Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy

Total Page:16

File Type:pdf, Size:1020Kb

Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy cells Review Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy Falko Lange 1,2,* , Julia Hörnschemeyer 1 and Timo Kirschstein 1,2,* 1 Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany; [email protected] 2 Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany * Correspondence: [email protected] (F.L.); [email protected] (T.K.) Abstract: The progression of glioblastomas is associated with a variety of neurological impairments, such as tumor-related epileptic seizures. Seizures are not only a common comorbidity of glioblastoma but often an initial clinical symptom of this cancer entity. Both, glioblastoma and tumor-associated epilepsy are closely linked to one another through several pathophysiological mechanisms, with the neurotransmitter glutamate playing a key role. Glutamate interacts with its ionotropic and metabotropic receptors to promote both tumor progression and excitotoxicity. In this review, based on its physiological functions, our current understanding of glutamate receptors and glutamater- gic signaling will be discussed in detail. Furthermore, preclinical models to study glutamatergic interactions between glioma cells and the tumor-surrounding microenvironment will be presented. Finally, current studies addressing glutamate receptors in glioma and tumor-related epilepsy will be highlighted and future approaches to interfere with the glutamatergic network are discussed. Keywords: glutamate; ionotropic glutamate receptor; metabotropic glutamate receptor; glioblastoma; epilepsy; seizures; perampanel; preclinical model Citation: Lange, F.; Hörnschemeyer, J.; Kirschstein, T. Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy. Cells 1. Introduction 2021, 10, 1226. https://doi.org/ Glioblastomas (WHO grade IV gliomas) represent the most common tumors of the 10.3390/cells10051226 central nervous system, and with an overall 5-year survival of 6.8%, this tumor disease has one of the worst prognoses in the entire oncological spectrum [1]. The median age of Academic Editor: Marco G. Paggi onset is 64 years, with an increase at the age of 75–84 years [1]. Primary glioblastomas arise de novo, whereas secondary glioblastomas derive from less-malignant precursor Received: 12 April 2021 lesions [2]. The majority of glioblastomas is defined as primary, mostly with wild-type Accepted: 13 May 2021 Published: 17 May 2021 isocitrate dehydrogenase 1 (IDH1), whereas most of the secondary cases harbor mutations in IDH1 [3]. Mutations in IDH1 are associated with an increased patient survival [4]. Publisher’s Note: MDPI stays neutral Depending on the genetic and epigenetic alterations [5], four subtypes can be de- with regard to jurisdictional claims in fined [6]. Genes encoding members of the signaling pathways phosphatidylinositol-3- published maps and institutional affil- kinase (PI3K) or mitogen-activated protein kinase (MAPK) and the corresponding receptor iations. tyrosine kinases-like epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor A (PDGFRA) are altered in up to 90% of cases [7,8]. Among the tumor sup- pressors, loss of function of phosphatase and tensin homolog (PTEN) is the most frequent mutation (30–40%) [6,9]. In approximately 10% of cases, neurofibromin 1 (NF1) is mutated or deregulated [8,9]. With respect to cell cycle control, loss-of-function mutations of cyclin Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. dependent kinase inhibitor 2A/B (CDKN2A/B) can be found in half of all glioblastoma This article is an open access article specimens, and cyclin-dependent kinase 4 (CDK4) is often highly amplified. Furthermore, distributed under the terms and like in other major cancer types [10], tumor protein P53 (TP53) is also subject to mutations. conditions of the Creative Commons Despite the knowledge gained on tumorigenesis and the progression of glioblastomas Attribution (CC BY) license (https:// in the last decades, these have so far only insufficiently contributed to improving treatment creativecommons.org/licenses/by/ options. Standard therapy includes resection of the tumor mass followed by adjuvant 4.0/). irradiation and chemotherapy with the alkylating drug temozolomide (TMZ) [11]. This Cells 2021, 10, 1226. https://doi.org/10.3390/cells10051226 https://www.mdpi.com/journal/cells Cells 2021, 