Establishment of HIV-1 Latency in Resting CD4+ T Cells Depends on Chemokine-Induced Changes in the Actin Cytoskeleton
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CCL19-Igg Prevents Allograft Rejection by Impairment of Immune Cell Trafficking
CCL19-IgG Prevents Allograft Rejection by Impairment of Immune Cell Trafficking Ekkehard Ziegler,* Faikah Gueler,† Song Rong,† Michael Mengel,‡ Oliver Witzke,§ Andreas Kribben,§ Hermann Haller,† Ulrich Kunzendorf,* and Stefan Krautwald* *Department of Nephrology and Hypertension, University of Kiel, Kiel, †Department of Internal Medicine and ‡Institute for Pathology, Hannover Medical School, Hannover, and §Department of Nephrology, School of Medicine, University of Duisburg-Essen, Essen, Germany An adaptive immune response is initiated in the T cell area of secondary lymphoid organs, where antigen-presenting dendritic cells may induce proliferation and differentiation in co-localized T cells after T cell receptor engagement. The chemokines CCL19 and CCL21 and their receptor CCR7 are essential in establishing dendritic cell and T cell recruitment and co- localization within this unique microenvironment. It is shown that systemic application of a fusion protein that consists of CCL19 fused to the Fc part of human IgG1 induces effects similar to the phenotype of CCR7؊/؊ animals, like disturbed accumulation of T cells and dendritic cells in secondary lymphoid organs. CCL19-IgG further inhibited their co-localization, which resulted in a marked inhibition of antigen-specific T cell proliferation. The immunosuppressive potency of CCL19-IgG was tested in vivo using murine models for TH1-mediated immune responses (delayed-type hypersensitivity) and for transplantation of different solid organs. In allogeneic kidney transplantation as well as heterotopic allogeneic heart transplantation in different strain combinations, allograft rejection was reduced and organ survival was significantly prolonged by treatment with CCL19-IgG compared with controls. This shows that in contrast to only limited prolongation of graft survival in CCR7 knockout models, the therapeutic application of a CCR7 ligand in a wild-type environment provides a benefit in terms of immunosuppression. -
C-X-C Motif Chemokine Ligand 10 Produced by Mouse Sertoli Cells in Response to Mumps Virus Infection Induces Male Germ Cell Apoptosis
Citation: Cell Death and Disease (2017) 8, e3146; doi:10.1038/cddis.2017.560 OPEN Macmillan Publishers Limited, part of Springer Nature. www.nature.com/cddis Corrected: Correction C-X-C motif chemokine ligand 10 produced by mouse Sertoli cells in response to mumps virus infection induces male germ cell apoptosis Qian Jiang1, Fei Wang1, Lili Shi1, Xiang Zhao1, Maolei Gong1, Weihua Liu1, Chengyi Song2, Qihan Li3, Yongmei Chen1, Han Wu*,1,2 and Daishu Han*,1 Mumps virus (MuV) infection usually results in germ cell degeneration in the testis, which is an etiological factor for male infertility. However, the mechanisms by which MuV infection damages male germ cells remain unclear. The present study showed that C-X-C motif chemokine ligand 10 (CXCL10) is produced by mouse Sertoli cells in response to MuV infection, which induces germ cell apoptosis through the activation of caspase-3. CXC chemokine receptor 3 (CXCR3), a functional receptor of CXCL10, is constitutively expressed in male germ cells. Neutralizing antibodies against CXCR3 and an inhibitor of caspase-3 activation significantly inhibited CXCL10-induced male germ cell apoptosis. Furthermore, the tumor necrosis factor-α (TNF-α) upregulated CXCL10 production in Sertoli cells after MuV infection. The knockout of either CXCL10 or TNF-α reduced germ cell apoptosis in the co-cultures of germ cells and Sertoli cells in response to MuV infection. Local injection of MuV into the testes of mice confirmed the involvement of CXCL10 in germ cell apoptosis in vivo. These results provide novel insights into MuV-induced germ cell apoptosis in the testis. -
