Genomic Exploration of the Hemiascomycetous Yeasts 3Rd Workshop on Algorithms in Bioinformatics Moscow 2008-10-08

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Exploration of the Hemiascomycetous Yeasts 3Rd Workshop on Algorithms in Bioinformatics Moscow 2008-10-08 1 Genomic Exploration of the Hemiascomycetous Yeasts 3rd Workshop on Algorithms in Bioinformatics Moscow 2008-10-08 David J. Sherman U. Bordeaux, France LaBRI CNRS & INRIA team “MAGNOME” Comparative genomics 2 Which And what ones do we do we do sequence? after that? Is certainly about comparison But is also about the genomes A caricature 3 The hard part Data A solved problem Push button The hard part Biological Algorithmic – – Results otherwise otherwise not interesting not interesting 4 Hemiascomycetous yeasts Eukaryotic genomes Understand mechanisms of molecular evolution Small and compact Genome redundancy Experimental model Biotechnological interest Ortho-/para- log divergence • beer, wine, bread Expansion and contraction • assimilate hydrocarbons, of universal families tannin extracts • horomones and vaccines Tandem duplications Medical interest Block duplication and Biodiversity rearrangement Systems Conservation of synteny Comparison of evolutionary range of Hemiascomycetes and Chordates Urochordates Yarrowia lipolytica 50 Debaryomyces hansenii Ciona intestinalis 60 Kluyveromyces lactis Candida glabrata Fishes Takifugu rubripes 70 Tetraodon negroviridis Gallus gallus Birds Saccharomyces uvarum 80 90 Mammals Mus musculus Saccharomyces paradoxus Saccharomyces cerevisiae Homo sapiens Saccharomyces sensu stricto 100 Scale: average % of amino-acid identity between complete set of orthologous proteins Dujon (2006) Trends in Genetics 22: 375-387 6 Génolevures Sequencing Projects Génolevures 1 • 13 species, partial 0.2-0.4X • Souciet et al 2000 [21 papers] FEBS Letters 487 Génolevures 2 • 4 species complete 12X • Dujon, Sherman et al 2004 Nature 430 • Sherman et al 2006 NAR 34 Génolevures 3 • 3 species complete 12X • 2 species complete 7-12X Génolevures 4 • 4 + 5 + 5 close species, NGS 7 Nb of Genome Ty4 chrom. Size (Mb) whole genome duplication post-duplication gene loss Saccharomyces cerevisiae 16 12.1 expansion of sugar-utilisation genes loss of active Ty5 post-duplication gene loss Candida glabrata 13 12.3 loss of GAL genes loss of sex Ty1 / 2 loss of all active type I retroposons triplicated mating-type cassettes Kluyveromyces waltii 8 10.7 HO endonuclease loss of GAL genes short centromeres Kluyveromyces lactis 6 10.6 loss of class II degradation of HO Transposons Ty5 and non-LTR retroposons loss of HO Ashbya gossypii 7 9.2 loss of GAL genes non universal Ty3 genetic Tca2 code Debaryomyces hansenii 7 12.2 expansion of gene families high rate of encoding lipases, intron loss extracellular proteases etc... Candida albicans 8 14.9 loss of sex expansion of gene families encoding lipases, extracellular proteases, allantoin and allantoate transporters etc... Yarrowia lipolytica 6 20.5 Dujon (2006) Trends in Genetics 22: 375-387 8 Genomic data for complete genomes Complete genomes sequenced by the Génoscope What is complete? • Sequence subtelomere to subtelomere • Fully assembled chromosomes • Careful manual annotation What can you do with a complete sequence? • Track chromosomal rearrangements • Analyze species- or clade-specific gain or loss • Measure expansion and contraction of protein families • Look for long-range correlations 9 What’s next? And what do we do after that? Genome Annotation • Magus annotation system • Simultaneous annotation of putative homologs Classification into protein families • Consensus ensemble clustering Comparative maps • Discovering synteny • Identifying orthologs 10 Let’s avoid teleology Genomes are thrown together from bits and pieces of things that worked, once Genome annotation has to reflect reality and not expectations It is hard, painstaking work It is not fully automatic Good tools help R. Greaves The Annotation Process 11 Genomic DNA Legend GÉNOLEVURES technique GÉNOLEVURES result Algorithmic Predictive methods Predictive methods sequence analysis External technology RNA genes and other elements Gene models External data source Simultaneous gene annotation Transcript Protein-coding genes Classification sequencing Integration Homolog groups Systematic compar- Curation updates Curated genes ison and consensus Complementary Annotated genome Protein families analyses Magus 