Behavioral Constraints for the Spread of the Eastern Mosquitofish

Total Page:16

File Type:pdf, Size:1020Kb

Behavioral Constraints for the Spread of the Eastern Mosquitofish Biol Invasions DOI 10.1007/s10530-007-9109-x ORIGINAL PAPER Behavioral constraints for the spread of the eastern mosquitofish, Gambusia holbrooki (Poeciliidae) Shireen D. Alemadi Æ David G. Jenkins Received: 23 February 2007 / Accepted: 14 March 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Eastern mosquitofish (Gambusia holbro- Keywords Invasive Á Dispersal Á Habitat Á Sex Á oki) are native to the southeastern United States but Water depth Á Leaf litter notoriously invasive elsewhere, and are aggressive predators in ecosystems they inhabit. Information on dispersal behavior is needed to better understand Introduction mosquitofish spread upon introduction and potential means to mitigate that spread. We experimentally Many invasive species are introduced to novel tested the effects of shallow water depths (3–24 mm) regions by human actions (Rahel 2002), and spread and obstacles (leaf litter) on mosquitofish dispersal thereafter by species’ actions. Dispersal behavior is behavior, plus a range of conditions relevant to field critical to the spread of many actively-dispersing situations. Mosquitofish dispersed significantly faster species after introduction (Ehrlich 1986; Holway and in deeper water (p < 0.001) but some dispersed in Suarez 1999; Sakai et al. 2001; Rehage and Sih only 3 mm water depth (i.e., one-half average body 2004). Therefore, dispersal behavior may also be depth). Wetland and upland leaf litter at natural critical to the prevention or control of an invader’s densities strongly interfered with mosquitofish dis- spread. persal behavior. Based on our results, introduced The eastern mosquitofish (Gambusia holbrooki, mosquitofish spread rapidly given unimpeded dis- Poeciliidae) is native to the Southeastern United persal corridors (e.g., mowed ditches), and may do so States but has been widely introduced elsewhere; its at rates >800 m/day. Also, consistent lack of sexual congener, the western mosquitofish (Gambusia affi- dimorphism in dispersal behavior indicates that nis) is listed among the 100 worst invasive species in mosquitofish spread is not strongly dependent on the world (Lowe et al. 2000). Mosquitofish appar- female poeciliid reproductive biology. Our results ently disperse well following introduction to a new support designation of mosquitofish as highly inva- region (Arthington and Lloyd 1989) and have been sive and suggest that barriers to mosquitofish spread introduced to many wetlands outside their native must obstruct dispersal pathways as shallow as 3 mm range for the purpose of mosquito control, though depth. their efficacy for mosquito control has been ques- tioned (Lloyd et al. 1986, Leyse et al. 2004, Courtenay and Meffe 1989). Mosquitofish have & S. D. Alemadi Á D. G. Jenkins ( ) relatively brief generation times and live-bearing Department of Biology, University of Central Florida, Orlando, FL 32816-2368, USA females can store sperm from multiple males; one e-mail: [email protected] fertilized female may start a new population with 123 S. D. Alemadi, D. G. Jenkins little or no damaging founder effects (Chesser et al. Materials and methods 1984;Zaneetal.1999). Thus, mosquitofish potentially establish large populations after dispers- Fish were collected from Lake Claire and its neigh- ing into a new habitat, where they act as major boring pond *50 m to the west (hereafter Shireen’s predators that affect entire food webs (Meffe Pond) on the University of Central Florida (UCF) et al. 1983; Meffe 1985; Courtenay and Meffe Orlando campus. Lake Claire is a permanent sinkhole 1989; Gamradt and Kats 1996; Goodsell and Kats lake with a diverse fish assemblage, whereas 1999; Pyke 2005). Shireen’s Pond is shallow and may dry completely Despite the central role of dispersal behavior to the in drought years; no other fish species were observed understanding and control of invasive spread, too few during the primary study year. Fish were collected studies have examined dispersal ability alone with minnow traps (Aquatic Eco-Systems, Inc., (Rehage and Sih 2004) and relatively little is known Apopka, FL) set overnight, or by umbrella nets or of mosquitofish dispersal behavior. For example, a dip nets, and were transferred in pond water to the recent and comprehensive (26 pages, 261 citations) laboratory. Fish were then transferred to 45.5 l review of Gambusia biology (Pyke 2005) discussed aquaria (Nanotanks; Transworld Aquatic Enterprises, the subjects of dispersal, movement patterns and Inc., Los Angeles, CA) containing dechlorinated tap orientation in only 2 paragraphs and 12 citations. water with standard filtration and fish were fed Short-term behavioral experiments can help predict Tetramin fish flakes ad libitum at least 24 h before long-term population-level responses in natural sys- experiments. This protocol acclimated fish to labora- tems (Gilliam and Fraser 1987; Abrahams and Dill tory conditions and standardized hunger levels. 