Coma Obtundation Stupor Lewis B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forensic Medicine
YEREVAN STATE MEDICAL UNIVERSITY AFTER M. HERATSI DEPARTMENT OF Sh. Vardanyan K. Avagyan S. Hakobyan FORENSIC MEDICINE Handout for foreign students YEREVAN 2007 This handbook is adopted by the Methodical Council of Foreign Students of the University DEATH AND ITS CAUSES Thanatology deals with death in all its aspects. Death is of two types: (1) somatic, systemic or clinical, and (2) molecular or cellular. Somatic Death: It is the complete and irreversible stoppage of the circulation, respiration and brain functions, but there is no legal definition of death. THE MOMENT OF DEATH: Historically (medically and legally), the concept of death was that of "heart and respiration death", i.e. stoppage of spontaneous heart and breathing functions. Heart-lung bypass machines, mechanical respirators, and other devices, however have changed this medically in favor of a new concept "brain death", that is, irreversible loss of Cerebral function. Brain death is of three types: (1) Cortical or cerebral death with an intact brain stem. This produces a vegetative state in which respiration continues, but there is total loss of power of perception by the senses. This state of deep coma can be produced by cerebral hypoxia, toxic conditions or widespread brain injury. (2) Brain stem death, where the cerebrum may be intact, though cut off functionally by the stem lesion. The loss of the vital centers that control respiration, and of the ascending reticular activating system that sustains consciousness, cause the victim to be irreversibly comatose and incapable of spontaneous breathing. This can be produced by raised intracranial pressure, cerebral oedema, intracranial haemorrhage, etc.(3) Whole brain death (combination of 1 and 2). -
Consciousness and Unconsciousness: Cross-Cultural Experience
Consciousness and Unconsciousness: Cross-Cultural Experience . In the West, consciousness was a topic of considerable interest in 19th-century philosophy and the early development of psychology. The philosopher John Locke, in his Essay Concerning Human Understanding, defined consciousness as "the perception of what passes in a man's own mind." William James in The Principles of Psychology, spoke of the "stream of consciousness," emphasizing the continuous and variable nature of mental content, thus viewing consciousness as a process. James also distinguished "normal, waking" or "rational" consciousness from other types. To study consciousness, 19th-century psychologists proceeded by means of "introspection." This method, deemed unscientific and unreliable because it produced inconsistent findings, was rejected by J. B. Watson and other American psychologists of the behaviorist school in the early 1900s. Consciousness was not a topic of psychological study in the United States for more than forty years. In the 1950s diverse factors emerged in American life and science that made consciousness again a significant area of research in psychology, neurobiology, and philosophy. These factors included the development of psychoactive drugs in psychiatry and in the counterculture; experiments in psychological warfare and brainwashing as a result of the Korean War and the Cold War; studies in cybernetics and artificial intelligence; and developments in brain and sleep research, as well as interest in Eastern religions (Yoga, Zen Buddhism and others). Intensive comparative and experimental research, some under secret governmental auspices, was carried on for some years, beginning in the 1950s. This included work with hallucinogens, particularly LSD-25, also sensory deprivation, biofeedback, sleep research, etc. -
Coma Stimulation: Suggested Activities
