CCL20/CCR6 Signaling Regulates Bone Mass Accrual in Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cellular and Plasma Proteomic Determinants of COVID-19 and Non-COVID-19 Pulmonary Diseases Relative to Healthy Aging
RESOURCE https://doi.org/10.1038/s43587-021-00067-x Cellular and plasma proteomic determinants of COVID-19 and non-COVID-19 pulmonary diseases relative to healthy aging Laura Arthur1,8, Ekaterina Esaulova 1,8, Denis A. Mogilenko 1, Petr Tsurinov1,2, Samantha Burdess1, Anwesha Laha1, Rachel Presti 3, Brian Goetz4, Mark A. Watson1, Charles W. Goss5, Christina A. Gurnett6, Philip A. Mudd 7, Courtney Beers4, Jane A. O’Halloran3 and Maxim N. Artyomov1 ✉ We examine the cellular and soluble determinants of coronavirus disease 2019 (COVID-19) relative to aging by performing mass cytometry in parallel with clinical blood testing and plasma proteomic profiling of ~4,700 proteins from 71 individuals with pul- monary disease and 148 healthy donors (25–80 years old). Distinct cell populations were associated with age (GZMK+CD8+ T cells and CD25low CD4+ T cells) and with COVID-19 (TBET−EOMES− CD4+ T cells, HLA-DR+CD38+ CD8+ T cells and CD27+CD38+ B cells). A unique population of TBET+EOMES+ CD4+ T cells was associated with individuals with COVID-19 who experienced moderate, rather than severe or lethal, disease. Disease severity correlated with blood creatinine and urea nitrogen levels. Proteomics revealed a major impact of age on the disease-associated plasma signatures and highlighted the divergent contri- bution of hepatocyte and muscle secretomes to COVID-19 plasma proteins. Aging plasma was enriched in matrisome proteins and heart/aorta smooth muscle cell-specific proteins. These findings reveal age-specific and disease-specific changes associ- ated with COVID-19, and potential soluble mediators of the physiological impact of COVID-19. -
Anti-OX40 Antibody Directly Enhances the Function of Tumor-Reactive CD8+ T Cells
Author Manuscript Published OnlineFirst on August 1, 2019; DOI: 10.1158/1078-0432.CCR-19-1259 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Anti-OX40 antibody directly enhances the function of tumor-reactive CD8+ T cells and synergizes with PI3Kβ inhibition in PTEN loss melanoma Weiyi Peng1,5*, Leila J. Williams1, Chunyu Xu1,5, Brenda Melendez1, Jodi A. McKenzie1,6, Yuan Chen1, Heather Jackson2, Kui S. Voo3, Rina M. Mbofung1,7,, Sara E. Leahey1, Jian Wang4, Greg Lizee1, Hussein A. Tawbi1, Michael A. Davies1, Axel Hoos2, James Smothers2, Roopa Srinivasan2, Elaine Paul2, Niranjan Yanamandra2* and Patrick Hwu1* 1Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX. 2Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, PA 19426, United States 3Oncology Research for Biologics and Immunotherapy Translation Platform, The University of Texas MD Anderson Cancer Center, Houston, TX. 4Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX. 5Present address: Department of Biology and Biochemistry, University of Houston, Houston, TX. 6Present address: Eisai Inc., Woodcliff Lake, NJ. 7Present address: Merck Research Laboratories, Palo Alto, CA. Running Title: OX40 agonist-based cancer immunotherapy Keywords: OX40, PI3K, cancer immunotherapy Downloaded from clincancerres.aacrjournals.org on September 25, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 1, 2019; DOI: 10.1158/1078-0432.CCR-19-1259 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 2 *Corresponding Authors: Patrick Hwu, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. -
Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords
Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Neutrophil chemoattractant receptors in health and disease: double-edged swords Mieke Metzemaekers1, Mieke Gouwy1 and Paul Proost 1 Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview -
Mice in Inflammation Psoriasiform Skin IL-22 Is Required for Imiquimod-Induced
IL-22 Is Required for Imiquimod-Induced Psoriasiform Skin Inflammation in Mice Astrid B. Van Belle, Magali de Heusch, Muriel M. Lemaire, Emilie Hendrickx, Guy Warnier, Kyri This information is current as Dunussi-Joannopoulos, Lynette A. Fouser, Jean-Christophe of September 29, 2021. Renauld and Laure Dumoutier J Immunol published online 30 November 2011 http://www.jimmunol.org/content/early/2011/11/30/jimmun ol.1102224 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 30, 2011, doi:10.4049/jimmunol.1102224 The Journal of Immunology IL-22 Is Required for Imiquimod-Induced Psoriasiform Skin Inflammation in Mice Astrid B. Van Belle,*,† Magali de Heusch,*,† Muriel M. Lemaire,*,† Emilie Hendrickx,*,† Guy Warnier,*,† Kyri Dunussi-Joannopoulos,‡ Lynette A. Fouser,‡ Jean-Christophe Renauld,*,†,1 and Laure Dumoutier*,†,1 Psoriasis is a common chronic autoimmune skin disease of unknown cause that involves dysregulated interplay between immune cells and keratinocytes. -
Follicular Thyroid Carcinoma but Not Adenoma Recruits Tumor-Associated
