Neoprene “Diaphragm” Rubber

Total Page:16

File Type:pdf, Size:1020Kb

Neoprene “Diaphragm” Rubber Neoprene “Diaphragm” Rubber Product Code: Style 6125 Description: 60 Duro Neoprene Rubber Sheet Specifications: Neoprene (CR) or polychloroprene Coated 5 oz. nylon fabric for diaphragm applications Temperature range -20°F to 170°F continuous Typical Rubber Properties Test Method Typical Value Hardness (Shore A) ASTM D1414 60 5 Tensile Strength ASTM D412 820 psi min Elongation ASTM D412 300% min Coated Fabric Properties Test Method Typical Value Width ASTM D751 36” & 48” usable Gauge (36” wide) ASTM D751 1-Ply .031, .062, .093, .125, Gauge (36” wide) ASTM D751 2-Ply .125, .187, .250 Gauge (48” wide) ASTM D751 1-Ply .031, .062, .093, .125, Gauge (48” wide) ASTM D751 2-Ply .125, .187, .250 Finish Visual Plate/Smooth Color Visual Black Thickness & Width as specified. General Polymer Characteristics: Neoprene rubber is an all-purpose elastomer and an extremely versatile synthetic rubber used in thousands of applications. Neoprene rubber resists degradation from sun, ozone and weather and performs well in contact with oils and chemicals. Neoprene rubber maintains its strength, flexing, twisting and elongation very well over a wide temperature range while having outstanding physical toughness. Many grades of neoprene are available depending on the application. The cloth inserted material utilizes a 5 osy nylon to give the polymer added dimensional stability in both directions. The 5 osy nylon reinforced material is most suited for diaphragm applications were dynamic flexing is anticipated. Thermodyn products are manufactured to general RMA standards and meet the above data sheet guidelines. It is the responsibility of the end user to qualify the material to its intended application. Defects or damage resulting from misuse or mishandling are not covered by Thermodyn’s limited liability policy. Values covered in this data sheet are nominal values that we believe to be accurate and reliable for purposes of qualification in end use applications. .
Recommended publications
  • The Difference of Butyl Rubber and Butadiene Styrene Rubber? by Butyl Rubber Sheets - [email protected], Date: Sep.18.06
    The difference of butyl rubber and butadiene styrene rubber? By Butyl Rubber Sheets - www.dongrubber.com, [email protected], Date: Sep.18.06 Butyl rubber sheets is a kind of synthetic rubber which is a copolymer of Isobutylene and a small amount of isoprene copolymer, short for IIR. Butyl rubber sheeting has good chemical stability and thermal stability, the most prominent character is the air tightness and water tightness. Its air transmittance is only about 1/7 of the natural rubber, 1/5 of the styrene-butadiene rubber. Meanwhile its transmittance of steam is 1/200 of the natural rubber, and 1/140 of the styrene-butadiene rubber. Thus IIR is mainly used in the manufacture of tires, inner tubes, steam pipe, water dam and bottom gasket and other rubber products. Styrene-butadiene rubber (SBR) is one of the biggest general synthetic rubber varieties, and is also among the first rubber to realize industrialization production. Styrene butadiene rubber sheet is a random copolymer of butadiene and styrene. Its physical performance, processing performance and product performance is close to those of natural rubber sheets, and some properties such as wear resistance, heat resistance, ageing resistance and curing rate are more excellent than natural rubber sheeting, SBR can be used with a variety of natural rubber sheets and synthetic rubbers, widely applied to tires, tape, rubber hose, wire and cable, medical instruments and various kinds of rubber products production and other fields. Author: Butyl Rubber Sheets copyright reserved. Original URL should be kept in reproduction. .