Coma stimulation: suggested activities Headway’s publications are all available to freely download from the information library on the charity’s website, while individuals and families can request hard copies of the booklets via the helpline. As a charity, we rely on donations from people like you to continue providing free information to people affected by brain injury. Donate today: www.headway.org.uk/donate. Introduction It is quite common for family members to feel ‘useless’ when a relative is in a coma, and to be desperate to do something to help. A coma stimulation programme (sometimes called a coma arousal programme) is an approach based on stimulating the unconscious person’s senses of hearing, touch, smell, taste and vision individually in order to help their recovery. There is still controversy over how effective it is to try to stimulate a person in coma. However, most would say that such programmes have some beneficial effect, even if only to provide something constructive for the family to do. It is very important that the activities used would have been enjoyable for the patient before the injury. For example, only play music they like and talk to them about subjects they are interested in. Try not to do anything for too long in order to avoid tiring the person out. A stimulation programme must only be started after discussion with the clinical staff, who will advise you what might be appropriate at any particular stage in the recovery process. Activity suggestions Here are some examples of activities that could form part of a coma stimulation programme: • Make sure that a few friends and family members visit regularly, rather than in large groups at a time. -
Tactics of Family Doctors in Case of Syncopal States
MINISTRY OF PUBLIC HEALTH OF UKRAINE ZAPORIZHZHIA STATE MEDICAL UNIVERSITY DEPARTMENT OF GENERAL PRACTICE – FAMILY MEDICINE AND INTERNAL DISEASES DEPARTMENT OF GENERAL PRACTICE – FAMILY MEDICINE, THERAPY, CARDIOLOGY AND NEUROLOGY OF THE POSTGRADUATE FACULTY TACTICS OF FAMILY DOCTORS IN CASE OF SYNCOPAL STATES STUDY GUIDE for the students of the specialty "Medicine" in the program of the educational discipline "General Practice - Family Medicine" Zaporizhzhia 2020 2 UDC 616.8-009.832-08(072) М 99 Аpproved by Central Methodical Council of Zaporizhzhia State Medical University as а study guide (Protocol № 3 of 27.02.2020) and recommended for use in the educational process Authors: N. S. Mykhailovska - Doctor of Medical Sciences, Professor, head of the Department of General practice – family medicine and internal diseases, Zaporizhzhia State Medical University; A. V. Grytsay - PhD, associated professor of the Department of General practice – family medicine and internal diseases, Zaporizhzhia State Medical University; І. S. Kachan - associated professor of the Department of Family medicine, therapy, cardiology and neurology of the Postgraduate faculty, Zaporizhzhia State Medical University. Readers: S. Y. Dotsenko – Doctor of Medical Sciences, Professor, Head of the Internal Medicine №3 Department, Zaporozhye State Medical University; S. M. Kiselev – Doctor of Medical Sciences, Professor, Professor of the Department of Internal diseases 1, Zaporizhzhia State Medical University. Mykhailovska N. S. M99 Tactics of family doctors in case of syncopal states = Тактика сімейного лікаря при синкопальних станах: study guide for the practical classes and individual work for 6th-years students of international faculty (speciality «General medicine»), discipline «General practice – family medicine» / N. S. Mykhailovska, A. V. Grytsay, I.S. -
Evaluation and Management in an Urgent Care Setting
Syncope Evaluation and Management in an Urgent Care Setting Urgent message: When a patient presents to urgent care after a syncopal event, the clinician’s charge is to determine whether the episode was of benign or potentially life-threatening etiology and whether the patient should be transferred for further evaluation. Kenneth V. Iserson, MD, MBA, FACEP, FAAEM, Professor of Emergency Medicine, The University of Arizona, Tucson, AZ Introduction yncope is a sudden, transient loss of consciousness with a loss of postural tone (typically, falling). It results from an abrupt, transient, and diffuse cerebral Smalfunction and is quickly followed by sponta- neous recovery. The term syncope excludes seizures, coma, shock, or other states of altered consciousness. Many patients will ascribe their syncopal episode to a sit- uationally mediated vasovagal episode. Despite this, the goals in the urgent care setting include the following: Ⅲ Determining whether the patient’s episode was actually a syncopal or presyncopal event, and if it could have a life-threatening etiology Ⅲ Stabilizing the patient Ⅲ Transferring those patients who need further diag- nostic studies or therapeutic interventions © John Bolesky, Artville © John Bolesky, Epidemiology Syncope accounts for up to 3% of emergency depart- common in young adults, while cardiac syncope ment (ED) visits and up to 6% of hospital admissions becomes increasingly more frequent with advancing each year in the United States.1,2 At some time in their age.4 The chance of having at least one syncopal episode lives, up to about half the population (12% to 48%) of in childhood is between 15% and 50%.5 Though a people may experience syncope.3 benign cause is usually found, syncope in children war- Syncope occurs in all age groups, but it is most com- rants prompt detailed evaluation.6 mon in adults. -
