen4, and Michael Wagner1,* 1Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, 10 Austria. 2Australian Institute of Marine Science, Townsville, Queensland, Australia. 3 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of 15 Queensland, St Lucia, QLD, Australia 4Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark. 20 5Institute of Marine Biotechnology e.V., Greifswald, Germany 6Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Austria. 25 7Institute of Microbiology, Microbial Proteomics, University of Greifswald, Greifswald, Germany 8Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany 9Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, 30 University of Vienna, Austria. *Corresponding author: Michael Wagner, Department of Microbiology and Ecosystem Science, Althanstrasse 14, University of Vienna, 1090 Vienna, Austria. Email: wagner@microbial- ecology.net 1 bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]
  • Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges
    fmicb-11-622824 January 16, 2021 Time: 10:0 # 1 ORIGINAL RESEARCH published: 11 January 2021 doi: 10.3389/fmicb.2020.622824 Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges Markus Haber1,2, Ilia Burgsdorf1, Kim M. Handley3, Maxim Rubin-Blum4 and Laura Steindler1* 1 Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel, 2 Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Ceskéˇ Budejovice,ˇ Czechia, 3 School of Biological Sciences, The University of Auckland, Auckland, New Zealand, 4 Israel Oceanographic and Limnological Research Institute, Haifa, Israel Sponges are among the oldest metazoans and their success is partly due to their abundant and diverse microbial symbionts. They are one of the few animals that have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota sponge symbionts, including three new genomes, to free-living ones. Like their free- living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix carbon, and produce several vitamins. Adaptions to life inside the sponge host include enrichment in transposases, toxin-antitoxin systems and restriction modifications Edited by: systems, enrichments previously reported also from bacterial sponge symbionts. Most Andreas Teske, University of North Carolina at Chapel thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely Hill, United States alters their cell surface and allows them to evade digestion by the host. All but Reviewed by: one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid Lu Fan, Southern University of Science transporter system that was absent from the analyzed free-living thaumarchaeota and Technology, China suggesting a mixotrophic lifestyle for the sponge symbionts.
    [Show full text]
  • A Single Thaumarchaeon Drives Nitrification in Deep Oligotrophic
    Environmental Microbiology (2020) 22(1), 212–228 doi:10.1111/1462-2920.14840 A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance Janina Herber,1 Franziska Klotz,1 typically two orders of magnitude less abundant and Benjamin Frommeyer,1 Severin Weis,2 Dietmar Straile,3 completely ammonia-oxidizing (comammox) bacteria Allison Kolar,4 Johannes Sikorski,5 Markus Egert,2 were not detected. Both, 16S rRNA gene and amoA Michael Dannenmann4 and Michael Pester 1,5,6* (encoding ammonia monooxygenase subunit B) ana- 1Department of Biology, University of Konstanz, lyses identified only one major species-level opera- Universitätsstrasse 10, Constance 78457, Germany. tional taxonomic unit (OTU) of Thaumarchaeota (99% 2Faculty of Medical and Life Sciences, Institute of of all ammonia oxidizers in the hypolimnion), which Precision Medicine, Furtwangen University, Jakob- was affiliated to Nitrosopumilus spp. The relative abun- Kienzle-Str. 17, Villingen-Schwenningen 78054, dance distribution of the single Thaumarchaeon Germany. strongly correlated to an equally abundant Chloroflexi 3Limnological Institute, University of Konstanz, clade CL500-11 OTU and a Nitrospira OTU that was one Mainaustraße 252, Constance 78464, Germany. order of magnitude less abundant. The latter domi- 4Karlsruhe Institute of Technology, Institute for nated among recognized nitrite oxidizers. This fi Meteorology and Climate Research, Atmospheric extremely low diversity of nitri ers shows how vulnera- fi Environmental Research (IMK-IFU), Kreuzeckbahnstr. ble the ecosystem process of nitri cation may be in ’ 19, 82467 Garmisch-Partenkirchen, Germany. Lake Constance as Central Europe s third largest lake. 5Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Introduction Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Microbially driven ammonia oxidation to nitrite is the rate Germany.
