Downloaded from the Gene Expression Omnibus (GEO) Database

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from the Gene Expression Omnibus (GEO) Database 858 Original Article Identification of potential biomarkers and pathways in ulcerative colitis with combined public mRNA and miRNA expression microarray data analysis Lili Yang1,2#, Yaoyao Bian3#, Zhengjun Li4#, Yan Yan5, Junyi Li1, Wenlin Li2, Li Zeng1,2 1School of First Clinical Medicine, 2Jingwen Library, 3School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China; 4Management School, Lancaster University, Lancaster, LA1 4YW, UK; 5Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China Contributions: (I) Conception and design: L Yang, Y Bian; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: Y Bian; (V) Data analysis and interpretation: Z Li, J Li; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Li Zeng. School of First Clinical Medicine; Jingwen Library, Nanjing University of Chinese Medicine, Nanjing 210023, China. Email: [email protected]. Background: Ulcerative colitis (UC) is a chronic, relapsing and non-specific inflammatory disease, involving various genes and pathways in their pathogenesis. Increasing evidences have showed that microRNAs (miRNAs) act as key post-transcriptional regulators of gene expression in UC. This current study aimed to identify key miRNAs, potential target genes, and relevant pathways involved in UC to uncover their underlying molecular mechanisms by using bioinformatics analysis. Methods: The mRNA and miRNA expression profiles were retrieved and downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by using the R software package. Results: A total of 79 DEGs and 47 DEMIs were obtained. And a panel of miRNAs and their target mRNAs were identified. It showed that miR-1231 may be a key regulator for DUOX2 and TFF1. CCL11 may be potentially targeted by miR-625. MMP1 may play vital roles in the development of UC by regulating the miR-1228/PPAR signaling pathway. In addition, we validated the most significantly up/down-expressed miRNAs (miR-92b, miR-625) and two of their corresponding target mRNAs (AQP8 and TAGAP, CCL11 and CHI3L1) in colon tissues of UC models preliminarily. The results were consistent with the microarray analysis. Conclusions: These findings may provide new insights into representing key mechanisms associated with the development of UC. Keywords: Ulcerative colitis (UC); microRNAs (miRNAs); differentially expressed genes (DEGs); bioinformatics analysis; functional enrichment analysis Submitted Mar 06, 2019. Accepted for publication Jun 03, 2019. doi: 10.21037/jgo.2019.06.06 View this article at: http://dx.doi.org/10.21037/jgo.2019.06.06 © Journal of Gastrointestinal Oncology. All rights reserved. J Gastrointest Oncol 2019;10(5):847-858 | http://dx.doi.org/10.21037/jgo.2019.06.06 848 Yang et al. Potential biomarkers and pathways of UC Introduction In this study, we retrieved datasets of mRNA and miRNA expression microarrays from the Gene Expression Ulcerative colitis (UC), a subtype of inflammatory bowel Omnibus (GEO), and we identified a group of key miRNAs disease (IBD), is a chronic, relapsing and non-specific and potentially target genes involved in UC by using inflammatory disease, which is confined to the mucosa and bioinformatics analysis. In addition, the most significantly submucosa of the rectum or colon. It is characterized by two expressed miRNAs and their target genes were selected and periods of active disease and remission. The typical clinical conducted for preliminary validation by real-time qPCR manifestations are diarrhea, purulent stool and abdominal (qRT-PCR). The study aimed to suggest miRNA signatures pain (1). useful for active UC detection and diagnosis, as well as UC afflicts millions of people worldwide. The highest explore the underlying pathogenesis by identifying potential incidences of UC in North America and Northern Europe miRNA-targeted mRNAs at the molecular level. were 6–15.6 and 10–20.3 cases, respectively, per 100,000 annually (2). A recent review analysis of 44 studies that included 31,287 Asian patients found a 0.85% prevalence Methods rates of UC (3). Additionally, patient suffering from UC Collection and inclusion criteria of studies