12 The “big iron” ProductionIn silico Alignments RuleDinkum-thinkumU.I. predictions & checker74 cores components4 Gbyte Redundant, high DBdisp search. • IBM, Dell Servers Rules • x86_64 • 3 web Rocks + bio roll Web • 1 database Web Service Bus • HMMER, NCBI BLAST, users • Mini-cluster ClustalW, EMBO SS, Glimmer, Fasta, MrBay es,Phy lip, Storage T_CoffeGenomee, MPI-Blast, • 11 Tbyte RAID Compute GROBrowser MACS Genomes d database GenCore 6 results KB Fast browser database Browsing a genome region 13 Viewing a Locus on a Genome 14 Validating a Gene Model Annotating Homolog Groups 17 Protein families Multi-species groups of related proteins Phylogenetic relationship → functional similarity Diversity of in silico results Need to calibrate or train methods for different phylogenetic groups New algorithm for consensus clustering that is efficient in practice What’s the goal? Blast Partition ∏1 E-val threshold Partition ∏2 homeomorphy Complete Partition ∏3 genomes Partition ∏4 Smith- Waterman Protein Partition ∏n families homeomorphy Reconciling different in silico predictions Blast & SW Homeomorphic and Proteomes sequence Nonhomeomorphic alignments Alignments Agreement between partitions partition partition partition • Confusion matrix partition partition • Distance between partitions that is, a shortest path in a graph of fusions/fissions NP-complete Median partitions by consensus clustering Blast & SW Homeomorphic and Proteomes sequence Nonhomeomorphic alignments Alignments Partition ∏1 Partition ∏3 Partition ∏n Partition ∏ Partition ∏2 4 Compute a median partition ∏ minimizing consensus Construction and algorithm Define a similarity FReli,j : encodes measure based on confusion matrix the composants ci Select ci in each R maximal k Rk by MDC (min. conflict regions disjoint cover) NP-complete Efficient heuristic Relaxation: admit inexact cover (Not all proteins are in families) Resolve conflicts by election + policy For each comp. C for each ci ∈ C compute Si et Di each p votes for ci in ordre Di ↑ and Si ↓ take the winning ci in order so as to cover the most Conflict regions Conflict graph proteins p subgroups family 24 Correlated gain and loss and in networks and metabolic pathways Construct a PSSM for each family 4384 families as follows Proteomes 4240 where FN = 0 Family GL2 fasta GL2 FP med 0,0 avg 3,7 max 302 PSI blast PSI blast Ev med 6e-78 max 9e-6 144 where FN > 0 PSSM Comparison FP med 4,5 avg 33 TP,TN,FP,FN and worst E-val max 307 Construction Validation Build a PSSM for each family and use to improve gene prediction Per-family size and E-value ORF criteria translations Family GL2 fasta PSI blast PSI blast filtering PSSM* Candidates Loci assigned to families *PSSM: position-specific scoring matrix for PSIBLAST Comparison with KOGs Project families on S. cerevisiae Select intersection and compare 3625 proteins (~2500 families) identities: 1901 split: 159 (4 GLS, 42 GLR, 113 GLC) merge: 117 (6 GLS, 70 GLR, 79 GLC) messy: 25 (2 GLS, 13 GLR, 23 GLC) Comparison with KOGs Comparison GLR.3294 with PIRSF (UniProt) 017196 and 017667 Comparison of GLR.3292 with PIRSF 017297 and 016767 32 Comparative maps Despite similarity in size, gene content, ecological niche, yeast genomes are highly rearranged. In general, synteny is poorly conserved. In part: • evolutionary distance • artifact of WGD 33 Comparative maps But, if we focus on the Saccharomycetacae that did not undergo a recent whole genome duplication Protoploid genomes • homogeneous • low redundancy • less reshuffling Syntenic homologs are orthologs 37 So, in conclusion Comparative genomics works if you pay attention to the data • High-quality, complete genomes • Chosen from interesting phylogenetic groups Building tools and analyses works if you have a plan • Genome annotation • Protein families and subgroups • Syntenic blocks and common markers Many opportunities for further work http://genolevures.org/ ≡ http://cbi.labri.fr/Genolevures/ 38 Acknowledgments and support Bordeaux Génolevures • Macha Nikolski CNRS • Jean-Luc Souciet • Tiphaine Martin CNRS • Bernard Dujon • Pascal Durrens CNRS • Claude Gaillardin • David Sherman INRIA • Christian Marck • Géraldine Jean • Eric Westhof • Hayssam Soueidan • Cécile Neuvéglise • Nicolás Loira • Cécile Fairhead • Adrien Goëffon • André Goffeau • Julie Bourbeillon • Philippe Baret • Rodrigo Assar • Ed Louis • Mark Johnston CNRS GDR 2354 Génolevures CNRS UMR 5800 LaBRI INRIA team MAGNOME .