Cells Effects on the Activation and Apoptosis of T Induces Opposing
Fibronectin-Associated Fas Ligand Rapidly Induces Opposing and Time-Dependent Effects on the Activation and Apoptosis of T Cells This information is current as of September 28, 2021. Alexandra Zanin-Zhorov, Rami Hershkoviz, Iris Hecht, Liora Cahalon and Ofer Lider J Immunol 2003; 171:5882-5889; ; doi: 10.4049/jimmunol.171.11.5882 http://www.jimmunol.org/content/171/11/5882 Downloaded from References This article cites 40 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/171/11/5882.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Fibronectin-Associated Fas Ligand Rapidly Induces Opposing and Time-Dependent Effects on the Activation and Apoptosis of T Cells1 Alexandra Zanin-Zhorov, Rami Hershkoviz, Iris Hecht, Liora Cahalon, and Ofer Lider2 Recently, it has been shown that Fas ligand (FasL) interacts with the extracellular matrix (ECM) protein fibronectin (FN), and that the bound FasL retains its cytotoxic efficacy. -
Following Ligation of CCL19 but Not CCL21 Arrestin 3 Mediates
Arrestin 3 Mediates Endocytosis of CCR7 following Ligation of CCL19 but Not CCL21 Melissa A. Byers, Psachal A. Calloway, Laurie Shannon, Heather D. Cunningham, Sarah Smith, Fang Li, Brian C. This information is current as Fassold and Charlotte M. Vines of September 25, 2021. J Immunol 2008; 181:4723-4732; ; doi: 10.4049/jimmunol.181.7.4723 http://www.jimmunol.org/content/181/7/4723 Downloaded from References This article cites 82 articles, 45 of which you can access for free at: http://www.jimmunol.org/content/181/7/4723.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Arrestin 3 Mediates Endocytosis of CCR7 following Ligation of CCL19 but Not CCL211 Melissa A. Byers,* Psachal A. Calloway,* Laurie Shannon,* Heather D. Cunningham,* Sarah Smith,* Fang Li,† Brian C. -
Inhibition of CCL19 Benefits Non‑Alcoholic Fatty Liver Disease by Inhibiting TLR4/NF‑Κb‑P65 Signaling
MOLECULAR MEDICINE REPORTS 18: 4635-4642, 2018 Inhibition of CCL19 benefits non‑alcoholic fatty liver disease by inhibiting TLR4/NF‑κB‑p65 signaling JIAJING ZHAO1*, YINGJUE WANG1*, XI WU2, PING TONG3, YAOHAN YUE1, SHURONG GAO1, DONGPING HUANG4 and JIANWEI HUANG4 1Department of Traditional Chinese Medicine, Putuo District People's Hospital of Shanghai City, Shanghai 200060; 2Department of Endocrinology, Huashan Hospital, Fu Dan University, Shanghai 200040; Departments of 3Endocrinology and 4General Surgery, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China Received January 26, 2018; Accepted August 21, 2018 DOI: 10.3892/mmr.2018.9490 Abstract. Non-alcoholic fatty liver disease (NAFLD), which that metformin and BBR could improve NAFLD, which may be affects approximately one-third of the general population, has via the activation of AMPK signaling, and the high expression of become a global health problem. Thus, more effective treatments CCL19 in NAFLD was significantly reduced by metformin and for NAFLD are urgently required. In the present study, high BBR. It could be inferred that inhibition of CCL19 may be an levels of C-C motif ligand 19 (CCL19), signaling pathways such effective treatment for NAFLD. as Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB), and proinflammatory factors including interleukin‑6 (IL‑6) and tumor Introduction necrosis factor-α (TNF-α) were detected in NAFLD patients, thereby indicating that there may be an association between Fatty liver diseases, whose prevalence is continuously rising CCL19 and these factors in NAFLD progression. Using a high-fat worldwide, especially in developed countries, are character- diet (HFD), the present study generated a Sprague-Dawley rat ized by excessive hepatic fat accumulation (1). -
Mice in Inflammation Psoriasiform Skin IL-22 Is Required for Imiquimod-Induced