1989). For example, Rehage and Sih (2004) observed Experimental trials were conducted in twelve interspecific differences in schooling behavior and arenas (3 m long · 0.08 m wide · 0.10 m high), risk and dispersal behavior in four Gambusia species also filled with dechlorinated tap water. A fish was using experimental arenas. transferred by aquarium net into a holding zone We experimentally tested the effects of seven (0.12 m · 0.08 m · 0.10 m), which was partitioned variables on individual G. holbrooki dispersal behav- from the rest of the arena by a Plexiglas door. All ior: sex, hunger state, light, acclimation time, source doors had ten 4-mm drilled flow holes and hinged up habitat, water depth (3–24 mm), and the interaction and away from fish to open simultaneously during of depth · leaf litter type (wetland or upland). The dispersal trials. Each arena was drained after each first four variables were tested in preliminary exper- trial and refilled with dechlorinated tap water to iments and then standardized for more powerful remove any residual chemical cues left by previous subsequent experiments of the latter three variables. fish. Arenas were curtained to ensure that any human Female mosquitofish are larger than males: we movement around them did not affect fish behavior. predicted a priori that females would disperse faster Fish were timed with a stopwatch to the nearest than males. In addition, we expected that hungry fish 1/100 s, beginning when doors were opened until fish would disperse faster than satiated fish, and that fish reached a finish line 2.58 m away from the door. Fish would disperse faster in lighted conditions than in were observed in a mirror attached above the arenas dim light. We expected that fish collected from a to avoid behavioral responses to observer activity. shallow pond without other fish species would Fish were observed for 30 min; all fish that reached disperse faster than those from a permanent lake, the finish line were recorded for total time elapsed. because mosquitofish habituated to predatory fish Body height (mm), standard length (mm), and sex of may be more risk-averse (Rehage et al. 2005). each fish was recorded after a trial. Each fish was We also expected that net dispersal rate would observed only one time, so that individual fish be inversely proportional to water depth, because constituted individual replicates in all experiments. fish would seek greater depth. Finally, we Because each fish was free to meander within the expected that leaf litter would slow dispersal, but arena and because fish varied in size, data were fish would disperse faster through wetland litter expressed as both absolute net dispersal rate (m sÀ1) than upland litter, related to litter density and/or and relative net dispersal rate (body lengths sÀ1) for chemical cues. fish that completed a trial (i.e., reached the finish line 123 Behavioral constraints for the spread of the eastern mosquitofish within 30 min). Differences among treatments in net Lake Claire). Trials were run in 1 day to eliminate dispersal rates were analyzed by analysis of variance temporal variation, fish were randomized among (ANOVA) when log10-transformed values met para- arenas, and sex and fish dimensions were recorded metric assumptions, or by nonparametric methods as above. In addition, we repeated the habitat (Mann–Whitney or Kruskal–Wallis tests) when para- experiment approximately 1 year later; predatory fish metric assumptions could not be met. Some fish did (warmouth; Lepomis gulosus) were collected in not cross the finish line within 30 min, and the minnow traps in Shireen’s Pond in the second study number of those fish was compared among treatments year (but not the first), whereas Lake Claire is known by v2 analysis of contingency tables. All data were to support multiple fish species, including warmouth analyzed data using SPSS V. 11.5 (SPSS Inc., (L. gulosus) and largemouth bass (Micropterus sal- Chicago, IL, USA). Power analysis was conducted moides). Because fish may have responded to slightly with JMP 6.0 (SAS Institute, Cary, NC). different experimental conditions (and a different mix of investigators) between years, we analyzed years as Preliminary experiments an additional experimental variable. We hypothesized that the apparent colonization of predatory fish may Results of preliminary experiments were used to set alter behavior in Shireen’s Pond. Log-transformed parameters for subsequent experiments. In all pre- absolute and relative net dispersal rates were ana- liminary experiments, water depth was standardized lyzed by analysis of variance for habitat, sex, and to 6 cm (10 · average body height), and arenas were year as treatments. free of any obstacles while fish were allowed to disperse in the arenas as described above. The first Water depth experiment preliminary experiment tested for the effects of pre- trial conditions on experimental outcomes. Fish were Based on prior results, fish were collected from held in aquaria for >24 h pretrial and were either fed Shireen’s Pond for this experiment, fish were not fed (ad libitum) or not within the 24 h preceding dispersal for 24 h before the trial, and all arenas were lighted.