    [Show full text]
  • DUPONT DATA BOOK SCIENCE-BASED SOLUTIONS Dupont Investor Relations Contents 1 Dupont Overview
    DUPONT DATA BOOK SCIENCE-BASED SOLUTIONS DuPont Investor Relations Contents 1 DuPont Overview 2 Corporate Financial Data Consolidated Income Statements Greg Friedman Tim Johnson Jennifer Driscoll Consolidated Balance Sheets Vice President Director Director Consolidated Statements of Cash Flows (302) 999-5504 (515) 535-2177 (302) 999-5510 6 DuPont Science & Technology 8 Business Segments Agriculture Electronics & Communications Industrial Biosciences Nutrition & Health Performance Materials Ann Giancristoforo Pat Esham Manager Specialist Safety & Protection (302) 999-5511 (302) 999-5513 20 Corporate Financial Data Segment Information The DuPont Data Book has been prepared to assist financial analysts, portfolio managers and others in Selected Additional Data understanding and evaluating the company. This book presents graphics, tabular and other statistical data about the consolidated company and its business segments. Inside Back Cover Forward-Looking Statements Board of Directors and This Data Book contains forward-looking statements which may be identified by their use of words like “plans,” “expects,” “will,” “believes,” “intends,” “estimates,” “anticipates” or other words of similar meaning. All DuPont Senior Leadership statements that address expectations or projections about the future, including statements about the company’s strategy for growth, product development, regulatory approval, market position, anticipated benefits of recent acquisitions, timing of anticipated benefits from restructuring actions, outcome of contingencies, such as litigation and environmental matters, expenditures and financial results, are forward looking statements. Forward-looking statements are not guarantees of future performance and are based on certain assumptions and expectations of future events which may not be realized. Forward-looking statements also involve risks and uncertainties, many of which are beyond the company’s control.
    [Show full text]
  • Vulcanization & Accelerators
    Vulcanization & Accelerators Vulcanization is a cross linking process in which individual molecules of rubber (polymer) are converted into a three dimensional network of interconnected (polymer) chains through chemical cross links(of sulfur). The vulcanization process was discovered in 1839 and the individuals responsible for this discovery were Charles Goodyear in USA and Thomas Hancock in England. Both discovered the use of Sulfur and White Lead as a vulcanization system for Natural Rubber. This discovery was a major technological breakthrough for the advancement of the world economy. Vulcanization of rubbers by sulfur alone is an extremely slow and inefficient process. The chemical reaction between sulfur and the Rubber Hydrocarbon occurs mainly at the C = C (double bonds) and each crosslink requires 40 to 55 sulphur atoms (in the absence of accelerator). The process takes around 6 hours at 140°C for completion, which is uneconomical by any production standards. The vulcanizates thus produced are extremely prone to oxidative degradation and do not possess adequate mechanical properties for practical rubber applications. These limitations were overcome through inventions of accelerators which subsequently became a part of rubber compounding formulations as well as subjects of further R&D. Following is the summary of events which led to the progress of ‘Accelerated Sulfur Vulcanization'. Event Year Progress - Discovery of Sulfur Vulcanization: Charles Goodyear. 1839 Vulcanizing Agent - Use of ammonia & aliphatic ammonium derivatives: Rowley. 1881 Acceleration need - Use of aniline as accelerator in USA & Germany: Oenslager. 1906 Accelerated Cure - Use of Piperidine accelerator- Germany. 1911 New Molecules - Use of aldehyde-amine & HMT as accelerators in USA & UK 1914-15 Amine Accelerators - Use of Zn-Alkyl Xanthates accelerators in Russia.
    [Show full text]
  • Dupont Company Engineering Department Photographs 1982.300
    DuPont Company Engineering Department photographs 1982.300 This finding aid was produced using ArchivesSpace on September 14, 2021. Description is written in: English. Describing Archives: A Content Standard Audiovisual Collections PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library DuPont Company Engineering Department photographs 1982.300 Table of Contents Summary Information .................................................................................................................................... 8 Historical Note ............................................................................................................................................... 8 Scope and Content ......................................................................................................................................... 9 Administrative Information .......................................................................................................................... 11 Controlled Access Headings ........................................................................................................................ 11 Collection Inventory ..................................................................................................................................... 11 Alabama Ordnance Works ........................................................................................................................ 11 Argentine Rayon Construction .................................................................................................................