10, 1226 2 of 22 regimen prolongs the median overall survival to 15–18 months (versus 3–4 months with- out treatment [12]) [11,13,14]. The status of O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation is an established prognostic marker of the treatment with TMZ [13,15–17], albeit in a Spanish study including more than 300 patients, contrary to previous studies, no beneficial effect of MGMT promotor methylation status could be detected [18]. Combination of TMZ with lomustine, also an alkylating agent, may prolong the survival of patients with methylated MGMT promotors [19]. However, the findings of Herrlinger et al. in 2019 were based on a relatively small cohort (129 patients), and survival successes came at the price of additional side effects. Another add-on therapy is tumor-treating fields that mediate antimitotic effects by alternating electric fields, which can prolong the survival of patients with glioblastoma [20,21]. However, the low level of acceptance of this method has limited its widespread use [22,23]. Glioblastomas are associated with a variety of neurological symptoms and signs including headaches, changes in cognition and personality, gait imbalance, visual deficits and tumor-associated epilepsy [12]. The occurrence of seizures is not only a frequent comorbidity in the course of glioma progression [24] but is often the initial manifestation of the tumor disease [25]. In low-grade gliomas, 70–90% of the patients suffer from seizures at the time of diagnosis, whereas in glioblastoma, seizures appear to be less frequent (up to 60%) [25,26]. Epileptogenesis in the peritumoral tissue is a multifactorial process [27]. Based on numerous preclinical, but also some clinical, studies, there is increasing evidence that the neurotransmitter glutamate plays an important role in the development of seizures and also in the progression of the tumor disease. Herein, we review our current understanding of the glutamatergic processes at the molecular level that drive glioma progression and presentation of an epileptic phenotype. Based on this, open research questions are presented that could serve to reach a better understanding of the disease in the future. 2. Glutamatergic Mechanisms of Glioma Progression and Tumor-Associated Epilepsy Glioblastoma and tumor-associated epilepsy share pathophysiological mechanisms that drive both tumor progression and the generation of seizures [28]. One major patholog- ical mechanism is aberrant glutamate signaling within the tumor tissue and its microenvi- ronment. In the glioma-surrounding tissue, extracellular glutamate levels were found to be elevated up to 100-times higher than in unaffected brains [29,30]. On the one hand, high levels of glutamate stimulate proliferation and invasion of glioma cells [31–33] and, on the other hand, may lead to epileptic discharges, excitotoxicity and therefore allow for tumor bulk expansion (Figure1)[34,35]. Primarily, glutamate is released by glioblastoma cells via cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11 or xCT) [36]. To counteract oxidative stress, cystine, an essential precursor for glutathione synthesis, is imported in exchange for glutamate. In glioblastoma cells, expression of xCT is often upregulated [37–40]. This may be in part due to hypoxic conditions in fast-growing glioblastomas [41]. It was reported that the expression levels of xCT were found to be associated with seizures [42,43] and identified as an independent biomarker for glioma-associated seizures [43], also in a cohort of IDH1-wildtype glioblastoma patients [44]. With respect to glioblastoma, no correlation with survival was found [42,43]. Furthermore, the re-uptake of glutamate from the extracellular space is also impaired in glioma tissue, as expression of glutamate transporter 1 (GLT-1), also known as excitatory amino acid transporter 2 (EAAT2), is downregulated, or carriers are mislocalized, and therefore sodium-dependent re-uptake of glutamate is reduced [37,45,46]. The situation may be exacerbated by an overexpression of branched-chain amino acid transaminase 1 (BCAT1) [47]. Again, upregulation may in part be driven by hypoxic conditions, in which HIF-1α was identified as an essential transcription factor [48]. BCAT1 transfers an α-amino group from branched-chain amino acids to α-ketoglutarate, thereby producing glutamate and the respective branched-chain α-ketoacid. This mechanism may contribute Cells 2021, 10, 1226 3 of 22 to an elevated glutamate level within the cytoplasm of the tumor cells and subsequently Cells 2021, 10, x FOR PEER REVIEW 3 of 24 an increased glutamate release [47]. In glioblastomas, high expression of BCAT1 was associated with poor survival [49,50]. Figure 1. Glutamatergic interaction in health and glioma. Details of the molecular processes are described in Section2. Figure 1. Glutamatergic interaction in health and glioma. Details of the molecular processes are described in Section 2. AMPA receptor (AMPAR), alanine-serine-cysteine amino acid transporter-2 (ASCT2), branched-chain amino acid