Recommended publications
  • Fall 2016 Is Available in the Laboratory of Dr
    RNA Society Newsletter Aug 2016 From the Desk of the President, Sarah Woodson Greetings to all! I always enjoy attending the annual meetings of the RNA Society, but this year’s meeting in Kyoto was a standout in my opinion. This marked the second time that the RNA meeting has been held in Kyoto as a joint meeting with the RNA Society of Japan. (The first time was in 2011). Particular thanks go to the local organizers Mikiko Siomi and Tom Suzuki who took care of many logistical details, and to all of the organizers, Mikiko, Tom, Utz Fischer, Wendy Gilbert, David Lilley and Erik Sontheimer, for putting together a truly exciting and stimulating scientific program. Of course, the real excitement in the annual RNA meetings comes from all of you who give the talks and present the posters. I always enjoy meeting old friends and colleagues, but the many new participants in this year’s meeting particularly encouraged me. (Continued on p2) In this issue : Desk of the President, Sarah Woodson 1 Highlights of RNA 2016 : Kyoto Japan 4 Annual Society Award Winners 4 Jr Scientist activities 9 Mentor Mentee Lunch 10 New initiatives 12 Desk of our CEO, James McSwiggen 15 New Volunteer Opportunities 16 Chair, Meetings Committee, Benoit Chabot 17 Desk of the Membership Chair, Kristian Baker 18 Thank you Volunteers! 20 Meeting Reports: RNA Sponsored Meetings 22 Upcoming Meetings of Interest 27 Employment 31 1 Although the graceful city of Kyoto and its cultural months. First, in May 2016, the RNA journal treasures beckoned from just beyond the convention instituted a uniform price for manuscript publication hall, the meeting itself held more than enough (see p 12) that simplifies the calculation of author excitement to keep ones attention! Both the quality fees and facilitates the use of color figures to and the “polish” of the scientific presentations were convey scientific information.
    [Show full text]
  • Deciphering the Reading of the Genetic Code by Near-Cognate Trna
    Deciphering the reading of the genetic code by near-cognate tRNA Sandra Blancheta,1, David Cornua, Isabelle Hatina, Henri Grosjeana, Pierre Bertina, and Olivier Namya,2 aInstitute for Integrative Biology of the Cell (I2BC), Commissariat à l‘énergie atomique et aux énergies alternatives, CNRS, Université Paris‐Sud, Université Paris-Saclay, 91198 Gif‐sur‐Yvette cedex, France Edited by Ada Yonath, Weizmann Institute of Science, Rehovot, Israel, and approved February 11, 2018 (received for review September 3, 2017) Some codons of the genetic code can be read not only by cognate, has been suggested that the combination of 5-methylene deriv- but also by near-cognate tRNAs. This flexibility is thought to be atives and 2-thiolation modifications of U34 restrict the decoding conferred mainly by a mismatch between the third base of the of codons ending with A (9, 10); moreover, 2-thiolation increases codon and the first of the anticodon (the so-called “wobble” po- affinity of binding to the cognate codon and reduces tRNA re- sition). However, this simplistic explanation underestimates the jection (11). These modifications have also been implicated in importance of nucleotide modifications in the decoding process. protein homeostasis (12), in reading-frame maintenance (13), Using a system in which only near-cognate tRNAs can decode a and in the enhancement of recognition by aminoacyl-tRNA specific codon, we investigated the role of six modifications of the synthetases (14). anticodon, or adjacent nucleotides, of the tRNAs specific for Tyr, However, data are not easily transposable from one organism Gln, Lys, Trp, Cys, and Arg in Saccharomyces cerevisiae.