Acute Stress Disorder
Trauma and Stress-Related Disorders: Developments for ICD-11 Andreas Maercker, MD PhD Professor of Psychopathology, University of Zurich and materials prepared and provided by Geoffrey Reed, PhD, WHO Department of Mental Health and Substance Abuse Connuing Medical Educaon Commercial Disclosure Requirement • I, Andreas Maercker, have the following commercial relaonships to disclose: – Aardorf Private Psychiatric Hospital, Switzerland, advisory board – Springer, book royales Members of the Working Group • Christopher Brewin (UK) Organizational representatives • Richard Bryant (AU) • Mark van Ommeren (WHO) • Marylene Cloitre (US) • Augusto E. Llosa (Médecins Sans Frontières) • Asma Humayun (PA) • Renato Olivero Souza (ICRC) • Lynne Myfanwy Jones (UK/KE) • Inka Weissbecker (Intern. Medical Corps) • Ashraf Kagee (ZA) • Andreas Maercker (chair) (CH) • Cecile Rousseau (CA) WHO scientists and consultant • Dayanandan Somasundaram (LK) • Geoffrey Reed • Yuriko Suzuki (JP) • Mark van Ommeren • Simon Wessely (UK) • Michael B. First WHO Constuencies 1. Member Countries – Required to report health stascs to WHO according to ICD – ICD categories used as basis for eligibility and payment of health care, social, and disability benefits and services 2. Health Workers – Mulple mental health professions – ICD must be useful for front-line providers of care in idenfying and treang mental disorders 3. Service Users – ‘Nothing about us without us!’ – Must provide opportunies for substanve, early, and connuing input ICD Revision Orienting Principles 1. Highest goal is to help WHO member countries reduce disease burden of mental and behavioural disorders: relevance of ICD to public health 2. Focus on clinical utility: facilitate identification and treatment by global front-line health workers 3. Must be undertaken in collaboration with stakeholders: countries, health professionals, service users/consumers and families 4. -
ICD-11 Diagnostic Guidelines Stress Disorders 2020 07 21
Pre-Publication Draft; not for citation or distribution 1 ICD-11 DIAGNOSTIC GUIDELINES Disorders Specifically Associated with Stress Note: This document contains a pre-publication version of the ICD-11 diagnostic guidelines for Disorders Specifically Associated with Stress. There may be further edits to these guidelines prior to their publication. Table of Contents DISORDERS SPECIFICALLY ASSOCIATED WITH STRESS ...................................... 2 6B40 Post-Traumatic Stress Disorder ............................................................................ 3 6B41 Complex Post-Traumatic Stress Disorder ............................................................. 8 6B42 Prolonged Grief Disorder .................................................................................... 12 6B43 Adjustment Disorder ........................................................................................... 15 6B44 Reactive Attachment Disorder ............................................................................ 17 6B45 Disinhibited Social Engagement Disorder .......................................................... 20 6B4Y Other Specified Disorders Specifically Associated with Stress ......................... 22 QE84 Acute Stress Reaction ......................................................................................... 23 © WHO Department of Mental Health and Substance Abuse 2020 Pre-Publication Draft; not for citation or distribution 2 DISORDERS SPECIFICALLY ASSOCIATED WITH STRESS Disorders Specifically Associated with Stress -
Recovery from Disorders of Consciousness: Mechanisms, Prognosis and Emerging Therapies