are at high risk of developing colorectal cancer (CRC) (4). UC has brought significant personal and societal burden. The mRNA microarray expression profile datasets were Furthermore, active UC can decrease the physical and retrieved and downloaded from the GEO database (available mental quality of life and increase psychological distress. online: http://www.ncbi.nlm.nih.gov/geo) by searching the MicroRNAs (miRNAs), a group of small non-coding following key words: ‘RNA’, ‘active ulcerative colitis’, and RNA molecules, act as key post-transcriptional regulators ‘Homo sapiens’ (organism). The inclusion criteria were as of gene expression. The dysregulated miRNA expression follows: (I) colon tissues from adult patients with active UC can drive the onset of various diseases and even contribute (not cells); (II) samples in UC group without receiving any to oncogenesis or tumor progression. miRNAs have interventions or treatments; and (III) both numbers of UC cytoprotective effect on tissue as protectomiRs (5), and play a and health control sample ≥12. Besides, the miRNA profile pivotal role in the polarization of tumor-related macrophages datasets were searched by using the keywords: ‘miRNA’, in inflammatory microenvironment (6). Moreover, miRNAs ‘active ulcerative colitis’, and ‘Homo sapiens’ (organism) function of inflammation and autoimmunity in regulating according to the following criteria: (I) colon tissues from the pathogenesis of UC (7). Mounting gene expression active UC patients (not cells) and (II) samples in UC group studies performed in UC both in colonic mucosa and without receiving any interventions or treatments. After peripheral blood have proposed various hypothesis, that is, screening, two mRNA expression datasets [GSE53306 (16) cell adhesion, immune response and tissue remodeling (8). and GSE65114] were selected, and one miRNA expression Numerous genes and pathways are correlated with dataset (GSE43009) was obtained for analysis. The the genesis and progression of UC. For example, high workflow of data-processing and analysis is presented in expression levels of Caspase 1 (CASP1) and lysozyme Figure 1. (LYZ) have been found in UC group (9). Various genes, such as CD177 Molecule (CD177), G protein-coupled Microarray data receptor 84 (GPR84) (10), interleukin 8 (IL-8), matrix metallopeptidase 9 (MMP-9) (11), and 8-Oxoguanine DNA In this study, the platform for GSE53306 was based on glycosylase (OGG1) (12), participate in molecular pathways the GPL14951 Illumina HumanHT-12 WG-DASL V4.0 of UC. Also, various signaling pathways, such as nuclear R2 expression beadchip, which consisted of 16 active UC transcription factor kappa B (NF-κB) pathway (13), nuclear samples and 12 controls. The platform for GSE65114 factor erythroid 2-related factor 2 (Nrf2) pathway (14), was GPL16686 (HuGene-2_0-st) Affymetrix human gene and JAK/STAT signaling pathway (15) are related to 2.0 ST array, which included 16 active UC samples and progress of UC. However, knowledge of the genome scale 12 controls. The platform for GSE43009 was based on of miRNAs and their target genes, as well as the potential GPL16384 Affymetrix multispecies miRNA-3 array, which biological function of UC, remains limited. consisted of five controls and five UC samples. © Journal of Gastrointestinal Oncology. All rights reserved. J Gastrointest Oncol 2019;10(5):847-858 | http://dx.doi.org/10.21037/jgo.2019.06.06 Journal of Gastrointestinal Oncology, Vol 10, No 5 October 2019 849 Data collection from GEO datasets mRNA datasets miRNA dataset GSE53306 GSE65114 GSE43009 R analysis the differential R analysis the differential R analysis the differential mRNAs (P<0.05) mRNAs (P<0.05) miRNAs (adj.P<0.05) Predict the target mRNAs The overlapping expressed mRNAs GO annotation and KEGG PPI construction and module Comprehensive analysis of enrichment analysis miRNAs and targeted-mRNAs Figure 1 Flow sheet of data-processing and analysis. Data-processing and differentially expressed genes (DEGs)/ enrichment analysis was performed for presenting the differentially expressed miRNAs (DEMI) identification systematic analysis, annotation, and visualization of gene functions. Both GO enrichment and KEGG pathway The raw data were downloaded from the GEO database