    [Show full text]
  • Genetic Code14
    Centre culturel Saint Thomas, Strasbourg Conference PROGRAM Thursday, March 26 13:00 - 14:00 Arrival and Welcome coffee 14:00 - 14:15 Congress opening - Welcome address from the organizers Session 1: Ribosome Structures and Decoding Chair: Jean-Paul Renaud (Strasbourg, France) 14:15 - 14:45 Marina Rodnina (Göttingen, Germany) - The EMBO Keynote Lecture Decoding and recoding of genetic information by the ribosome 14:45 - 15:15 Daniel Wilson (Hamburg, Germany) Rescue of ribosomes trapped on mRNAs without a stop codon 15:15 - 15:45 Eric Westhof (Strasbourg, France) tRNA modifications in decoding: how to choose between two constraints 15:45 - 16:15 Coffee break 16:15 - 16:30 Talk 1 selected from abstracts 16:30 - 16:45 Talk 2 selected from abstracts 16:45 -17:00 Talk 3 selected from abstracts 17:00 -17:15 Talk 4 selected from abstracts 17:15 - 17:45 Sebastian Leidel (Bern, Switzerland) Tuning translation by (RNA) modifications 17:45 - 18:15 Orna Dahan (Rehovot, Israel) An interplay between the tRNA and mRNA pools affect translation efficiency and accuracy 1 18:30 Dinner 20:00 - 20:30 Young scientist session Chair: Bojan Zagrovic (Vienna, Austria) Echoes from the past: RNA-protein interactions and the structure of the genetic code 20:30 - 20:45 Talk 5 selected from abstracts 20:45 – 21:00 Talk 6 selected from abstracts 21:00 - 23:00 Poster session Friday, March 27 Session 2: Translational Variations and Miscoding Chair: Pascale Romby (Strasbourg, France) 9:00 - 9:30 Zoya Ignatova (Hamburg, Germany)– The French-German University (UFA) Keynote
    [Show full text]
  • The Annotation of RNA Motifs
    Comparative and Functional Genomics Comp Funct Genom 2002; 3: 518–524. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.213 Conference Review The annotation of RNA motifs Neocles B. Leontis1* and Eric Westhof2** 1 Chemistry Department and Center for Biomolecular Sciences, Overman Hall, Bowling Green State University, Bowling Green, OH 43403, USA 2 Institut de Biologie Moleculaire´ et Cellulaire du CNRS, Modelisation´ et Simulations des Acides Nucleiques,´ UPR 9002, 15 rue Rene´ Descartes, F-67084 Strasbourg Cedex, France Correspondence to either: Abstract *Neocles B. Leontis, Chemistry The recent deluge of new RNA structures, including complete atomic-resolution views Department and Center for of both subunits of the ribosome, has on the one hand literally overwhelmed our Biomolecular Sciences, Overman individual abilities to comprehend the diversity of RNA structure, and on the other Hall, Bowling Green State hand presented us with new opportunities for comprehensive use of RNA sequences University, Bowling Green, OH for comparative genetic, evolutionary and phylogenetic studies. Two concepts are key 43403, USA. to understanding RNA structure: hierarchical organization of global structure and E-mail: [email protected] isostericity of local interactions. Global structure changes extremely slowly, as it relies or on conserved long-range tertiary interactions. Tertiary RNA–RNA and quaternary RNA–protein interactions are mediated by RNA motifs, defined as recurrent and **Eric Westhof, Institute de ordered arrays of non-Watson–Crick base-pairs. A single RNA motif comprises a Biologie Moleculaire´ et Cellulaire family of sequences, all of which can fold into the same three-dimensional structure du CNRS, Modelisation´ et and can mediate the same interaction(s).
    [Show full text]
  • RNA As a Drug Target: Chemical, Modelling, and Evolutionary Tools Thomas Hermann and Eric Westhof
    66 RNA as a drug target: chemical, modelling, and evolutionary tools Thomas Hermann and Eric Westhof Dramatic technical progress in RNA synthesis and structure ment [SELEX]) [1] and high-resolution NMR structure determination has allowed several dif®culties inherent to the determination, together with improved methods for the preparation, handling and structural analysis of RNA to be combinatorial synthesis of therapeutic agents [2,3•,4,5•] overcome, and this has led to a wealth of information about have opened the road for drug discovery in the ®eld RNA structure and its relationship with biological function. It of RNA-targeted effectors [6,7•,8]. Here, we will review is now fully recognized that RNA molecules intervene at all the recent progress made in the study of the interaction stages of cell life, not only because of key sequence motifs of small molecules with functional RNA by means but also because of intricate three-dimensional folds. This of chemical, modelling and evolutionary tools. More realization has promoted RNA to a potential therapeutic extensive reviews, especially on antibiotic and metal target. As in protein motifs recognizing nucleic acids, groups complex binding, were recently written by Wallis and of the molecule interacting with RNA contribute to speci®c Schroeder [9] and by Chow and Bogdan [10]. Among the binding through de®ned hydrogen bonds and van der numerous arti®cial RNA molecules (aptamers) that have Waals docking, while other parts contribute to the driving been selected by in vitro evolution for speci®c binding to force of binding via less speci®c electrostatic interactions a target molecule, we will focus on RNA aptamers that accompanied by water and ion displacement.