REVIEWS Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies Brian L. Edlow 1,2, Jan Claassen3, Nicholas D. Schiff4 and David M. Greer 5 ✉ Abstract | Substantial progress has been made over the past two decades in detecting, predicting and promoting recovery of consciousness in patients with disorders of consciousness (DoC) caused by severe brain injuries. Advanced neuroimaging and electrophysiological techniques have revealed new insights into the biological mechanisms underlying recovery of consciousness and have enabled the identification of preserved brain networks in patients who seem unresponsive, thus raising hope for more accurate diagnosis and prognosis. Emerging evidence suggests that covert consciousness, or cognitive motor dissociation (CMD), is present in up to 15–20% of patients with DoC and that detection of CMD in the intensive care unit can predict functional recovery at 1 year post injury. Although fundamental questions remain about which patients with DoC have the potential for recovery, novel pharmacological and electrophysiological therapies have shown the potential to reactivate injured neural networks and promote re-emergence of consciousness. In this Review, we focus on mechanisms of recovery from DoC in the acute and subacute-to-chronic stages, and we discuss recent progress in detecting and predicting recovery of consciousness. We also describe the developments in pharmacological and electro- physiological therapies that are creating new opportunities to improve the lives of patients with DoC. Disorders of consciousness (DoC) are characterized In this Review, we discuss mechanisms of recovery by alterations in arousal and/or awareness, and com- from DoC and prognostication of outcome, as well as 1Center for Neurotechnology mon causes of DoC include cardiac arrest, traumatic emerging treatments for patients along the entire tempo- and Neurorecovery, brain injury (TBI), intracerebral haemorrhage and ral continuum of DoC. -
Unarousable Unresponsiveness in Which the Patient Lies with the Eye Closed and Has No Awareness of Self and Surroundings (2)
Neurological Disease Deborah M Stein, MD, MPH 1. Coma a. Coma is defined as “a state of extreme unresponsiveness, in which an individual exhibits no voluntary movement or behavior” (1). i. Alternatively, coma is a state of unarousable unresponsiveness in which the patient lies with the eye closed and has no awareness of self and surroundings (2). b. Coma lies on a spectrum with other alterations in consciousness – from confusion to delirium to obtundation to stupor to coma and, ultimately, brain death (2). c. To be clearly distinguished from syncope, concussion, or other states of transient unconsciousness coma must persist for at least one hour (2). d. There are 2 important characteristics of the conscious state (3) i. The level of consciousness – “arousal or wakefulness” 1. Regulated by physiological functioning and consists of more primitive responsiveness to the world such as predictable involuntary reflex responses to stimuli. 2. Arousal is maintained by the reticular activating system (RAS) - a network of structures (including the brainstem, the medulla, and the thalamus) ii. The content of consciousness – “awareness” 1. Regulated by cortical areas within the cerebral hemispheres, e. There are two main causes for coma: i. Bihemispheric diffuse cortical or white matter damage or ii. Brainstem lesions bilaterally affecting the subcortical reticular activating systems. f. A huge number of conditions can result in coma. One way to categorize these conditions is to divide them into the anatomic and the metabolic causes of coma. i. Anatomic causes of coma are those conditions that disrupt the normal physical architecture and anatomy, either at the level of the cerebral cortex or the brainstem ii. -
The Vegetative State: Guidance on Diagnosis and Management
n CLINICAL GUIDANCE The vegetative state: guidance on diagnosis and management A report of a working party of the Royal College of Physicians contrasts with sleep, a state of eye closure and motor Clin Med 1INTRODUCTION quiescence. There are degrees of wakefulness. 2003;3:249–54 Wakefulness is normally associated with conscious awareness, but the VS indicates that wakefulness and Background awareness can be dissociated. This can occur because 1.1 This guidance has been compiled to replace the brain systems controlling wakefulness, in the the recommendations published by the Royal College upper brainstem and thalamus, are largely distinct of Physicians in 1996, 1 in response to requests for from those which mediate awareness. 