Recommended publications
  • FAMILY Poeciliidae Bonaparte 1831
    FAMILY Poeciliidae Bonaparte 1831 - viviparous toothcarps, livebearers SUBFAMILY Poeciliinae Bonaparte 1831 - viviparous toothcarps [=Unipupillati, Paecilini, Belonesocini, Cyprinodontidae limnophagae, Gambusiinae, Tomeurinae, Poeciliopsinae, Heterandriini, Guirardinini, Cnesterodontini, Pamphoriini, Xiphophorini, Alfarini, Quintanini, Xenodexiinae, Dicerophallini, Scolichthyinae, Priapellini, Brachyrhaphini, Priapichthyini] GENUS Alfaro Meek, 1912 - livebearers [=Furcipenis, Petalosoma, Petalurichthys] Species Alfaro cultratus (Regan, 1908) - Regan's alfaro [=acutiventralis, amazonum] Species Alfaro huberi (Fowler, 1923) - Fowler's alfaro GENUS Belonesox Kner, 1860 - pike topminnows Species Belonesox belizanus Kner, 1860 - pike topminnow [=maxillosus] GENUS Brachyrhaphis Regan, 1913 - viviparous toothcarps [=Plectrophallus, Trigonophallus] Species Brachyrhaphis cascajalensis (Meek & Hildebrand, 1913) - Río Cascajal toothcarp Species Brachyrhaphis episcopi (Steindachner, 1878) - Obispo toothcarp [=latipunctata] Species Brachyrhaphis hartwegi Rosen & Bailey, 1963 - Soconusco gambusia Species Brachyrhaphis hessfeldi Meyer & Etzel, 2001 - Palenque toothcarp Species Brachyrhaphis holdridgei Bussing, 1967 - Tronadora toothcarp Species Brachyrhaphis olomina (Meek, 1914) - Orotina toothcarp Species Brachyrhaphis parismina (Meek, 1912) - Parismina toothcarp Species Brachyrhaphis punctifer (Hubbs, 1926) - Quibari Creek toothcarp Species Brachyrhaphis rhabdophora (Regan, 1908) - Río Grande de Terraba toothcarp [=tristani] Species Brachyrhaphis roseni
    [Show full text]
  • Gambusia Forum 2011
    Gambusia Forum 2011 Crowne Plaza Hotel, Melbourne Wednesday 1st – Thursday 2nd June 2011 Edited by: Dr Peter Jackson and Heleena Bamford Small fish… …big problem! Published by Murray–Darling Basin Authority Postal Address GPO Box 1801, Canberra ACT 2601 Office location Level 4, 51 Allara Street, Canberra City Australian Capital Territory Telephone (02) 6279 0100 international + 61 2 6279 0100 Facsimile (02) 6248 8053 international + 61 2 6248 8053 E-Mail [email protected] Internet http://www.mdba.gov.au For further information contact the Murray–Darling Basin Authority office on (02) 6279 0100 This report may be cited as: Gambusia Forum 2011: Small fish.....big problem! MDBA Publication No. 154/11 ISBN (on-line) 978-1-921914-21-8 ISBN (print) 978-1-921914-22-5 © Copyright Murray–Darling Basin Authority (MDBA), on behalf of the Commonwealth of Australia 2011. This work is copyright. With the exception of photographs, any logo or emblem, and any trademarks, the work may be stored, retrieved and reproduced in whole or in part, provided that it is not sold or used in any way for commercial benefit, and that the source and author of any material used is acknowledged. Apart from any use permitted under the Copyright Act 1968 or above, no part of this work may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General’s Department, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca.