analysis were conducted using the Database for Annotation, and then normalized and standardized by using the R Visualization and Integrated Discovery (DAVID) software package. Gene differential expression analysis was (available online: http://david.abcc.ncifcrf.gov/) to identify conducted through the limma packages in the Bioconductor the biological significance of genes, when P<0.05 was package (17) (available online: http://www.bioconductor. considered statistically significant. org/). The heat maps of the two mRNA datasets were mapped by using the gplots package in R to visualize the expression values of genes in the different samples. When Protein-protein interaction (PPI) network construction we selected the DEGs, P<0.05 and |log FC| >1 were and module selection considered as the cutoff values, where FC is fold change. The PPI network of DEGs was mapped using the Search Significant DEMIs
Recommended publications
  • C-X-C Motif Chemokine Ligand 10 Produced by Mouse Sertoli Cells in Response to Mumps Virus Infection Induces Male Germ Cell Apoptosis
    Citation: Cell Death and Disease (2017) 8, e3146; doi:10.1038/cddis.2017.560 OPEN Macmillan Publishers Limited, part of Springer Nature. www.nature.com/cddis Corrected: Correction C-X-C motif chemokine ligand 10 produced by mouse Sertoli cells in response to mumps virus infection induces male germ cell apoptosis Qian Jiang1, Fei Wang1, Lili Shi1, Xiang Zhao1, Maolei Gong1, Weihua Liu1, Chengyi Song2, Qihan Li3, Yongmei Chen1, Han Wu*,1,2 and Daishu Han*,1 Mumps virus (MuV) infection usually results in germ cell degeneration in the testis, which is an etiological factor for male infertility. However, the mechanisms by which MuV infection damages male germ cells remain unclear. The present study showed that C-X-C motif chemokine ligand 10 (CXCL10) is produced by mouse Sertoli cells in response to MuV infection, which induces germ cell apoptosis through the activation of caspase-3. CXC chemokine receptor 3 (CXCR3), a functional receptor of CXCL10, is constitutively expressed in male germ cells. Neutralizing antibodies against CXCR3 and an inhibitor of caspase-3 activation significantly inhibited CXCL10-induced male germ cell apoptosis. Furthermore, the tumor necrosis factor-α (TNF-α) upregulated CXCL10 production in Sertoli cells after MuV infection. The knockout of either CXCL10 or TNF-α reduced germ cell apoptosis in the co-cultures of germ cells and Sertoli cells in response to MuV infection. Local injection of MuV into the testes of mice confirmed the involvement of CXCL10 in germ cell apoptosis in vivo. These results provide novel insights into MuV-induced germ cell apoptosis in the testis.
    [Show full text]
  • CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma
    International Journal of Molecular Sciences Article CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma 1, 2,3,4, 5 6 7 Ju-Fang Liu y, Chiang-Wen Lee y, Chih-Yang Lin , Chia-Chia Chao , Tsung-Ming Chang , Chien-Kuo Han 8, Yuan-Li Huang 8, Yi-Chin Fong 9,10,* and Chih-Hsin Tang 8,11,12,* 1 School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City 11031, Taiwan; [email protected] 2 Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan; [email protected] 3 Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan 4 Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan 5 School of Medicine, China Medical University, Taichung 40402, Taiwan; [email protected] 6 Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan; [email protected] 7 School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City 11221, Taiwan; [email protected] 8 Department of Biotechnology, College of Health Science, Asia University, Taichung 40402, Taiwan; [email protected] (C.-K.H.); [email protected] (Y.-L.H.) 9 Department of Sports Medicine, College of Health Care, China Medical University, Taichung 40402, Taiwan 10 Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin 65152, Taiwan 11 Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan 12 Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan * Correspondence: [email protected] (Y.-C.F.); [email protected] (C.-H.T.); Tel.: +886-4-2205-2121-7726 (C.-H.T.); Fax: +886-4-2233-3641 (C.-H.T.) These authors contributed equally to this work.