    [Show full text]
  • Contributions to the Study of the Architecture and Evolution of Ribozymes Mélanie Meyer
    Contributions to the study of the architecture and evolution of ribozymes Mélanie Meyer To cite this version: Mélanie Meyer. Contributions to the study of the architecture and evolution of ribozymes. Bio- chemistry, Molecular Biology. Université de Strasbourg, 2013. English. NNT : 2013STRAJ049. tel-01063838 HAL Id: tel-01063838 https://tel.archives-ouvertes.fr/tel-01063838 Submitted on 14 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG Ecole Doctorale des Sciences de la Vie et de la Santé THÈSE présentée par : Mélanie MEYER pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline : Sciences du Vivant Spécialité : Biochimie, Biologie Moléculaire et Structurale CONTRIBUTIONS TO THE STUDY OF THE ARCHITECTURE AND EVOLUTION OF RIBOZYMES Soutenue le 13 Septembre 2013 devant la commission d’examen : Dr. MASQUIDA Benoît Directeur de thèse Pr. THORE Stephane Rapporteur externe Dr YOSHIZAWA Satoko Rapporteur externe Pr CAVARELLI Jean Examinateur Dr. SARGUEIL Bruno Examinateur Pr. WESTHOF Eric Examinateur First and foremost, I want to thank all the members of my jury, Satoko Yoshizawa, Stéphane Thore, Bruno Sargueil, Jean Cavarelli and Eric Westhof, who agreed to judge my thesis.
    [Show full text]
  • Group I Introns Toward Predicting Self-Splicing and Protein-Facilitated Splicing Of
    Downloaded from rnajournal.cshlp.org on August 1, 2014 - Published by Cold Spring Harbor Laboratory Press Toward predicting self-splicing and protein-facilitated splicing of group I introns Quentin Vicens, Paul J. Paukstelis, Eric Westhof, et al. RNA 2008 14: 2013-2029 originally published online September 3, 2008 Access the most recent version at doi:10.1261/rna.1027208 Supplemental http://rnajournal.cshlp.org/content/suppl/2008/09/03/content.1027208.DC1.html Material References This article cites 81 articles, 30 of which can be accessed free at: http://rnajournal.cshlp.org/content/14/10/2013.full.html#ref-list-1 Open Access Freely available online through the RNA Open Access option. Email Alerting Receive free email alerts when new articles cite this article - sign up in the box at the top Service right corner of the article or click here. To subscribe to RNA go to: http://rnajournal.cshlp.org/subscriptions Copyright © 2008 RNA Society JOBNAME: RNA 14#10 2008 PAGE: 1 OUTPUT: Tuesday September 9 14:42:22 2008 csh/RNA/170255/rna10272 Downloaded from rnajournal.cshlp.org on August 1, 2014 - Published by Cold Spring Harbor Laboratory Press Toward predicting self-splicing and protein-facilitated splicing of group I introns QUENTIN VICENS,1 PAUL J. PAUKSTELIS,2 ERIC WESTHOF,3 ALAN M. LAMBOWITZ,2 and THOMAS R. CECH1 1Howard Hughes Medical Institute, University of Colorado, Department of Chemistry and Biochemistry, Boulder, Colorado 80309-0215, USA 2Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas 78712, USA 3Institut de Biologie Mole´culaire et Cellulaire du CNRS, Universite´ Louis Pasteur, F-67084 Strasbourg Cedex, France ABSTRACT In the current era of massive discoveries of noncoding RNAs within genomes, being able to infer a function from a nucleotide sequence is of paramount interest.