6 clarification from the Official Solicitor. The guidance applies primarily to adult patients and older children Awareness in whom it is possible to apply the criteria for diagnosis discussed below. 1.6 Awareness refers to the ability to have, and the having of, experience of any kind. We are typically aware of our surroundings and of bodily sensations, Wakefulness without awareness but the contents of awareness can also include our 1.2 Consciousness is an ambiguous term, encom- memories, thoughts, emotions and intentions. passing both wakefulness and awareness. This dis- Although understanding of the brain mechanisms of tinction is crucial to the concept of the vegetative awareness is incomplete, structures in the cerebral state, in which wakefulness recovers after brain hemispheres clearly play a key role. Awareness is not injury without recovery of awareness. 2–5 a single indivisible capacity: brain damage can selectively impair some aspects of awareness, leaving others intact. -
Heat Illness & Hydration
Sideline Emergencies: Exertional Heat Illness- Prevention and Treatment Updates AOSSM: 2019 Sports Medicine & Football - Youth to the NFL Damion A. Martins, MD Medical Director of Sports Medicine Sports Medicine Fellowship Program Director, Atlantic Health Systems Director of Internal Medicine, New York Jets DISCLOSURE Neither I, (Damion Martins, MD), nor any family member(s), author(s), have any relevant financial relationships to be discussed, directly or indirectly, referred to or illustrated with or without recognition within the presentation. Learning Objectives Describe the pathophysiology of Exertional Heat Illness Identify signs and symptoms of Exertional Heat Stroke Understand urgent on the field management and treatment of Heat Illness Understand current evidence for prevention and treatment of Exertional Heat Stroke Overview Heat Illness – Diagnosis – Pathophysiology – Risk Factors – Evaluation / Treatment Hydration – NCAA / NFL data – IV vs PO data McNair video 6 Physiology Thermoregulation Production Dissipation – – basal metabolism conduction – – exercise radiation – convection – evaporation Sandor RP. Phys SportsMed. 1997;25(6):35-40. Heat Illness Spectrum Heat Illness Heat Injury Heat Stroke Definitions Exertional Heat Illness (EHI) Heat edema – initial days of heat exposure – self-limited, mild swelling of hands / feet Heat cramps or Exercise Associated Muscle Cramps (EAMCs) – skeletal muscle cramping during or after exercise – usually abdominal and extremities Heat syncope – orthostatic dizziness or sudden -
Neurologic Manifestations of Hypoglycemia
13 Neurologic Manifestations of Hypoglycemia William P. Neil and Thomas M. Hemmen University of California, San Diego United States of America (USA) 1. Introduction Unlike most other body tissues, the brain requires a continuous supply of glucose. It has very limited endogenous glycogen stores, and does not produce glucose intrinsically.1 Although it accounts for 2% of body weight, the brain utilizes 25% of the body’s glucose due to its high metabolic rate.2, 3 Evidence for the brains sole reliance on glucose came from obtaining a respiratory quotient of one after measuring differences between arterial and venous content of oxygen and carbon dioxide in blood traveling through the brain.4 In the past, neurons were thought to directly metabolize glucose, however, more recent studies suggest astrocytes may play an important role in glucose metabolism.5 Astrocytic foot processes surround brain capillaries, which deliver glucose to the brain. With this, they form the first cellular barrier for entering glucose.5 Astrocytes contain the non-insulin dependent GLUT1 transporter, as well as the insulin dependent GLUT4 transporter, suggesting a possible role for astrocytes in regulating and storing brain glucose in an insulin dependent and independent manner (see figure 1).6-8 In addition to glucose, the brain contains a very limited store of glycogen, (between 0.5 and 1.5 g, or about 0.1% of total brain weight). Unlike peripheral tissue, where glycogen is readily mobilized during hypoglycemia, the brain can only function normally for a limited duration. Glycogen content seems to fall in areas of highest brain metabolic rate, suggesting at least some, albeit limited role as fuel during hypoglycemia.7 Although the brain relies primarily on glucose during normal conditions, it can use ketone bodies during starvation.