    [Show full text]
  • A REVISION of the GAMBUSIA NICARAGUENSIS SPECIES GROUP (PISCES:POECILIIDAE) by William L. Fink ABSTRACT in Addition to Gambusia
    Reprinted from PUBLICATIONS OF THE GULF COAST RESEARCH LABORATORY MUSEUM 2:47-77, June 18, 1971 A REVISION OF THE GAMBUSIA NICARAGUENSIS SPECIES GROUP (PISCES:POECILIIDAE) by William L. Fink ABSTRACT In addition to Gambusia nicaraguensis, the species group includes G. wrayi, G. mela pleura and G. his paniolae sp. nov. G. gracilior is a junior synonym of G. wrayi and G. dominicensis is found to be a member of another species group. A key and zoogeographical notes are provided for the group. Rivas (1963) published on subgenera and species groups in the genus Gambusia. He used only gonopodial characters in defining his groups, and I believe that his system is both natural and practical. Subsequent investigation has shown a need to review his findings and to make adjust- ments in the system. I have found that G. dominicensis is a member of another species group and that the species referred to as dominicensis by Rivas (1963) is actually undescribed. Otherwise, I accept his G. nicara- guensis species group and feel that its revision will help clarify other prob- lems within the genus. METHODS.—Methods are those of Fink (1971). Abbreviations are as follows: ANSP - Academy of Natural Sciences of Philadelphia; BMNH - British Museum (Natural History); GCRL - Gulf Coast Re- search Laboratory; UMMZ - University of Michigan Museum of Zoology; USNM - United States National Museum. Unless otherwise noted, lengths are standard length (SL); descriptions of coloration are from alcoholic specimens; all material examined is not included in the tables. 47 DIAGNOSIS OF THE SPECIES GROUP.—Length of gonopodium about one-third of SL.
    [Show full text]
  • NT Ornamentals Government Sumbission
    Committees Select | Sessional | Standing Environment and Sustainable Development Terms of Reference INQUIRY, INVASIVE SPECIES AND MANAGEMENT PROGRAMS The following matter be referred to the Environment and Sustainable Development Committee for inquiry and report - (1) The Northern Territory's capacity to prevent new incursions of invasive species, and to implement effective eradication and management programs for such species already present; and (2) That the committee in its inquiry will: a) begin its investigations by engaging the scientific community to conduct a scientific summit on invasive species; (b) use case studies to inform the analysis, and will draw its case studies from a range of invasive species; (c) while investigating the value of control programs, focus on community based management programs for weeds and feral animal control; and (d) as a result of its investigations and analysis will recommend relevant strategies and protocols for government in dealing with future incursions and current problem species. 1 A Proactive Approach to Reducing Accidental and Intentional Introductions of Ornamental Fish Species into Natural Waters of the Northern Territory: A Case for Control through Minor Legislative Changes and a Public Education Program. Dave Wilson National President ANGFA Inc. PO Box 756 Howard Springs NT 0835 Scoot Andresen Pet Industry of Association Australia NT Coordinator PO Box 3029 Alice Springs NT 0871 Summary This document is intended to outline what the Community and the Aquarium Traders can do toward reducing the risks of the introduction unwanted ornamental species. It gives an alternative view to Fisheries Administrators tendencies to ban everything on the grounds that is the safest thing to do for environmental protection.