    [Show full text]
  • SAFETY DATA SHEET for Mission Rubber Neoprene Gaskets
    SAFETY DATA SHEET for Mission Rubber Neoprene Gaskets SECTION TOPIC PG 1 Identification 1 2 Hazard Identification 1-2 3 Composition/Information On Ingredients 2 4 First Aid Measures 2 5 Firefighting Measures 2 6 Accidental Release Measures 3 7 Handling and Storage 3 8 Exposure Controls/Personal Protection 3 9 Physical and Chemical Properties 4 10 Stability and Reactivity 4 11 Toxicological Information 4 12 Ecological Information 5 13 Disposal Considerations 5 14 Exposure Controls/Personal Protection 5 15 Regulatory Information 5-6 16 Other Information 6 missionrubber.com (800) 854-9991 SAFETY DATA SHEET NEOPRENE GASKETS Section 1: IDENTIFICATION 1.1 Product identifier Product name: Neoprene Product part number: DPESISGRP251 CAS number: Ingredients: 184963-09-1. Synonyms: Neoprene. Product description: Neoprene Synthetic Rubber Gasket is a black color rubber with a mild characteristic odor. Product type: Solid 1.2 Relevant identified uses of the substance or mixture and uses advised against Product use: For use only as specified in product literature 1.3 Details of the supplier of the safety data sheet Mission Rubber Company, LLC 1660 Lesson Lane Corona, CA 92879 1.4 Telephone number: 800-854-9991 Section 2: HAZARD IDENTIFICATION 2.1 Classification of Substance or Mixture Potential Health Effects Before using Neoprene Synthetic Rubbers, read Bulletin "Guide for Safety in Handling and FDA Status of Neoprene Solid Polymers". ADDITIONAL HEALTH EFFECTS POLYCHLOROPRENE BLEND ACUTE OR IMMEDIATE EFFECTS: ROUTES OF ENTRY AND SYMPTOMS Ingestion One type of Neoprene was tested for oral toxicity in rats. The LD-50 is in excess of 20,000 milligrams per kilogram body weight which is low toxicity.
    [Show full text]
  • Mechanical Study Guide.Pdf
    MECHANICAL CONCEPTS Turn on bookmarks to navigate this document . PURPOSE OF THIS GUIDE . BEARINGS . Michelin North America, Inc. Copyright © 2012 Michelin North America, Inc All rights reserved. The Michelin Man is a registered trademark of Michelin North America, Inc. www.michelin.com BEARINGS AND THEIR CATEGORIES Generalities A bearing is a mechanical device and it is important to know its various components. 1 2 Figure 1-1 . Michelin North America, Inc. Copyright © 2012 Michelin North America, Inc All rights reserved. The Michelin Man is a registered trademark of Michelin North America, Inc. www.michelin.com Categories of bearings Figure 1-2 . Michelin North America, Inc. Copyright © 2012 Michelin North America, Inc All rights reserved. The Michelin Man is a registered trademark of Michelin North America, Inc. www.michelin.com Radial bearings Radial bearings are made with balls or rollers, depending on the how the bearings are used. They are designed to withstand forces that are perpendicular to the axis of the shaft. Figure 1-3 Axial bearings Axial bearings, also known as thrust bearings, have either balls or rollers, but both are designed to withstand axial forces, which push or pull along the axis. Figure 1-4 . Michelin North America, Inc. Copyright © 2012 Michelin North America, Inc All rights reserved. The Michelin Man is a registered trademark of Michelin North America, Inc. www.michelin.com Radial bearings and their functions Ball bearings Name Function Rigid, with balls and Designed mainly to support deep track. radial loads, but can also take a bit of axial load. Name Function With filling notch.
    [Show full text]
  • Dupont™ Chemical Guidebook
    Chemical manufacturing Personal protective solutions for chemical manufacturing industry applications Because everyone Our brands Nomex® has someone ™ ® DuPont Nomex offers a tested and proven portfolio of protective solutions that continues to meet or exceed global standards for heat, flame and depending on them * electric arc flash protection. to get home safely Kevlar® Gloves made with DuPont™ Kevlar® offer industry-leading cut protection, built-in DuPont is more focused than ever on providing heat and flame resistance and electric arc flash protection, while providing the innovative protection solutions and expert technical dexterity and comfort workers want. support tailored to meet the specific needs of workers in chemical manufacturing industries Tyvek® around the world. DuPont™ Tyvek® garments provide workers with superior protection from small-sized hazardous particles, including lead, asbestos and mold. And because Because their safety is our business, workers in the protection is built into the fabric itself, there are no films or laminates to chemical manufacturing industries can rely on the abrade or wear away. world-class people, products and innovation that have made DuPont a trusted partner in personal protection. Tychem® DuPont™ Tychem® garments deliver durable protection and offer strong With a wide range of industry-leading personal permeation barrier against a wide range of chemicals. Together with Tychem® protective equipment (PPE) solutions and a global gloves and tape, they create the Tychem® Trusted Chemical System™ network of PPE specialists, technical experts and for complete protection. manufacturing, DuPont is uniquely suited to provide the protection and comfort every worker deserves to face a range of workplace hazards with confidence.