Huang et al. BMC Cancer (2016) 16:98 DOI 10.1186/s12885-016-2114-7 RESEARCH ARTICLE Open Access Follicular thyroid carcinoma but not adenoma recruits tumor-associated macrophages by releasing CCL15 Feng-Jiao Huang1†, Xiao-Yi Zhou1†, Lei Ye1*, Xiao-Chun Fei2, Shu Wang1,3, Weiqing Wang1 and Guang Ning1,3 Abstract Background: The differential diagnosis of follicular thyroid carcinoma (FTC) and follicular adenoma (FA) before surgery is a clinical challenge. Many efforts have been made but most focusing on tumor cells, while the roles of tumor associated macrophages (TAMs) remained unclear in FTC. Here we analyzed the differences between TAMs in FTC and those in FA. Methods: We first analyzed the density of TAMs by CD68 immunostaining in 59 histologically confirmed FTCs and 47 FAs. Cytokines produced by FTC and FA were profiled using antibody array, and validated by quantitative PCR. Chemotaxis of monocyte THP-1 was induced by condition medium of FTC cell lines (FTC133 and WRO82-1) with and without anti-CCL15 neutralizing antibody. Finally, we analyzed CCL15 protein level in FTC and FA by immunohistochemistry. Results: The average density of CD68+ cells was 9.5 ± 5.4/field in FTC, significantly higher than that in FA (4.9 ± 3.4/field, p < 0.001). Subsequently profiling showed that CCL15 was the most abundant chemokine in FTC compared with FA. CCL15 mRNA in FTC was 51.4-folds of that in FA. CM of FTC cell lines induced THP-1 cell chemotaxis by 33 ~ 77 %, and anti-CCL15 neutralizing antibody reduced THP-1 cell migration in a dose-dependent manner. -
Metamorphic Protein Folding Encodes Multiple Anti-Candida Mechanisms in XCL1
pathogens Article Metamorphic Protein Folding Encodes Multiple Anti-Candida Mechanisms in XCL1 Acacia F. Dishman 1,2,†, Jie He 3,†, Brian F. Volkman 1,* and Anna R. Huppler 3,* 1 Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] 2 Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA 3 Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] * Correspondence: [email protected] (B.F.V.); [email protected] (A.R.H.) † These authors contributed equally. Abstract: Candida species cause serious infections requiring prolonged and sometimes toxic therapy. Antimicrobial proteins, such as chemokines, hold great interest as potential additions to the small number of available antifungal drugs. Metamorphic proteins reversibly switch between multiple different folded structures. XCL1 is a metamorphic, antimicrobial chemokine that interconverts between the conserved chemokine fold (an α–β monomer) and an alternate fold (an all-β dimer). Previous work has shown that human XCL1 kills C. albicans but has not assessed whether one or both XCL1 folds perform this activity. Here, we use structurally locked engineered XCL1 variants and Candida killing assays, adenylate kinase release assays, and propidium iodide uptake assays to demonstrate that both XCL1 folds kill Candida, but they do so via different mechanisms. Our results suggest that the alternate fold kills via membrane disruption, consistent with previous work, and the chemokine fold does not. XCL1 fold-switching thus provides a mechanism to regulate Citation: Dishman, A.F.; He, J.; the XCL1 mode of antifungal killing, which could protect surrounding tissue from damage associ- Volkman, B.F.; Huppler, A.R. -
Part One Fundamentals of Chemokines and Chemokine Receptors
Part One Fundamentals of Chemokines and Chemokine Receptors Chemokine Receptors as Drug Targets. Edited by Martine J. Smit, Sergio A. Lira, and Rob Leurs Copyright Ó 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32118-6 j3 1 Structural Aspects of Chemokines and their Interactions with Receptors and Glycosaminoglycans Amanda E. I. Proudfoot, India Severin, Damon Hamel, and Tracy M. Handel 1.1 Introduction Chemokines are a large subfamily of cytokines (50 in humans) that can be distinguished from other cytokines due to several features. They share a common biological activity, which is the control of the directional migration of leukocytes, hence their name, chemoattractant cytokines. They are all small proteins (approx. 8 kDa) that are highly basic, with two exceptions (MIP-1a, MIP-1b). Also, they have a highly conserved monomeric fold, constrained by 1–3 disulfides which are formed from a conserved pattern of cysteine residues (the majority of chemokines have four cysteines). The pattern of cysteine residues is used as the basis of their division into subclasses and for their nomenclature. The first class, referred to as CXC or a-chemokines, have a single residue between the first N-terminal Cys residues, whereas in the CC class, or b-chemokines, these two Cys residues are adjacent. While most chemokines have two disulfides, the CC subclass also has three members that contain three. Subsequent to the CC and CXC families, two fi additional subclasses were identi ed, the CX3C subclass [1, 2], which has three amino acids separating the N-terminal Cys pair, and the C subclass, which has a single disulfide. -