    [Show full text]
  • Variability of Microbial Communities in Two Long-Term Ice-Covered Freshwater Lakes in the Subarctic Region of Yakutia, Russia
    Variability of Microbial Communities in Two Long-term Ice-covered Freshwater Lakes in the Subarctic Region of Yakutia, Russia Yulia Robertovna Zakharova Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan Batorskaya Street, Irkutsk 664033, Russia Maria Victorovna Bashenkhaeva ( [email protected] ) Limnological Institute SB RAS https://orcid.org/0000-0002-2551-5153 Yuri Pavlovich Galachyants Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan Batorskaya Street, Irkutsk 664033, Russia Darya Petrovna Petrova Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan Batorskaya Street, Irkutsk 664033, Russia Irina Victorovna Tomberg Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan Batorskaya Street, Irkutsk 664033, Russia Artyom Mikhailovich Marchenkov Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan Batorskaya Street, Irkutsk 664033, Russia Liubov Innokentyevna Kopyrina Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan Batorskaya Street, Irkutsk 664033, Russia Yelena Valentinovna Likhoshway Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan Batorskaya Street, Irkutsk 664033, Russia Research Article Keywords: Subarctic freshwater lakes, ice-covered period, microbial communities, cultivable bacteria, 16S rRNA sequences Posted Date: May 27th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-529765/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Although under-ice microbial communities are subject to a cold environment, low concentrations of nutrients, and a lack of light, they nevertheless take an active part in biogeochemical cycles. However, we still lack an understanding of how high their diversity is and how these communities are distributed during the long-term ice-cover period.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 648: 79–94, 2020 MARINE ECOLOGY PROGRESS SERIES Published August 27 https://doi.org/10.3354/meps13421 Mar Ecol Prog Ser OPEN ACCESS Microbiome analyses and presence of cable bacteria in the burrow sediment of Upogebia pugettensis Cheng Li1,*, Clare E. Reimers1, John W. Chapman2 1College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA 2Department of Fisheries and Wildlife, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science Dr. Newport, Oregon 97365, USA ABSTRACT: We utilized methods of sediment cultivation, catalyzed reporter deposition− fluorescence in situ hybridization, scanning electron microscopy, and 16s rRNA gene sequencing to investigate the presence of novel filamentous cable bacteria (CB) in estuarine sediments bioturbated by the mud shrimp Upogebia pugettensis Dana and also to test for trophic connections between the shrimp, its commensal bivalve (Neaeromya rugifera), and the sediment. Agglutinated sediments from the linings of shrimp burrows exhibited higher abundances of CB compared to surrounding suboxic and anoxic sediments. Furthermore, CB abundance and activity increased in these sedi- ments when they were incubated under oxygenated seawater. Through core microbiome analy- sis, we found that the microbiomes of the shrimp and bivalve shared 181 taxa with the sediment bacterial community, and that these shared taxa represented 17.9% of all reads. Therefore, bac- terial biomass in the burrow sediment lining is likely a major food source for both the shrimp and the bivalve. The biogeochemical conditions created by shrimp burrows and other irrigators may help promote the growth of CB and select for other dominant members of the bacterial commu- nity, particularly a variety of members of the Proteobacteria.
    [Show full text]
  • Microbiome of the Black Sea Water Column Analyzed by Genome Centric Metagenomics
    Microbiome of the Black Sea Water Column Analyzed by Genome Centric Metagenomics Pedro J. Cabello-Yeves Universidad Miguel Hernandez de Elche - Campus San Juan de Alicante Cristiana Callieri IRSA-CNR Antonio Picazo Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia Maliheh Mehrshad Department of Aquatic sciences and Assessment, Swedish University of Agricultural Sciences Jose M. Haro-Moreno Universidad Miguel Hernandez de Elche - Campus San Juan de Alicante Juan J. Roda-Garcia Universidad Miguel Hernandez de Elche - Campus San Juan de Alicante Nina Dzhembekova IO-BAS Violeta Slabakova IO-BAS Nataliya Slabakova IO-BAS Snejana Moncheva IO-BAS Francisco Rodriguez-Valera ( [email protected] ) Universidad Miguel Hernandez de Elche - Campus San Juan de Alicante https://orcid.org/0000-0002-9809-2059 Research article Keywords: Black Sea microbiota, genome-resolved metagenomics, pycnocline, euxinic waters Posted Date: November 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-96557/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Background: The Black Sea is the largest brackish water body in the world, although it is connected to the Mediterranean Sea and presents an upper water layer similar to some regions of the former albeit with lower salinity and (mostly) temperature. In spite of its well-known hydrology and physico chemistry, this enormous water mass remains poorly studied at the microbial genomics level. Results: We have sampled its different water masses and analyzed the microbiome by classic and genome-resolved metagenomics generating a large number of metagenome-assembled genomes (MAGs) from them.
    [Show full text]