IL-22 Is Required for Imiquimod-Induced Psoriasiform Skin Inflammation in Mice Astrid B. Van Belle, Magali de Heusch, Muriel M. Lemaire, Emilie Hendrickx, Guy Warnier, Kyri This information is current as Dunussi-Joannopoulos, Lynette A. Fouser, Jean-Christophe of September 29, 2021. Renauld and Laure Dumoutier J Immunol published online 30 November 2011 http://www.jimmunol.org/content/early/2011/11/30/jimmun ol.1102224 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 30, 2011, doi:10.4049/jimmunol.1102224 The Journal of Immunology IL-22 Is Required for Imiquimod-Induced Psoriasiform Skin Inflammation in Mice Astrid B. Van Belle,*,† Magali de Heusch,*,† Muriel M. Lemaire,*,† Emilie Hendrickx,*,† Guy Warnier,*,† Kyri Dunussi-Joannopoulos,‡ Lynette A. Fouser,‡ Jean-Christophe Renauld,*,†,1 and Laure Dumoutier*,†,1 Psoriasis is a common chronic autoimmune skin disease of unknown cause that involves dysregulated interplay between immune cells and keratinocytes. -
CXCL13/CXCR5 Signaling Axis in Cancer
Life Sciences 227 (2019) 175–186 Contents lists available at ScienceDirect Life Sciences journal homepage: www.elsevier.com/locate/lifescie Review article CXCL13/CXCR5 signaling axis in cancer T ⁎ Muzammal Hussaina,b,1, Dickson Adahb,c,1, Muqddas Tariqa,b, Yongzhi Lua, Jiancun Zhanga, , ⁎ Jinsong Liua, a Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China b University of Chinese Academy of Sciences, Beijing 100049, PR China c State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China ARTICLE INFO ABSTRACT Keywords: The tumor microenvironment comprises stromal and tumor cells which interact with each other through com- Cancer plex cross-talks that are mediated by a variety of growth factors, cytokines, and chemokines. The chemokine CXCL13 ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) are among the key chemotactic factors which play CXCR5 crucial roles in deriving cancer cell biology. CXCL13/CXCR5 signaling axis makes pivotal contributions to the Tumor progression development and progression of several human cancers. In this review, we discuss how CXCL13/CXCR5 sig- Tumor immunity naling modulates cancer cell ability to grow, proliferate, invade, and metastasize. Furthermore, we also discuss Immune-evasion the preliminary evidence on context-dependent functioning of this axis within the tumor-immune micro- environment, thus, highlighting its potential dichotomy with respect to anticancer immunity and cancer im- mune-evasion mechanisms. At the end, we briefly shed light on the therapeutic potential or implications of targeting CXCL13/CXCR5 axis within the tumor microenvironment. -
Critical Role of CXCL4 in the Lung Pathogenesis of Influenza (H1N1) Respiratory Infection
ARTICLES Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection L Guo1,3, K Feng1,3, YC Wang1,3, JJ Mei1,2, RT Ning1, HW Zheng1, JJ Wang1, GS Worthen2, X Wang1, J Song1,QHLi1 and LD Liu1 Annual epidemics and unexpected pandemics of influenza are threats to human health. Lung immune and inflammatory responses, such as those induced by respiratory infection influenza virus, determine the outcome of pulmonary pathogenesis. Platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) has an immunoregulatory role in inflammatory diseases. Here we show that CXCL4 is associated with pulmonary influenza infection and has a critical role in protecting mice from fatal H1N1 virus respiratory infection. CXCL4 knockout resulted in diminished viral clearance from the lung and decreased lung inflammation during early infection but more severe lung pathology relative to wild-type mice during late infection. Additionally, CXCL4 deficiency decreased leukocyte accumulation in the infected lung with markedly decreased neutrophil infiltration into the lung during early infection and extensive leukocyte, especially lymphocyte accumulation at the late infection stage. Loss of CXCL4 did not affect the activation of adaptive immune T and B lymphocytes during the late stage of lung infection. Further study revealed that CXCL4 deficiency