    [Show full text]
  • Western Mosquitofish Gambusia Affinis ILLINOIS RANGE
    western mosquitofish Gambusia affinis Kingdom: Animalia FEATURES Phylum: Chordata The western mosquitofish male grows to about one Class: Osteichthyes inch in length, while the female attains a length of Order: Cyprinodontiformes about two inches. A dark, teardrop-shaped mark is present under each eye. Black spots can be seen on Family: Poeciliidae the dorsal and tail fins. The back is gray-green to ILLINOIS STATUS brown-yellow with a dark stripe from the head to the dorsal fin. The sides are silver or gray with a common, native yellow or blue sheen. Scales are present on the head, and scales on the body have dark edges, giving a cross-hatched effect. These fish tend to die in the summer that they become mature. BEHAVIORS The western mosquitofish may be found in the southern one-half of Illinois. This fish lives in areas of little current and plentiful vegetation in swamps, sloughs, backwaters, ponds, lakes and streams. The western mosquitofish reproduces three or four times during the summer. Fertilization is internal. After mating, sperm is stored in a pouch within the female and may be used to fertilize several broods. The eggs develop inside the female and hatch in three to four weeks. Young are born alive. A brood may contain very few or several hundred fish. Young develop rapidly and may reproduce in their first summer. The western mosquitofish swims near the ILLINOIS RANGE surface, alone or in small groups, eating plant and animal materials that includes insects, spiders, small crustaceans, snails and duckweeds. © Illinois Department of Natural Resources. 2020.
    [Show full text]
  • Molecular and Morphometric Evidence for the Widespread Introduction Of
    BioInvasions Records (2017) Volume 6, Issue 3: 281–289 Open Access DOI: https://doi.org/10.3391/bir.2017.6.3.14 © 2017 The Author(s). Journal compilation © 2017 REABIC Research Article Molecular and morphometric evidence for the widespread introduction of Western mosquitofish Gambusia affinis (Baird and Girard, 1853) into freshwaters of mainland China Jiancao Gao1, Xu Ouyang1, Bojian Chen1, Jonas Jourdan2 and Martin Plath1,* 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China 2Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany *Corresponding author E-mail: [email protected] Received: 6 March 2017 / Accepted: 9 July 2017 / Published online: 31 July 2017 Handling editor: Marion Y.L. Wong Abstract Two North American species of mosquitofish, the Western (Gambusia affinis Baird and Girard, 1853) and Eastern mosquitofish (G. holbrooki Girard, 1859), rank amongst the most invasive freshwater fishes worldwide. While the existing literature suggests that G. affinis was introduced to mainland China, empirical evidence supporting this assumption was limited, and the possibility remained that both species were introduced during campaigns attempting to reduce vectors of malaria and dengue fever. We used combined molecular information (based on phylogenetic analyses of sequence variation of the mitochondrial cytochrome b gene) and morphometric data (dorsal and anal fin ray counts) to confirm the presence
    [Show full text]
  • Herpetofauna and Aquatic Macro-Invertebrate Use of the Kino Environmental Restoration Project (KERP)
    Herpetofauna and Aquatic Macro-invertebrate Use of the Kino Environmental Restoration Project (KERP) Tucson, Pima County, Arizona Prepared for Pima County Regional Flood Control District Prepared by EPG, Inc. JANUARY 2007 - Plma County Regional FLOOD CONTROL DISTRICT MEMORANDUM Water Resources Regional Flood Control District DATE: January 5,2007 TO: Distribution FROM: Julia Fonseca SUBJECT: Kino Ecosystem Restoration Project Report The Ed Pastor Environmental Restoration ProjectiKino Ecosystem Restoration Project (KERP) is becoming an extraordinary urban wildlife resource. As such, the Pima County Regional Flood Control District (PCRFCD) contracted with the Environmental Planning Group (EPG) to gather observations of reptiles, amphibians, and aquatic insects at KERP. Water quality was also examined. The purpose of the work was to provide baseline data on current wildlife use of the KERP site, and to assess water quality for post-project aquatic wildlife conditions. I additionally requested sampling of macroinvertebrates at Agua Caliente Park and Sweetwater Wetlands in hopes that the differences in aquatic wildlife among the three sites might provide insights into the different habitats offered by KERF'. The results One of the most important wildlife benefits that KERP provides is aquatic habitat without predatory bullfrogs and non- native fish. Most other constructed ponds and wetlands in Tucson, such as the Sweetwater Wetlands and Agua Caliente pond, are fuIl of non-native predators which devastate native fish, amphibians and aquatic reptiles. The KERP Wetlands may provide an opportunity for reestablishing declining native herpetofauna. Provided that non- native fish, bullfrogs or crayfish are not introduced, KERP appears to provide adequate habitat for Sonoran Mud Turtles (Kinosternon sonoriense), Lowland Leopard Frogs (Rana yavapaiensis), and Mexican Gartersnakes (Tharnnophis eques) and Southwestern Woodhouse Toad (Bufo woodhousii australis).