    [Show full text]
  • BIOMIMETIC SYNTHETIC RUBBER Better Than Natural Rubber
    Better than natural rubber BISYKA BIOMIMETIC SYNTHETIC RUBBER 30 % less FRAUNHOFER abrasion EXPERTISE Elastomers Superior Life sciences roll resistance Silica fillers Scale up Can be produced in existing plants THE FRAUNHOFER-GESELLSCHAFT ABOUT THE FRAUNHOFER-GESELLSCHAFT The Fraunhofer-Gesellschaft is contract research, 70 percent of Europe’s leading organization which is through contracts with in applied research. It is made up of industry and with publicly financed 72 institutes and research facilities research projects. International collab- located throughout Germany. More oration with outstanding research than 26,600 employees generate partners and innovative companies an annual research volume of more worldwide provides direct access than 2.5 billion euros. Of this, more to major scientific and economic than 2.1 billion euros come from regions now and into the future. www.fraunhofer.de/en 2 CONTENT On behalf of the Fraunhofer-Gesellschaft, 4 Why is rubber so important for the auto- I would like to congratulate the BISYKA motive industry? Fraunhofer’s project on consortium on its excellent outcomes in the field biomimetic synthetic rubber of biomimetic synthetic rubber. “BISYKA” 6 What makes natural rubber so unique? Within the framework of MAVO, 8 Understanding Fraunhofer’s internal research program for dandelion rubber market-oriented preliminary research, Biocomponents enable innovative elastomers the Fraunhofer-Gesellschaft bundles the 12 From natural rubber expertise of various institutes into original to biomimetic preliminary research projects. synthetic rubber Synthesis of BISYKA rubber BISYKA is an excellent example of how on a pilot scale synergies can be used effectively in this way 16 Novel silica fillers for the rubber and tire industry to develop new and original solutions.
    [Show full text]
  • Lehigh Technologies
    CONFIDENTIAL “Technology and Innovation in the use of Micronized Rubber Powder in today’s Green World” 11 April, 2013 CONFIDENTIAL • Setting the Stage and What we are Learning • Who is Lehigh Technologies • Technical Presentation • What Does it All Mean in Terms of Green? 1 | Lehigh Technologies Inc. Millions of End-of-Life Tires Generated Each Year Energy Recovery Civil Engineering Landfill Stockpiled Data Not Available 292 250 112 80 30 2 | Lehigh Technologies Inc. 2 CONFIDENTIAL The First Chemical Revolution 1800s 1850-1900 1900-1930 dyes/pigments oil and gas cracking/refining discoveries metals synthetic chemistry carbohydrates soaps atomic theory and the chemical bond 3 | Lehigh Technologies Inc. 3 The World Today – 3 Challenges 4lbs /person/day oil prices over $80 world population and spiking to 7B people >$100/bbl over 200 million tons per year 1 billion in the borrow-buy-burn developed world is US energy consume as much strategy energy as the other 6B. 4 | Lehigh Technologies Inc. 4 The Second Chemical Revolution Bury or burn is not a solution infinite cycles of Vast resource pools available use • Huge technology challenge • • sustainable Must be waste based. production of Amyris, Kior, Renmatix, Genomatica building blocks • Small companies leading • • efficient use of Principles of Green Chemistry existing carbon Chemical companies leading sources • • 5 | Lehigh Technologies Inc. 5 Micronized Rubber Powder Industry – Lehigh Experience Image of industry: Reliability of supply-process safety; quality Scale-not capable of supporting
    [Show full text]
  • Toyo Tire Talk
    TOYO TIRE TALK Subject: Rubber Compound ··· Polymers As you will all know well, a tire is mainly made of "rubber" and cords. In the past, we have talked about the important functions of cords. Therefore, this time we would like to talk about the most important material in tires "rubber". When we talk about rubber, we generally mean the rubber compound to be exact. The compound is made by mixing polymer, reinforcement material, softener and various chemicals. Different characteristics are required for every type of tire or tire part. For example, a TBR tire requires heat, wear and cut resistance for the tread rubber, while the sidewall requires good weather resistance. We therefore need many kinds of rubber compounds. In this chapter, we'll talk about polymers, their types, characteristics and uses, that all perform very important functions. The main polymers used for tires are as follows : 1) Natural Rubber (NR) 2) Styrene Butadiene Rubber (SBR) 3) Butadiene Rubber (BR) 4) Isoprene Rubber (IR) 5) Halogenated Butyl Rubber All of the above are synthetic rubber except Natural Rubber of course. 