Recommended publications
  • A Guide to Glutamate Receptors
    A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway
    [Show full text]
  • S Efficacy in Treating Bipolar Depression: a Longitudinal Proton Magnetic Resonance Spectroscopy Study
    Neuropsychopharmacology (2009) 34, 1810–1818 & 2009 Nature Publishing Group All rights reserved 0893-133X/09 $32.00 www.neuropsychopharmacology.org Decreased Glutamate/Glutamine Levels May Mediate Cytidine’s Efficacy in Treating Bipolar Depression: A Longitudinal Proton Magnetic Resonance Spectroscopy Study Sujung J Yoon*,1, In Kyoon Lyoo2,3, Charlotte Haws4,5, Tae-Suk Kim1, Bruce M Cohen2,6 and 4,5 Perry F Renshaw 1Department of Psychiatry, Catholic University College of Medicine, Seoul, South Korea; 2Department of Psychiatry, Harvard Medical School, Boston, MA, USA; 3Brain Imaging Center and Clinical Research Center, Seoul National University Hospital, Seoul, South Korea; 4Department of 5 Psychiatry, The Brain Institute, University of Utah, Salt Lake City, UT, USA; Department of Veterans Affairs VISN 19 MIRECC, Salt Lake City, UT, 6 USA; Molecular Pharmacology Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA, USA Targeting the glutamatergic system has been suggested as a promising new option for developing treatment strategies for bipolar depression. Cytidine, a pyrimidine, may exert therapeutic effects through a pathway that leads to altered neuronal-glial glutamate cycling. Pyrimidines are also known to exert beneficial effects on cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function, which have each been linked to the pathophysiology of bipolar depression. This study was aimed at determining cytidine’s efficacy in bipolar depression and at assessing the longitudinal effects of cytidine on cerebral glutamate/glutamine levels. Thirty-five patients with bipolar depression were randomly assigned to receive the mood-stabilizing drug valproate plus either cytidine or placebo for 12 weeks. Midfrontal cerebral glutamate/glutamine levels were measured using proton magnetic resonance spectroscopy before and after 2, 4, and 12 weeks of oral cytidine administration.
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.402,830 B2 Cialella Et Al
    USOO940283OB2 (12) United States Patent (10) Patent No.: US 9.402,830 B2 Cialella et al. (45) Date of Patent: * Aug. 2, 2016 (54) METHODS OF TREATING DYSKINESIA AND FOREIGN PATENT DOCUMENTS RELATED DSORDERS WO 93.18767 A1 9, 1993 (71) Applicant: Melior Discovery, Inc., Exton, PA (US) OTHER PUBLICATIONS (72) Inventors: John Ciallella, Exton, PA (US); John Afanasev et al., Effects of amphetamine and Sydnocarbon dopamine Gruner, Exton, PA (US); Andrew G. release and free radical generation in rat striatum, Pharmacol Reaume, Exton, PA (US); Michael S. Biochem Behav, 2001, 69(3-4):653-8. Saporito, Exton, PA (US) Anderzhanova et al., Effect of d-amphetamine and Sydnocarb on the extracellular level of dopamine, 3,4-dihydroxyphenylacetic acid, and (73) Assignee: Melior Discovery, Inc., Exton, PA (US) hydroxyl radicals generation in rat striatum, Ann NY AcadSci, 2000, 914:137-45. Anderzhanova et al., Effects of Sydnocarb and D-amphetamine on the (*) Notice: Subject to any disclaimer, the term of this extracellular levels of amino acids in the rat caudate-putamen, Eur J patent is extended or adjusted under 35 Pharmacol, 2001, 428(1):87-95. U.S.C. 154(b) by 0 days. Bashkatova et al., Neuroshemical changes and neurotoxic effects of This patent is Subject to a terminal dis an acute treatment with Sydnocarb, a novel psychostimulant: com claimer. parison with D-amphetamine, Ann NY AcadSci, 2002,965: 180-192. Cody, Precursor medications as a source of methamphetamine and/or amphetamine positive drug testing results, J Occup Environ Med, (21) Appl. No.: 14/702,242 2002, 44(5):435-50.