inhibited neutrophil recruitment to the infected mouse lung. Thus the above results identify CXCL4 as a vital immunoregulatory chemokine essential for protecting mice against influenza A virus infection, especially as it affects the development of lung injury and neutrophil mobilization to the inflamed lung. INTRODUCTION necrosis factor (TNF)-a, interleukin (IL)-6, and IL-1b, to exert Influenza A virus (IAV) infections cause respiratory diseases in further antiviral innate immune effects.2 Meanwhile, the innate large populations worldwide every year and result in seasonal immune cells act as antigen-presenting cells and release influenza epidemics and unexpected pandemic. -
In Vivo TCR Signaling in CD4+ T Cells Imprints a Cell-Intrinsic, Transient
Erschienen in: Frontiers in Immunology ; 6 (2015). - 297 ORIGINAL RESEARCH http://dx.doi.org/10.3389/fimmu.2015.00297 published: 08 June 2015 doi: 10.3389/fimmu.2015.00297 In vivo TCR signaling in CD4+ T cells imprints a cell-intrinsic, transient low-motility pattern independent of chemokine receptor expression levels, or microtubular network, integrin, and protein kinase C activity Markus Ackerknecht 1, Mark A. Hauser 2, Daniel F. Legler 2 and Jens V. Stein 1* 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland, 2 Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland Intravital imaging has revealed that T cells change their migratory behavior during phys- iological activation inside lymphoid tissue. Yet, it remains less well investigated how the Edited by: Donald Cook, intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels National Institutes of Health, USA or other regulatory elements. Here, we used an adjuvant-driven inflammation model to Reviewed by: examine how motility patterns corresponded with CCR7, CXCR4, and CXCR5 expression Robert J. B. Nibbs, levels on ovalbumin-specific DO11.10 CD4+ T cells in draining lymph nodes. We found University of Glasgow, UK Ji Ming Wang, that while CCR7 and CXCR4 surface levels remained essentially unaltered during the first National Cancer Institute at Frederick, 48–72 h after activation of CD4+ T cells, their in vitro chemokinetic and directed migratory USA capacity to the respective ligands, CCL19, CCL21, and CXCL12, was substantially *Correspondence: Jens V. Stein, reduced during this time window. Activated T cells recovered from this temporary Theodor Kocher Institute, University decrease in motility on day 6 post immunization, coinciding with increased migration to the of Bern, Freiestr. -
Metamorphic Protein Folding Encodes Multiple Anti-Candida Mechanisms in XCL1
pathogens Article Metamorphic Protein Folding Encodes Multiple Anti-Candida Mechanisms in XCL1 Acacia F. Dishman 1,2,†, Jie He 3,†, Brian F. Volkman 1,* and Anna R. Huppler 3,* 1 Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] 2 Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA 3 Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] * Correspondence: [email protected] (B.F.V.); [email protected] (A.R.H.) † These authors contributed equally. Abstract: Candida species cause serious infections requiring prolonged and sometimes toxic therapy. Antimicrobial proteins, such as chemokines, hold great interest as potential additions to the small number of available antifungal drugs. Metamorphic proteins reversibly switch between multiple different folded structures. XCL1 is a metamorphic, antimicrobial chemokine that interconverts between the conserved chemokine fold (an α–β monomer) and an alternate fold (an all-β dimer). Previous work has shown that human XCL1 kills C. albicans but has not assessed whether one or both XCL1 folds perform this activity. Here, we use structurally locked engineered XCL1 variants and Candida killing assays, adenylate kinase release assays, and propidium iodide uptake assays to demonstrate that both XCL1 folds kill Candida, but they do so via different mechanisms. Our results suggest that the alternate fold kills via membrane disruption, consistent with previous work, and the chemokine fold does not. XCL1 fold-switching thus provides a mechanism to regulate Citation: Dishman, A.F.; He, J.; the XCL1 mode of antifungal killing, which could protect surrounding tissue from damage associ- Volkman, B.F.; Huppler, A.R. -