1) Natural Rubber (NR) Characteristics NR is made from latex taken from rubber Advantage Disadvantage trees, mainly grown in Southeast Asia. Tear Strength Uniformity of quality Although there are now various kinds of Wear Resistance Aging Resistance synthetic rubber available, Natural Rubber Impact Resilience Fatigue Resistance is still used extensively in tires. Low Heat Generation Ozone Resistance 2) Styrene Butadiene Rubber (SBR) Characteristics SBR is now the most common synthetic Advantage Disadvantage rubber being used in tires. It is made by Processability Impact Resilience polymerizing Styrene and Butadiene Uniform quality Heat Generation together, it is also possible by changing Aging by heat Styrene content and polymerization process Frictional Force to make various types of SBR's with different characteristics.
    [Show full text]
  • Wallace Hume Carothers Letters to Frances Gelvin Spencer 2435
    Wallace Hume Carothers letters to Frances Gelvin Spencer 2435 This finding aid was produced using ArchivesSpace on September 26, 2021. Description is written in: English. Describing Archives: A Content Standard Manuscripts and Archives PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Wallace Hume Carothers letters to Frances Gelvin Spencer 2435 Table of Contents Summary Information .................................................................................................................................... 3 Biographical Note .......................................................................................................................................... 3 Scope and Contents ........................................................................................................................................ 4 Administrative Information ............................................................................................................................ 4 Related Materials ........................................................................................................................................... 5 Controlled Access Headings .......................................................................................................................... 5 - Page 2 - Wallace Hume Carothers letters to Frances Gelvin Spencer 2435 Summary Information Repository: Manuscripts and Archives Creator - crp: Carothers, Wallace Hume, 1896-1937 Creator - rcp: Spencer, Frances
    [Show full text]
  • Ball and Butterfly Valve Seat/Seal Materials
    SEAT AND SEAL MATERIAL S BALL AND BUTTERFLY VAL V E SEAT /SEAL MATERIAL S SEAT MATERIALS AND APPLICATIONS Virgin PTFE (Polytetrafluoroethylene) PTFE or TFE (Teflon®) is a fluorocarbon based polymer and typically is the most chemically- resistant of all plastics while retaining excellent thermal and electrical insulation properties. TFE also has a low coefficient of friction so is ideal for many low torque applications. This material is non-contaminating and accepted by the FDA for use in food services. Although TFE’s mechanical properties are low compared to other engineered plastics, its properties remain useful over a wide temperature range Temperature range: -100°F to +450°F. Color: white Torque adder: 0% RTFE (Reinforced Polytetrafluoroethylene) RTFE (reinforced Teflon® ) is compounded with a percentage of fiber glass or filler material to provide additional strength, stability and resistance to abrasive wear, cold flow and permeation in molded seats. Reinforcement such as glass fiber permits application at higher pressures and temperatures than unfilled TFE. RTFE should not be used in applications that attack glass, such as hydrofluoric acid and hot/strong caustics. Temperature range: -320°F to 450°F. Color: off-white (“milky-white”) Torque adder: 0% TFM TFM is a modified “second generation” TFE polymer that maintains the chemical and heat resistance properties of first generation PTFE. It has a denser polymer structure than standard PTFE with better stress recovery. Temperature range: -100°F to 500°F Color: white Torque adder: approximately 10% Delrin® Delrin® is DuPont’s trademark for Polyoxy-methylene. Delrin is very rigid, does not undergo cold flow, and has an excellent combination of strength, hardness, stiffness, stability, abrasion resistance and low friction.
    [Show full text]