    [Show full text]
  • UNDERSTANDING PHARMACOLOGY of ANTIEPILEPTIC DRUGS: Content
    UNDERSTANDING PHARMACOLOGY OF ANTIEPILEPTIC DRUGS: PK/PD, SIDE EFFECTS, DRUG INTERACTION THANARAT SUANSANAE, BPharm, BCPP, BCGP Assistance Professor of Clinical Pharmacy Faculty of Pharmacy, Mahidol University Content Mechanism of action Pharmacokinetic Adverse effects Drug interaction 1 Epileptogenesis Neuronal Network Synaptic Transmission Stafstrom CE. Pediatr Rev 1998;19:342‐51. 2 Two opposing signaling pathways for modulating GABAA receptor positioning and thus the excitatory/inhibitory balance within the brain Bannai H, et al. Cell Rep 2015. doi: 10.1016/j.celrep.2015.12.002 Introduction of AEDs in the World (US FDA Registration) Mechanism of action Pharmacokinetic properties Adverse effects Potential to develop drug interaction Formulation and administration Rudzinski LA, et al. J Investig Med 2016;64:1087‐101. 3 Importance of PK/PD of AEDs in Clinical Practice Spectrum of actions Match with seizure type Combination regimen Dosage regimen Absorption Distribution Metabolism Elimination Drug interactions ADR (contraindications, cautions) Mechanisms of Neuronal Excitability Voltage sensitive Na+ channels Voltage sensitive Ca2+ channels Voltage sensitive K+ channel Receptor‐ion channel complex Excitatory amino acid receptor‐cation channel complexes • Glutamate • Aspartate GABA‐Cl‐ channel complex 4 Mechanism of action of clinically approved anti‐seizure drugs Loscher W, et al. CNS Drugs 2016;30:1055‐77. Summarize Mechanisms of Action of AEDs AED Inhibition of Increase in Affinity to Blockade of Blockade of Activation of Other glutamate GABA level GABAA sodium calcium potassium excitation receptor channels channels channels Benzodiazepines + Brivaracetam + + Carbamazepine + + (L) Eslicarbazepine + Ethosuximide + (T) Felbamate +(NMDA) + + + + (L) + Gabapentin + (N, P/Q) Ganaxolone + Lacosamide + Lamotrigine + + + + (N, P/Q, R, T) + inh. GSK3 Levetiracetam + + (N) SV2A, inh.
    [Show full text]
  • A Review of Glutamate Receptors I: Current Understanding of Their Biology
    J Toxicol Pathol 2008; 21: 25–51 Review A Review of Glutamate Receptors I: Current Understanding of Their Biology Colin G. Rousseaux1 1Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada Abstract: Seventy years ago it was discovered that glutamate is abundant in the brain and that it plays a central role in brain metabolism. However, it took the scientific community a long time to realize that glutamate also acts as a neurotransmitter. Glutamate is an amino acid and brain tissue contains as much as 5 – 15 mM glutamate per kg depending on the region, which is more than of any other amino acid. The main motivation for the ongoing research on glutamate is due to the role of glutamate in the signal transduction in the nervous systems of apparently all complex living organisms, including man. Glutamate is considered to be the major mediator of excitatory signals in the mammalian central nervous system and is involved in most aspects of normal brain function including cognition, memory and learning. In this review, the basic biology of the excitatory amino acids glutamate, glutamate receptors, GABA, and glycine will first be explored. In the second part of this review, the known pathophysiology and pathology will be described. (J Toxicol Pathol 2008; 21: 25–51) Key words: glutamate, glycine, GABA, glutamate receptors, ionotropic, metabotropic, NMDA, AMPA, review Introduction and Overview glycine), peptides (vasopressin, somatostatin, neurotensin, etc.), and monoamines (norepinephrine, dopamine and In the first decades of the 20th century, research into the serotonin) plus acetylcholine. chemical mediation of the “autonomous” (autonomic) Glutamatergic synaptic transmission in the mammalian nervous system (ANS) was an area that received much central nervous system (CNS) was slowly established over a research activity.