    [Show full text]
  • Program Information
    RNA 2021 The 26th Annual Meeting of the RNA Society On-line May 25–June 4, 2021 RNA 2021 On-Line The 26th Annual Meeting of the RNA Society CORRECT THE MESSAGE CHANGE A LIFETM Locanabio’s CORRECTXTM platform is pioneering a new class of gene therapies by correcting the th th May 25 – June 4 , 2021 dysfunctional RNA that causes a broad range of neurodegenerative, neuromuscular and retinal diseases Gene Yeo – University of California San Diego, USA Katrin Karbstein – Scripps Research Institute, Florida, USA V. Narry Kim – Seoul National University, South Korea Anna Marie Pyle – Yale University, USA Xavier Roca – Nanyang Technological University, Singapore Jörg Vogel – University of Würzburg, Germany RNA 2021 • On-line GENERAL INFORMATION Citation of abstracts presented during RNA 2021 On-line (in bibliographies or other) is strictly prohibited. Material should be treated as personal communication and is to be cited only with the expressed written ® consent of the author(s). The Sequel IIe System NO UNAUTHORIZED PHOTOGRAPHY OF ANY MATTER PRESENTED DURING THE ON-LINE MEETING: To encourage sharing of unpublished data at the RNA Society Annual Meeting, taking of photographs, screenshots, videos, and/or downloading or saving Reveal the functional e ects any material is strictly prohibited. of alternative splicing with USE OF SOCIAL MEDIA: The official hash tag of the 26th Annual Meeting of the RNA Society is full-length transcript sequencing #RNA2021. The organizers encourage attendees to tweet about the amazing science they experience during the meeting. However, please respect these few simple rules when using the #RNA2021 hash tag, or when talking about the meeting on Twitter and other social media platforms: 1.
    [Show full text]
  • Developing Computational Approach to Predict Coincidence of Structural and Primary Signatures in Mrnas Yang Zhang
    Developing computational approach to predict coincidence of structural and primary signatures in mRNAs Yang Zhang Computer Science McGill University Montreal,Quebec A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science 15-08-2014 Copyright c 2014 by Yang Zhang I would like to dedicate this thesis to my loving parents and my supportive fiancé ... Acknowledgements I would like to express my deep gratitude to my master supervisors Dr. Jérôme Waldispühl and Dr. Éric Lecuyer. They have been tremendous mentor for me. I would like to thank them for encouraging my research and for allowing me to grow as a research scientist. I also thank them for many insightful conversations during the development of the projects. Special thanks are given to Yann Ponty and Mathieu Blanchette, who also supervised me throughout the project. During the period of the two years, many friends are helpful to color my life. I have to acknowledge all my colleagues in Jerome and Eric’s lab for their assistance in many aspects that I cannot list all of them because of limited space. For financial support, I thank Institut de recherches cliniques de Montréal (IRCM) for the internal scholarship throughout the 2 years. Abstract RNA binding proteins (RBPs) are known to interact with cis-regulatory motifs present in the mRNAs to perform biological functions. However, little is known for the RBP binding sites. Therefore, the prediction of RBP binding sites from sequence only is crucial to RNA functions. It is composed of three factors: structural properties prediction, primary motif search and evolutionary information.
    [Show full text]
  • Centrum Badań Molekularnych I Makromolekularnych PAN W Łodzi Będzie Prof
    Komisja d/s Współdziałania Nauk Chemiczno-Biologiczno-Medycznych przy Łódzkim Oddziale PAN ul. Piotrkowska 137/139 90-434 Łódź tel.: 636 80 18 fax: 636 24 15 Łódź, dnia 21.09.2017 r. ZAPROSZENIE W dniach 6-8 października 2017 r. gościem Łódzkiego Oddziału PAN i Centrum Badań Molekularnych i Makromolekularnych PAN w Łodzi będzie Prof. ERIC WESTHOF (Institute of Molecular and Cellular Biology CNRS, University of Strasbourg, France). Zapraszam Państwa do wzięcia udziału w posiedzeniu Komisji ds. Współdziałania Nauk Chemiczno-Biologiczno-Medycznych przy Łódzkim Oddziale PAN, w ramach którego Prof. ERIC WESTHOF wygłosi wykład pt. The third genetic code Posiedzenie odbędzie się dnia 6 października 2017 r. (piątek) o godz. 12:00 w Centrum Badań Molekularnych i Makromolekularnych PAN w Łodzi, ul. Sienkiewicza 112, Budynek A, Sala Konferencyjna 08/09 (parter). Profesor E. Westhof jest światowej sławy autorytetem w zakresie biologii strukturalnej kwasów nukleinowych i w poznawaniu molekularnych podstaw procesu przekazywania informacji genetycznej (oddziaływania tRNA – mRNA – rRNA). Jest członkiem EMBO, Akademii Europejskiej, Francuskiej Akademii Nauk i Niemieckiej Akademii Nauk LEOPOLDINA. Pełni funkcję Edytora dwóch prestiżowych czasopism dedykowanych chemii i biologii kwasów nukleinowych, Nucleic Acids Research i RNA Journal (CV w załączeniu). Ponieważ wykład będzie dotyczył fundamentalnych zagadnień biologii, do jego wysłuchania serdecznie zapraszam nie tylko Członków Komisji, ale także Państwa współpracowników, doktorantów i studentów. Z poważaniem, Prof. dr hab. Barbara Nawrot Przewodnicząca Komisji The third genetic code Eric Westhof ARN, IBMC-CNRS, University of Strasbourg, France. An integrative view of all the complex interaction networks between mRNA, tRNA, and rRNA is described: the stability of codon-anticodon trimers, the conformation of the anticodon stem-loop of tRNA, the modified nucleotides, and the interactions with bases of rRNA at the decoding site.