    [Show full text]
  • Integrated Analysis of Multiple Microarray Studies to Identify Novel Gene Signatures in Ulcerative Colitis
    fgene-12-697514 July 5, 2021 Time: 19:1 # 1 ORIGINAL RESEARCH published: 09 July 2021 doi: 10.3389/fgene.2021.697514 Integrated Analysis of Multiple Microarray Studies to Identify Novel Gene Signatures in Ulcerative Colitis Zi-An Chen1, Yu-Feng Sun1, Quan-Xu Wang1, Hui-Hui Ma1, Zhi-Zhao Ma2* and Chuan-Jie Yang1* 1 Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China, 2 Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China Background: Ulcerative colitis (UC) is a chronic, complicated, inflammatory disease with an increasing incidence and prevalence worldwide. However, the intrinsic molecular mechanisms underlying the pathogenesis of UC have not yet been fully elucidated. Methods: All UC datasets published in the GEO database were analyzed and Edited by: Shulan Tian, summarized. Subsequently, the robust rank aggregation (RRA) method was used to Mayo Clinic, United States identify differentially expressed genes (DEGs) between UC patients and controls. Gene Reviewed by: functional annotation and PPI network analysis were performed to illustrate the potential Espiridión Ramos-Martínez, Universidad Nacional Autónoma functions of the DEGs. Some important functional modules from the protein-protein de México, Mexico interaction (PPI) network were identified by molecular complex detection (MCODE), Panwen Wang, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), and Mayo Clinic Arizona, United States analyses were performed. The results of CytoHubba, a plug for integrated algorithm for *Correspondence: Zhi-Zhao Ma biomolecular interaction networks combined with RRA analysis, were used to identify [email protected] the hub genes. Finally, a mouse model of UC was established by dextran sulfate sodium Chuan-Jie Yang [email protected] salt (DSS) solution to verify the expression of hub genes.
    [Show full text]
  • The Unexpected Role of Lymphotoxin Β Receptor Signaling
    Oncogene (2010) 29, 5006–5018 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc REVIEW The unexpected role of lymphotoxin b receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development MJ Wolf1, GM Seleznik1, N Zeller1,3 and M Heikenwalder1,2 1Department of Pathology, Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland and 2Institute of Virology, Technische Universita¨tMu¨nchen/Helmholtz Zentrum Mu¨nchen, Munich, Germany The cytokines lymphotoxin (LT) a, b and their receptor genesis. Consequently, the inflammatory microenviron- (LTbR) belong to the tumor necrosis factor (TNF) super- ment was added as the seventh hallmark of cancer family, whose founder—TNFa—was initially discovered (Hanahan and Weinberg, 2000; Colotta et al., 2009). due to its tumor necrotizing activity. LTbR signaling This was ultimately the result of more than 100 years of serves pleiotropic functions including the control of research—indeed—the first observation that tumors lymphoid organ development, support of efficient immune often arise at sites of inflammation was initially reported responses against pathogens due to maintenance of intact in the nineteenth century by Virchow (Balkwill and lymphoid structures, induction of tertiary lymphoid organs, Mantovani, 2001). Today, understanding the underlying liver regeneration or control of lipid homeostasis. Signal- mechanisms of why immune cells can be pro- or anti- ing through LTbR comprises the noncanonical/canonical carcinogenic in different types of tumors and which nuclear factor-jB (NF-jB) pathways thus inducing cellular and molecular inflammatory mediators (for chemokine, cytokine or adhesion molecule expression, cell example, macrophages, lymphocytes, chemokines or proliferation and cell survival.