    [Show full text]
  • Whole Document
    Detailed Pharmacology Review of Neuroprotective agents for ALS TABLE OF CONTENTS Page 1. AEOL10150 ..2 2. Arimoclomol ..7 3. Ceftriaxone 10 4. Celastrol 14 5. CGP3446 18 6. Copaxone 21 7. Coenzyme Q10 25 8. Insulin Growth Factor-1 - AAV 31 9. Insulin Growth Factor-1 34 10. Memantine 38 11. Minocycline 41 12. NAALADase Inhibitors 47 13. NBQX 50 14. Nimesulide 53 15. Nimodipine 56 16. ONO2506 60 17. Sodium Phenylbutyrate 63 18. Riluzole 68 19. Scriptaid 73 20. Talampanel 76 21. Tamoxifen 79 22. Thalidomide 83 23. Trehalose 86 24. Vitamin E 89 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. AEOL 10150 PARAMETER REVELANT INFORMATION IDENTITY AND GENERAL INFORMATION Drug Class Catalytic antioxidant Manufacturer Incara Pharmaceuticals, Inc. RTP, NC (Aeolus Pharmaceuticals) Regulatory Approval Status Investigational Mechanism of Antioxidant – downstream reduction in protein nitration and oxidation Action CASE FOR USE IN ALS Rationale Ongoing oxidative stress may be involved in the pathogenesis of ALS. Clinical Data None Animal Data Kiael M, 2004 (Abstract Only): AEOL 10150 (2.5 mg/kg/day, i.p.) was administered to G93A transgenic mice from the time of symptom onset, which was determined by a combination of tests (i.e., Rotarod performance at 15 rpm, appearance of tremor of the hind legs, and gait abnormalities). AEOL 10150 treatments attenuated weight loss, enhanced motor performance and increased the survival interval (time from symptom onset to death) by 38% in G93A mice. AEOL 10150 treatments also extended the survival in these mice by 14%. Crow JP, 2004 (presented at AAN): In four separate studies in two academic medical centers, 2 Prepared by Susan Fagan, Pharm D Version 17 th May 2005 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al.
    [Show full text]
  • 2580.Full.Pdf
    The Journal of Neuroscience, Arpil 15, 2001, 21(8):2580–2588 Minocycline, a Tetracycline Derivative, Is Neuroprotective against Excitotoxicity by Inhibiting Activation and Proliferation of Microglia Tiina Tikka,1 Bernd L. Fiebich,3 Gundars Goldsteins,1 Riitta Keina¨ nen,1 and Jari Koistinaho1,2 1A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland, 2Department of Clinical Pathology, Kuopio University Hospital, FIN-70211 Kuopio, Finland, and 3Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, D-79104 Freiburg, Germany Minocycline, a semisynthetic tetracycline derivative, protects microglia cultures, and these responses were inhibited by mi- brain against global and focal ischemia in rodents. We exam- nocycline. In both SC and pure microglia cultures, excitotoxins ined whether minocycline reduces excitotoxicity in primary activated p38 mitogen-activated protein kinase (p38 MAPK) neuronal cultures. Minocycline (0.02 ␮M) significantly increased exclusively in microglia. Minocycline inhibited p38 MAPK acti- neuronal survival in mixed spinal cord (SC) cultures treated with vation in SC cultures, and treatment with SB203580, a p38 500 ␮M glutamate or 100 ␮M kainate for 24 hr. Treatment with MAPK inhibitor, but not with PD98059, a p44/42 MAPK inhibi- these excitotoxins induced a dose-dependent proliferation of tor, increased neuronal survival. In pure microglia cultures, glu- microglia that was associated with increased release of tamate induced transient activation of p38 MAPK, and this was interleukin-1␤ (IL-1␤) and was followed by increased lactate inhibited by minocycline. These findings indicate that the pro- dehydrogenase (LDH) release. The excitotoxicity was enhanced liferation and activation of microglia contributes to excitotoxic- when microglial cells were cultured on top of SC cultures.
    [Show full text]
  • Bumetanide Enhances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures
    Bumetanide Enhances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Cleary, Ryan T., Hongyu Sun, Thanhthao Huynh, Simon M. Manning, Yijun Li, Alexander Rotenberg, Delia M. Talos, et al. 2013. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures. PLoS ONE 8(3): e57148. Published Version doi:10.1371/journal.pone.0057148 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10658064 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Bumetanide Enhances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures Ryan T. Cleary1, Hongyu Sun1, Thanhthao Huynh1, Simon M. Manning1,3, Yijun Li2, Alexander Rotenberg1, Delia M. Talos1, Kristopher T. Kahle5, Michele Jackson1, Sanjay N. Rakhade1, Gerard Berry2, Frances E. Jensen1,4* 1 Department of Neurology, Children’s Hospital Boston, Boston, Massachusetts, United States of America, 2 Division of Genetics and Metabolism, Children’s Hospital Boston, Boston, Massachusetts, United States of America, 3 Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America, 4 Program in Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America, 5 Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America Abstract Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na+-K+-2 Cl2 cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period.