    [Show full text]
  • Evolution of Ribosomal Protein Network Architectures Youri Timsit1*, Grégoire Sergeant‑Perthuis2 & Daniel Bennequin2
    www.nature.com/scientificreports OPEN Evolution of ribosomal protein network architectures Youri Timsit1*, Grégoire Sergeant‑Perthuis2 & Daniel Bennequin2 To perform an accurate protein synthesis, ribosomes accomplish complex tasks involving the long‑ range communication between its functional centres such as the peptidyl transfer centre, the tRNA bindings sites and the peptide exit tunnel. How information is transmitted between these sites remains one of the major challenges in current ribosome research. Many experimental studies have revealed that some r‑proteins play essential roles in remote communication and the possible involvement of r‑protein networks in these processes have been recently proposed. Our phylogenetic, structural and mathematical study reveals that of the three kingdom’s r‑protein networks converged towards non‑random graphs where r‑proteins collectively coevolved to optimize interconnection between functional centres. The massive acquisition of conserved aromatic residues at the interfaces and along the extensions of the newly connected eukaryotic r‑proteins also highlights that a strong selective pressure acts on their sequences probably for the formation of new allosteric pathways in the network. Ribosome structures1–4 have evolved by the accretion of rRNA and ribosomal (r)-proteins around a universal core considered as a relic of ancient translation systems that co-evolved with the genetic code 5–9. Tey followed distinct evolutionary pathways to form the bacterial, archaeal and eukaryotic ribosomes 10–14 whose
    [Show full text]
  • Searching Genomes for Ribozymes and Riboswitches Christian Hammann* and Eric Westhof†
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Review Searching genomes for ribozymes and riboswitches Christian Hammann* and Eric Westhof† Addresses: *Research Group Molecular Interactions, Department of Genetics, FB 18 Naturwissenschaften, Universität Kassel, D-34132 Kassel, Germany. †Architecture et Réactivité de l’ARN, Université Louis Pasteur de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS, rue René Descartes, F-67084 Strasbourg Cedex, France. Correspondence: Eric Westhof. Email: [email protected] Published: 30 April 2007 Genome Biology 2007, 8:210 (doi:10.1186/gb-2007-8-4-210) The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2007/8/4/210 © 2007 BioMed Central Ltd Abstract New regulatory RNAs with complex structures have recently been discovered, among them the first catalytic riboswitch, a gene-regulatory RNA sequence with catalytic activity. Here we discuss some of the experimental approaches and theoretical difficulties attached to the identification of new ribozymes in genomes. Catalysis by RNA was discovered a quarter of a century ago. dramatically from each other in their architecture and The discoveries that certain introns were capable of self- exhibit significant variation in the pH profiles of their splicing [1] and that the RNA moiety of bacterial ribo- catalytic activity and in the metal ions required for catalysis nuclease P (RNase P) on its own could process precursor [11]. It seems likely that this reaction mechanism is best tRNAs [2] were the first indications that catalytic remnants suited to a simple and single RNA cleavage, as in the proces- of a postulated RNA world had persisted until the present sing of multimeric replication intermediates into monomers.
    [Show full text]