    [Show full text]
  • REG Gene Expression in Inflamed and Healthy Colon Mucosa Explored by in Situ Hybridisation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Cell Tissue Res (2013) 352:639–646 DOI 10.1007/s00441-013-1592-z REGULAR ARTICLE REG gene expression in inflamed and healthy colon mucosa explored by in situ hybridisation Atle van Beelen Granlund & Ann Elisabet Østvik & Øystein Brenna & Sverre H. Torp & Bjørn I. Gustafsson & Arne Kristian Sandvik Received: 10 December 2012 /Accepted: 14 February 2013 /Published online: 22 March 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract The regenerating islet-derived (REG) gene family used in situ hybridisation to demonstrate the cellular encodes a group of proteins highly expressed in several localisation of REG expression in healthy and diseased human pathologies, many of which are associated with colonic mucosa. Samples drawn from an IBD cohort includ- epithelial inflammation. All human family members, name- ing both inflamed and un-inflamed colonic mucosa are ly REG1A, REG1B, REG3A and REG4, are closely related described, as are samples from non-IBD inflammation and in genomic sequence and all are part of the c-type lectin healthy controls. Immunohistochemistry against known superfamily. REGs are highly expressed during inflamma- cell-type markers on serial sections has localised the expres- tory bowel disease (IBD)-related colonic inflammation and sion of REGs to metaplastic Paneth cells (REG1A, REG1B the in vivo expression pattern of REG1A and REG4 has and REG3A) and enteroendocrine cells (REG4), with a been localised by using immunohistochemistry. However, marked expansion of expression during inflammation. The the function of the encoded proteins is largely unknown and group of REGs can, based on gene expression patterns, be the cellular localisation of REG expression during colonic divided into at least two groups; REG1A, REG1B and inflammation has not been described.
    [Show full text]
  • Defining Natural Antibodies
    PERSPECTIVE published: 26 July 2017 doi: 10.3389/fimmu.2017.00872 Defining Natural Antibodies Nichol E. Holodick1*, Nely Rodríguez-Zhurbenko2 and Ana María Hernández2* 1 Department of Biomedical Sciences, Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States, 2 Natural Antibodies Group, Tumor Immunology Division, Center of Molecular Immunology, Havana, Cuba The traditional definition of natural antibodies (NAbs) states that these antibodies are present prior to the body encountering cognate antigen, providing a first line of defense against infection thereby, allowing time for a specific antibody response to be mounted. The literature has a seemingly common definition of NAbs; however, as our knowledge of antibodies and B cells is refined, re-evaluation of the common definition of NAbs may be required. Defining NAbs becomes important as the function of NAb production is used to define B cell subsets (1) and as these important molecules are shown to play numerous roles in the immune system (Figure 1). Herein, we aim to briefly summarize our current knowledge of NAbs in the context of initiating a discussion within the field of how such an important and multifaceted group of molecules should be defined. Edited by: Keywords: natural antibody, antibodies, natural antibody repertoire, B-1 cells, B cell subsets, B cells Harry W. Schroeder, University of Alabama at Birmingham, United States NATURAL ANTIBODY (NAb) PRODUCING CELLS Reviewed by: Andre M. Vale, Both murine and human NAbs have been discussed in detail since the late 1960s (2, 3); however, Federal University of Rio cells producing NAbs were not identified until 1983 in the murine system (4, 5).