Ncomms1239.Pdf
ARTICLE Received 10 Nov 2010 | Accepted 15 Feb 2011 | Published 15 Mar 2011 DOI: 10.1038/ncomms1239 Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer Ole Audun Werner Haabeth1, Kristina Berg Lorvik1, Clara Hammarström2, Ian M. Donaldson3,4, Guttorm Haraldsen2, Bjarne Bogen1 & Alexandre Corthay1 The immune system can both promote and suppress cancer. Chronic inflammation and proinflammatory cytokines such as interleukin (IL)-1 and IL-6 are considered to be tumour promoting. In contrast, the exact nature of protective antitumour immunity remains obscure. Here, we quantify locally secreted cytokines during primary immune responses against myeloma and B-cell lymphoma in mice. Strikingly, successful cancer immunosurveillance mediated by tumour-specific CD4 + T cells is consistently associated with elevated local levels of both proinflammatory (IL-1α, IL-1β and IL-6) and T helper 1 (Th1)-associated cytokines (interferon-γ (IFN-γ), IL-2 and IL-12). Cancer eradication is achieved by a collaboration between tumour- specific Th1 cells and tumour-infiltrating, antigen-presenting macrophages. Th1 cells induce secretion of IL-1β and IL-6 by macrophages. Th1-derived IFN-γ is shown to render macrophages directly cytotoxic to cancer cells, and to induce macrophages to secrete the angiostatic chemokines CXCL9/MIG and CXCL10/IP-10. Thus, inflammation, when driven by tumour- specific Th1 cells, may prevent rather than promote cancer. 1 Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway. 2 Department of Pathology, Institute of Pathology, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4950 Nydalen, 0424 Oslo, Norway. -
CCL20/CCR6 Signaling Regulates Bone Mass Accrual in Mice
ORIGINAL ARTICLE JBMR CCL20/CCR6 Signaling Regulates Bone Mass Accrual in Mice Michele Doucet, Swaathi Jayaraman, Emily Swenson, Brittany Tusing, Kristy L Weber,Ã and Scott L Kominsky Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA ABSTRACT CCL20 is a member of the macrophage inflammatory protein family and is reported to signal monogamously through the receptor CCR6. Although studies have identified the genomic locations of both Ccl20 and Ccr6 as regions important for bone quality, the role of CCL20/CCR6 signaling in regulating bone mass is unknown. By micro–computed tomography (mCT) and histomorphometric analysis, we show that global loss of Ccr6 in mice significantly decreases trabecular bone mass coincident with reduced osteoblast numbers. Notably, CCL20 and CCR6 were co-expressed in osteoblast progenitors and levels increased during osteoblast differentiation, indicating the potential of CCL20/CCR6 signaling to influence osteoblasts through both autocrine and paracrine actions. With respect to autocrine effects, CCR6 was found to act as a functional G protein–coupled receptor in osteoblasts and although its loss did not appear to affect the number or proliferation rate of osteoblast progenitors, differentiation was significantly inhibited as evidenced by delays in osteoblast marker gene expression, alkaline phosphatase activity, and mineralization. In addition, CCL20 promoted osteoblast survival concordant with activation of the PI3K-AKT pathway. Beyond these potential autocrine effects, osteoblast-derived CCL20 stimulated the recruitment of macrophages and T cells, known facilitators of osteoblast differentiation and survival. Finally, we generated mice harboring a global deletion of Ccl20 and found that Ccl20-/- mice exhibit a reduction in bone mass similar to that observed in Ccr6-/- mice, confirming that this phenomenon is regulated by CCL20 rather than alternate CCR6 ligands.