    [Show full text]
  • Dual Variable Domain Immunoglobulins and Uses Thereof
    (19) TZZ Z_T (11) EP 2 899 209 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.07.2015 Bulletin 2015/31 C07K 16/22 (2006.01) A61K 39/39 (2006.01) G01N 33/68 (2006.01) (21) Application number: 15153941.8 (22) Date of filing: 28.04.2009 (84) Designated Contracting States: • PHILLIPS, Andrew AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Libertyville, IL 60048 (US) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • WANG, Jieyi PT RO SE SI SK TR Lake Bluff, IL 60044 (US) Designated Extension States: • BELL, Randy, L. BA RS Mountain Green UT 84050 (US) (30) Priority: 29.04.2008 US 125834 P • NORVELL, Suzanne, M. 08.07.2008 US 134283 P Long Grove, IL 60047 (US) 23.10.2008 US 197191 P • LI, Yingchun 12.11.2008 US 199009 P Buffalo Grove, IL 60089 (US) • LIU, Junjian (62) Document number(s) of the earlier application(s) in Shrewsbury, MA 01545 (US) accordance with Art. 76 EPC: • YING, Hua 09739578.4 / 2 282 769 Holden, MA 01520 (US) (71) Applicant: Abbvie Inc. (74) Representative: Finnegan Europe LLP North Chicago, IL 60064 (US) 16 Old Bailey London EC4M 7EG (GB) (72) Inventors: • GHAYUR, Tariq Remarks: Holliston, MA 01746 (US) •Thecomplete document including Reference Tables • MORGAN-LAPPE, Susan, E. and the Sequence Listing can be downloaded from Chicago, IL 60656 (US) the EPO website • REILLY, Edward, B. •This application was filed on 05-02-2015 as a Libertyville, IL 60048 (US) divisional application to the application mentioned • KINGSBURY, Gillian, A.
    [Show full text]
  • Discovery of New AMPA Antagonist, Perampanel, Implication of Role in Seizure Disorders
    Discovery of New AMPA Antagonist, Perampanel, Implication of Role in Seizure Disorders 著者 花田 敬久 year 2015 その他のタイトル 新規AMPA型グルタミン酸受容体拮抗剤ぺランパネル の発見とけいれん性疾患における役割 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2015 報告番号 12102甲第7534号 URL http://hdl.handle.net/2241/00135054 Discovery of New AMPA Antagonist, Perampanel, Implication of Role in Seizure Disorders May 2015 Takahisa HANADA 1 Discovery of New AMPA Antagonist, Perampanel, Implication of Role in Seizure Disorders Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy (Doctoral Program in Life Sciences and Bioengineering) Takahisa HANADA 2 Contents Chapter I. Preface Chapter II. Creation of new AMPA antagonist · Abstract · Introduction · Materials and Methods · Discussion and Conclusion · Figures and Tables Chapter III. Characterization as Therapeutic Agent for Epilepsy · Abstract · Introduction · Materials and Methods · Results · Discussion and Conclusion · Figures and Tables Chapter I V. Therapeutic treatment in Status Epilepticus · Abstract · Introduction · Materials and Methods · Results · Discussion and Conclusion · Figures and Tables Chapter V. Conclusion Chapter VI. Acknowledgements Chapter VII. References 3 Chapter I: Preface The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Glutamate is a principal excitatory neurotransmitter in central nervous system (CNS). It causes strong excitation via activation of receptors at post synaptic membrane and elicits action potential when accumulation of receptor activity is occurred. It is also well recognized that glutamate receptor has a significant role in synaptic plasticity. It is therefore very important neurotransmitter in signal processing in CNS. Perturbation of glutamatergic neurotransmission could elicit various symptoms or diseases including seizures, abnormal movements, sensory abnormality, neuronal degeneration etc (Meldrum, 2000).
    [Show full text]
  • Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures
    Hindawi Publishing Corporation ISRN Neurology Volume 2013, Article ID 875834, 48 pages http://dx.doi.org/10.1155/2013/875834 Review Article Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures A. S. Bazyan1 and G. van Luijtelaar2 1 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia 2 Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands Correspondence should be addressed to G. van Luijtelaar; [email protected] Received 21 January 2013; Accepted 6 February 2013 Academic Editors: R. L. Macdonald, Y. Wang, and E. M. Wassermann Copyright © 2013 A. S. Bazyan and G. van Luijtelaar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be dueto an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic Ih pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes.
    [Show full text]