    [Show full text]
  • Identification of Novel Alternative Splice Isoforms of Circulating Proteins in a Mouse Model of Human Pancreatic Cancer
    Research Article Identification of Novel Alternative Splice Isoforms of Circulating Proteins in a Mouse Model of Human Pancreatic Cancer Rajasree Menon,1 Qing Zhang,3 Yan Zhang,1 Damian Fermin,1 Nabeel Bardeesy,4 Ronald A. DePinho,5 Chunxia Lu,2 Samir M. Hanash,3 Gilbert S. Omenn,1 and David J. States1 1Center for Computational Medicine and Biology and 2Pediatric Endocrinology, University of Michigan, Ann Arbor, Michigan; 3Fred Hutchinson Cancer Research Center, Seattle, Washington; and 4Center for Cancer Research, Massachusetts General Hospital; 5Center for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts Abstract database are scored as high, medium, or low confidence, reflecting the amount of cumulative evidence in support of the existence of a To assess the potential of tumor-associated, alternatively particular alternatively spliced sequence. Evidence is collected from spliced gene products as a source of biomarkers in biological clustering of ESTs, mRNA sequences, and gene model predictions. fluids, we have analyzed a large data set of mass spectra We modified the ECgene database to include three-frame trans- derived from the plasma proteome of a mouse model of lations of the cDNA sequences (5) to determine the occurrence of human pancreatic ductal adenocarcinoma. MS/MS spectra novel splice variant proteins. An important development in recent were interrogated for novel splice isoforms using a non- years is the substantial improvement in tandem mass spectrometry redundant database containing an exhaustive three-frame instrumentation for proteomics, allowing in-depth analysis and translation of Ensembl transcripts and gene models from confident identifications even for proteins coded by mRNA ECgene.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Datasheet Blank Template
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . Reg lll α/γ (S-13): sc-103862 BACKGROUND APPLICATIONS The regeneration (Reg) family consists of secretory proteins involved in liver, Reg III α/γ (S-13) is recommended for detection of Reg III α and Reg III γ of pancreatic, gastric and intestinal cell proliferation or differentiation. Members human origin by Western Blotting (starting dilution 1:200, dilution range of the Reg family are divided into four subclasses, designated types I, II, III 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein and IV, all of which share a common gene structure containing five introns and (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution six exons. Members of the Reg family have been implicated in the regulation range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution of cell growth, tumorigenesis and the progression of cancer. Reg lll γ (regen - range 1:30-1:3000). erating islet-derived 3 γ), also known as pancreatitis-associated protein 1B, PA P1B or UNQ429, is a 175 amino acid secreted protein that is expressed Molecular Weight of Reg III α: 19 kDa. almost exclusively in pancreas, with low levels of expression in testis. Reg lll γ Molecular Weight of Reg lll γ: 16 kDa. functions as an antimicrobial protein involved in controlling bacterial prolifera - Positive Controls: human pancreas extract: sc-363770. tion and may be induced during acute pancreatitis. The gene encoding Reg lll γ maps to human chromosome 2, which houses over 1,400 genes and comprises nearly 8% of the human genome.
    [Show full text]
  • Critical Role of CXCL4 in the Lung Pathogenesis of Influenza (H1N1) Respiratory Infection
    ARTICLES Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection L Guo1,3, K Feng1,3, YC Wang1,3, JJ Mei1,2, RT Ning1, HW Zheng1, JJ Wang1, GS Worthen2, X Wang1, J Song1,QHLi1 and LD Liu1 Annual epidemics and unexpected pandemics of influenza are threats to human health. Lung immune and inflammatory responses, such as those induced by respiratory infection influenza virus, determine the outcome of pulmonary pathogenesis. Platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) has an immunoregulatory role in inflammatory diseases. Here we show that CXCL4 is associated with pulmonary influenza infection and has a critical role in protecting mice from fatal H1N1 virus respiratory infection. CXCL4 knockout resulted in diminished viral clearance from the lung and decreased lung inflammation during early infection but more severe lung pathology relative to wild-type mice during late infection. Additionally, CXCL4 deficiency decreased leukocyte accumulation in the infected lung with markedly decreased neutrophil infiltration into the lung during early infection and extensive leukocyte, especially lymphocyte accumulation at the late infection stage. Loss of CXCL4 did not affect the activation of adaptive immune T and B lymphocytes during the late stage of lung infection. Further study revealed that CXCL4 deficiency inhibited neutrophil recruitment to the infected mouse lung. Thus the above results identify CXCL4 as a vital immunoregulatory chemokine essential for protecting mice against influenza A virus infection, especially as it affects the development of lung injury and neutrophil mobilization to the inflamed lung. INTRODUCTION necrosis factor (TNF)-a, interleukin (IL)-6, and IL-1b, to exert Influenza A virus (IAV) infections cause respiratory diseases in further antiviral innate immune effects.2 Meanwhile, the innate large populations worldwide every year and result in seasonal immune cells act as antigen-presenting cells and release influenza epidemics and unexpected pandemic.