    [Show full text]
  • The Declining Spadefoot Toad Pelobates Fuscus: Calling Site Choice and Conservation
    The declining spadefoot toad Pelobates fuscus: calling site choice and conservation Nyström, Per; Birkedal, L; Dahlberg, C; Brönmark, Christer Published in: Ecography DOI: 10.1034/j.1600-0587.2002.250411.x 2002 Link to publication Citation for published version (APA): Nyström, P., Birkedal, L., Dahlberg, C., & Brönmark, C. (2002). The declining spadefoot toad Pelobates fuscus: calling site choice and conservation. Ecography, 25(4), 488-498. https://doi.org/10.1034/j.1600- 0587.2002.250411.x Total number of authors: 4 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 28. Sep. 2021 ECOGRAPHY 25: 488–498, 2002 The declining spadefoot toad Pelobates fuscus: calling site choice and conservation Per Nystro¨m, Linda Birkedal, Christina Dahlberg and Christer Bro¨nmark Nystro¨m, P., Birkedal, L., Dahlberg, C.
    [Show full text]
  • FISHES (C) Val Kells–November, 2019
    VAL KELLS Marine Science Illustration 4257 Ballards Mill Road - Free Union - VA - 22940 www.valkellsillustration.com [email protected] STOCK ILLUSTRATION LIST FRESHWATER and SALTWATER FISHES (c) Val Kells–November, 2019 Eastern Atlantic and Gulf of Mexico: brackish and saltwater fishes Subject to change. New illustrations added weekly. Atlantic hagfish, Myxine glutinosa Sea lamprey, Petromyzon marinus Deepwater chimaera, Hydrolagus affinis Atlantic spearnose chimaera, Rhinochimaera atlantica Nurse shark, Ginglymostoma cirratum Whale shark, Rhincodon typus Sand tiger, Carcharias taurus Ragged-tooth shark, Odontaspis ferox Crocodile Shark, Pseudocarcharias kamoharai Thresher shark, Alopias vulpinus Bigeye thresher, Alopias superciliosus Basking shark, Cetorhinus maximus White shark, Carcharodon carcharias Shortfin mako, Isurus oxyrinchus Longfin mako, Isurus paucus Porbeagle, Lamna nasus Freckled Shark, Scyliorhinus haeckelii Marbled catshark, Galeus arae Chain dogfish, Scyliorhinus retifer Smooth dogfish, Mustelus canis Smalleye Smoothhound, Mustelus higmani Dwarf Smoothhound, Mustelus minicanis Florida smoothhound, Mustelus norrisi Gulf Smoothhound, Mustelus sinusmexicanus Blacknose shark, Carcharhinus acronotus Bignose shark, Carcharhinus altimus Narrowtooth Shark, Carcharhinus brachyurus Spinner shark, Carcharhinus brevipinna Silky shark, Carcharhinus faiformis Finetooth shark, Carcharhinus isodon Galapagos Shark, Carcharhinus galapagensis Bull shark, Carcharinus leucus Blacktip shark, Carcharhinus limbatus Oceanic whitetip shark,
    [Show full text]
  • THE MOSQUITOFISH Gambusia Affinis
    THE MOSQUITOFISH Gambusia affinis Adult male (above) and adu lt female (below) Cambusill affinis affinis. Courtesy of Or. L ouis .4. Krumholz . UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREA U OF COMMERCIAL FISHERIES Fishery Leaflet 525 ( THE MOSQUITOFISH, Gambusia affinis By Lola T. Dees Branch of Reports Divi ion of Resource Development CONTENTS Page Int roduction. • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 Range. • • • • • . • . • • . • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • 1 Fo reign introductions. • • • • . • • . • . • • • • • • • • • • • • • • • • • • • • • • • 2 Habitat . • . • . • • • • • • . • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2 Li fe history. • • • • • • • • . • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • 2 Description •••••••••••••••• •••.•••••••••••.••. 1 • • • 2 Food . • . • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • 3 Reproduction . • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • 3 TIle young . • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3 Enemies . • • • • • • . • • • . • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • 3 Cu lture. • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3 Dealers . • . • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • 4 References . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