Signaling and IL-6 Release 14/16 Α Pertussis Toxin-Insensitive G THP-1
CCR1-Mediated STAT3 Tyrosine Phosphorylation and CXCL8 Expression in THP-1 Macrophage-like Cells Involve Pertussis Toxin-Insensitive G α14/16 This information is current as Signaling and IL-6 Release of September 25, 2021. Maggie M. K. Lee, Ricky K. S. Chui, Issan Y. S. Tam, Alaster H. Y. Lau and Yung H. Wong J Immunol published online 2 November 2012 http://www.jimmunol.org/content/early/2012/10/31/jimmun Downloaded from ol.1103359 Supplementary http://www.jimmunol.org/content/suppl/2012/11/02/jimmunol.110335 http://www.jimmunol.org/ Material 9.DC1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 2, 2012, doi:10.4049/jimmunol.1103359 The Journal of Immunology CCR1-Mediated STAT3 Tyrosine Phosphorylation and CXCL8 Expression in THP-1 Macrophage-like Cells Involve Pertussis Toxin-Insensitive Ga14/16 Signaling and IL-6 Release Maggie M. -
Th22 Cells Represent a Distinct Human T Cell Subset Involved in Epidermal Immunity and Remodeling
Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling Stefanie Eyerich, … , Carsten B. Schmidt-Weber, Andrea Cavani J Clin Invest. 2009;119(12):3573-3585. https://doi.org/10.1172/JCI40202. Research Article Immunology Th subsets are defined according to their production of lineage-indicating cytokines and functions. In this study, we have identified a subset of human Th cells that infiltrates the epidermis in individuals with inflammatory skin disorders and is characterized by the secretion of IL-22 and TNF-α, but not IFN-γ, IL-4, or IL-17. In analogy to the Th17 subset, cells with this cytokine profile have been named the Th22 subset. Th22 clones derived from patients with psoriasis were stable in culture and exhibited a transcriptome profile clearly separate from those of Th1, Th2, and Th17 cells; it included genes encoding proteins involved in tissue remodeling, such as FGFs, and chemokines involved in angiogenesis and fibrosis. Primary human keratinocytes exposed to Th22 supernatants expressed a transcriptome response profile that included genes involved in innate immune pathways and the induction and modulation of adaptive immunity. These proinflammatory Th22 responses were synergistically dependent on IL-22 and TNF-α. Furthermore, Th22 supernatants enhanced wound healing in an in vitro injury model, which was exclusively dependent on IL-22. In conclusion, the human Th22 subset may represent a separate T cell subset with a distinct identity with respect to gene expression and function, present within the epidermal layer in inflammatory skin diseases. Future strategies directed against the Th22 subset may be of value in chronic inflammatory skin disorders. -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................ -
Human CCL15/MIP-1Δ Antibody
Human CCL15/MIP-1δ Antibody Monoclonal Mouse IgG1 Clone # 88119 Catalog Number: MAB3631 DESCRIPTION Species Reactivity Human Specificity Detects human CCL15/MIP1δ in direct ELISAs and Western blots. In direct ELISAs, no crossreactivity with recombinant human CCL1, 2, 3, 4, 5, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, recombinant mouse CCL1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 17, 19, 20, 21, 22, 24, 25, or recombinant rat CCL20 is observed. Source Monoclonal Mouse IgG1 Clone # 88119 Purification Protein A or G purified from ascites Immunogen E. coliderived recombinant human CCL15/MIP1δ Ser46Ile113 Accession # Q16663 Endotoxin Level <0.10 EU per 1 μg of the antibody by the LAL method. Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL Recombinant Human CCL15/MIP1δ 92 aa (Catalog # 363MG) Neutralization Measured by its ability to neutralize CCL15/MIP1δinduced chemotaxis in the BaF3 mouse proB cell line transfected with human CCR1. The Neutralization Dose (ND50) is typically 520 µg/mL in the presence of 1 ng/mL Recombinant Human CCL15/MIP1δ 68 aa. DATA Neutralization Chemotaxis Induced by CCL15/MIP1δ and Neutral ization by Human CCL15/ MIP1δ Antibody. -
STAT6-Dependent Fashion CCL23 Expression Is Induced by IL-4 in A
CCL23 Expression Is Induced by IL-4 in a STAT6-Dependent Fashion Hermann Novak, Anke Müller, Nathalie Harrer, Claudia Günther, Jose M. Carballido and Maximilian Woisetschläger This information is current as of September 28, 2021. J Immunol 2007; 178:4335-4341; ; doi: 10.4049/jimmunol.178.7.4335 http://www.jimmunol.org/content/178/7/4335 Downloaded from References This article cites 47 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/178/7/4335.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 28, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCL23 Expression Is Induced by IL-4 in a STAT6-Dependent Fashion Hermann Novak, Anke Mu¨ller, Nathalie Harrer, Claudia Gu¨nther, Jose M. Carballido, and Maximilian Woisetschla¨ger1 The chemokine CCL23 is primarily expressed in cells of the myeloid lineage but little information about its regulation is available.