    [Show full text]
  • Recruitment of Eosinophils in Vivo Enhances CCL11/Eotaxin
    The Journal of Immunology Inhibition of CD26/Dipeptidyl Peptidase IV Enhances CCL11/Eotaxin-Mediated Recruitment of Eosinophils In Vivo1 Ulf Forssmann,2,3* Carsten Stoetzer,† Michael Stephan,† Carsten Kruschinski,† Thomas Skripuletz,† Jutta Schade,† Andreas Schmiedl,† Reinhard Pabst,† Leona Wagner,‡ Torsten Hoffmann,‡ Astrid Kehlen,‡ Sylvia E. Escher,* Wolf-Georg Forssmann,* Jo¨rn Elsner,§ and Stephan von Ho¨rsten3†¶ Chemokines mediate the recruitment of leukocytes to the sites of inflammation. N-terminal truncation of chemokines by the protease dipeptidyl peptidase IV (DPPIV) potentially restricts their activity during inflammatory processes such as allergic re- actions, but direct evidence in vivo is very rare. After demonstrating that N-terminal truncation of the chemokine CCL11/eotaxin by DPPIV results in a loss of CCR3-mediated intracellular calcium mobilization and CCR3 internalization in human eosinophils, we focused on the in vivo role of CCL11 and provide direct evidence for specific kinetic and rate-determining effects by DPPIV-like enzymatic activity on CCL11-mediated responses of eosinophils. Namely, it is demonstrated that i.v. administration of CCL11 in wild-type F344 rats leads to mobilization of eosinophils into the blood, peaking at 30 min. This mobilization is significantly increased in DPPIV-deficient F344 rats. Intradermal administration of CCL11 is followed by a dose-dependent recruitment of eosinophils into the skin and is significantly more effective in DPPIV-deficient F344 mutants as well as after pharmacological inhibition of DPPIV. Interestingly, CCL11 application leads to an up-regulation of DPPIV, which is not associated with negative feedback inhibition via DPPIV-cleaved CCL11(3–74). These findings demonstrate regulatory effects of DPPIV for the recruitment of eosinophils.
    [Show full text]
  • The Role of CXCR5 and Its Ligand CXCL13 in The
    European Journal of Endocrinology (2004) 150 225–234 ISSN 0804-4643 EXPERIMENTAL STUDY The role of CXCR5 and its ligand CXCL13 in the compartmentalization of lymphocytes in thyroids affected by autoimmune thyroid diseases G Aust, D Sittig, L Becherer1, U Anderegg2, A Schu¨tz3, P Lamesch1 and E Schmu¨cking Institute of Anatomy, 1Department of Surgery, 2Department of Dermatology and 3 Institute of Pathology, University of Leipzig, Leipzig, Germany (Correspondence should be addressed to G Aust, University of Leipzig, Institute of Anatomy, Ph-Rosenthal-Strasse 55, Leipzig, 04103, Germany; Email: [email protected]) Abstract Objective: Graves’ disease (GD) and Hashimoto’s thyroiditis (HT) are characterized by lymphocytic infiltrates partly resembling secondary lymphoid follicles in the thyroid. CXCR5 and its ligand CXCL13 regulate compartmentalization of B- and T-cells in secondary lymphoid organs. The aim of the study was to elucidate the role of this chemokine receptor–ligand pair in thyroid autoimmunity. Methods: Peripheral blood and thyroid-derived lymphocyte subpopulations were examined by flow cyto- metry for CXCR5. CXCR5 and CXCL13 cDNA were quantified in thyroid tissues by real-time RT-PCR. Results: We found no differences between the percentages of peripheral blood CXCR5þ T- and B-cells in GD patients (n ¼ 10) and healthy controls (n ¼ 10). In GD patients, the number of memory CD4þ cells expressing CXCR5 which are functionally characterized as follicular B helper T-cells is higher in thyroid- derived (18^3%) compared with peripheral blood T-lymphocytes (8^2%). The highest CXCL13 mRNA levels were found in HT (n ¼ 2, 86.1^1.2 zmol (10221 mol) cDNA/PCR) followed by GD tissues (n ¼ 16, 9.6^3.5).
    [Show full text]