    [Show full text]
  • Clear Creek Gambusia Recovery Plan
    CLEAR CREEK GAMBUSIA RECOVERY PLAN 1982 REaxERYPLAN Gmbusia heterochir H&bs, 1957 PREPAREDBY THEFUOGRANDEF'ISHESRECOVERYTERM April 16, 1980 TEAMMIaBERs Clark H&bs, Tern Leader, University of Texas Floyd E. Potter, Jr., Texas Parks and Wildlife Departlent AntImy EChelle, CRl.a&na State University Salmdor antreras-Balderas, University of Nuevo Leon Buddy Jensen, U.S. fish and Wildlife Semice Midmel D. Hatch, Nw @z&o Departmnt of Gam and fish TEZM CONSUIiTAJTt’S IMilfmd J?letd?er, National Park Service Willian McPherson, U.S. Soil Conservation Service CONTENTS Preface . ............ i Acknowledgments . ............. ii Part I - Review Background Introduction ........... ............ Description ............ ............. Taxonomic Status ......... ............ Distribution and Description of the Habitat . Habitat Requirements ....... ............ Associated Species ........ ............ Reproduction ........... ............ Threats Hybridization ........... ............ 4 Competition. ........... ............ 4 Development ............ ............ 5 Dam Deterioration ......... ............ 5 Recharge Zone ........... ............ 5 Runoff .............. ............ 6 Stream Perturbations . 6 Conservation Efforts . 7' Literature Cited . 8 Part II - The Action Plan . 9 Step-Down Outline . 9 i, Narrative .......................... Part III - Priorities, Responsibilities, Costs ......... 20 Part IV - Responses and Replies ................ 23 PREFACE The Clear Creek Gambusia Recovery Plan was developed by the Clear Creek Gambusia Recovery Team,
    [Show full text]
  • Warrego-Darling Selected Area 2019-20 Annual Summary Report Appendix F: Fish
    HYDROLOGY | FOOD WEBS | VEGETATION | WATERBIRDS | FISH | FROGS Appendix F: Fish Warrego-Darling Selected Area 2019-20 Annual Summary Report Appendix F: Fish 1 Introduction There have been few studies that have assessed the fish communities of the Warrego and Darling Rivers simultaneously. The two rivers are very different, varying in length (Darling River length: 2,740 km, Warrego River length: 830 km), stream morphology, regularity of flows, number of tributaries, and number of constructed barriers. The Warrego connects with the Darling south-west of Bourke in north-western New South Wales (NSW) within the Junction of the Warrego and Darling rivers Selected Area (Warrego-Darling Selected Area, Selected Area). Whilst the Warrego River flows through a relatively undisturbed catchment (Balcombe et al. 2006), the fish assemblages of the Warrego Valley are considered to be in generally poor condition. In the Sustainable Rivers Audit (SRA) No. 2 assessment, the Warrego Valley scored an overall rating of ‘Very Poor’ for the Lowland and Slopes zone, primarily a reflection of the ‘Very Poor’ rating for Recruitment across the entire valley (Murray-Darling Basin Authority 2012). For Nativeness (the proportion of total abundance, biomass, and species present that are native), the Warrego valley scored a rating of ‘Good’, despite there being a relatively high total biomass of alien species captured, particularly common carp (Cyprinus carpio). In summary, the SRA No. 2 program found that the contemporary presence of native species characteristic of the Warrego’s pre-European fish assemblages was outweighed by an apparent paucity of recent fish reproductive activity. The fish assemblages of the Darling River have been more frequently studied in comparison to the Warrego.
    [Show full text]