Whole Document

Total Page:16

File Type:pdf, Size:1020Kb

Whole Document Detailed Pharmacology Review of Neuroprotective agents for ALS TABLE OF CONTENTS Page 1. AEOL10150 ..2 2. Arimoclomol ..7 3. Ceftriaxone 10 4. Celastrol 14 5. CGP3446 18 6. Copaxone 21 7. Coenzyme Q10 25 8. Insulin Growth Factor-1 - AAV 31 9. Insulin Growth Factor-1 34 10. Memantine 38 11. Minocycline 41 12. NAALADase Inhibitors 47 13. NBQX 50 14. Nimesulide 53 15. Nimodipine 56 16. ONO2506 60 17. Sodium Phenylbutyrate 63 18. Riluzole 68 19. Scriptaid 73 20. Talampanel 76 21. Tamoxifen 79 22. Thalidomide 83 23. Trehalose 86 24. Vitamin E 89 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. AEOL 10150 PARAMETER REVELANT INFORMATION IDENTITY AND GENERAL INFORMATION Drug Class Catalytic antioxidant Manufacturer Incara Pharmaceuticals, Inc. RTP, NC (Aeolus Pharmaceuticals) Regulatory Approval Status Investigational Mechanism of Antioxidant – downstream reduction in protein nitration and oxidation Action CASE FOR USE IN ALS Rationale Ongoing oxidative stress may be involved in the pathogenesis of ALS. Clinical Data None Animal Data Kiael M, 2004 (Abstract Only): AEOL 10150 (2.5 mg/kg/day, i.p.) was administered to G93A transgenic mice from the time of symptom onset, which was determined by a combination of tests (i.e., Rotarod performance at 15 rpm, appearance of tremor of the hind legs, and gait abnormalities). AEOL 10150 treatments attenuated weight loss, enhanced motor performance and increased the survival interval (time from symptom onset to death) by 38% in G93A mice. AEOL 10150 treatments also extended the survival in these mice by 14%. Crow JP, 2004 (presented at AAN): In four separate studies in two academic medical centers, 2 Prepared by Susan Fagan, Pharm D Version 17 th May 2005 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. AEOL 10150 was compared to control in a transgenic mouse model of ALS. The drug was initiated at symptom onset at 2.5 mg/kg/day IP. The treated mice experienced a survival interval ratio of 2.98, p<0.01 (they lived 3 times longer). Also, when added to an already proven effective combination of rofecoxib and creatine, AEOL 10150 resulted in a further doubling of survival time. In Vitro Data None HUMAN USE PROFILE Examined ALS Indications Safety/Tolerability Aeolus Pharmaceuticals, Inc Press Release (www.focusonals.com): Currently being studied in a Phase I dose-ranging, PK study in ALS patients. PK/Drug Pharmacokinetics: Interactions Unknown in humans Sheng H, 2004: In a spinal cord injury model in mice, only when the drug was given intrathecally (compared to IV) was it effective in improving performance and reducing injury. The IV dose in this study was 0.5 mg/kg bolus followed by 1 mg/kg/h x 24 h. However, in the Crow study, IP administration of 2.5 mg/kg daily was effective in improving 3 Prepared by Susan Fagan, Pharm D Version 17 th May 2005 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. survival in ALS. Drug Interactions Unknown 4 Prepared by Susan Fagan, Pharm D Version 17 th May 2005 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. RELEVANT PRECLINICAL DATA Sheng H, 2004: Intrathecal AEOL 10150, administered 5 minutes after spinal cord injury in mice, improved outcome. Bowler RP, 2002: IV AEOL 10150, administered 5 minutes after reperfusion in a model of cerebral ischemia (MCAO for 60 minutes), reduced the expression of inflammatory genes. MISCELLANEOUS SUMMARY: Needed prior to development as a treatment in ALS: 1. Pharmacokinetics and BBB penetration in humans 2. Therapeutic concentrations in animal model 3. Human safety REFERENCES www.focusonals.com www.aeoluspharma.com Bowler RP, Sheng H, Enghild JJ, Pearlstein RD, Warner DS, Crapo JD. A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. Free Rad Biol Med 2002; 33(8):1141-1152. Kiael M, Kipiani K, Petri S, Chen J, et al. A novel catalytic antioxidant, manganese (AEOL 10150) slows disease progression and extends lifespan in transgenic mouse model. ALS/MND 2004; 5(suppl 2):91. (Abstract Only). Sheng H, Spaspjevic I, Warner DS, Batinic-Haberle I. Mouse spinal cord compression injury is ameliorated by 5 Prepared by Susan Fagan, Pharm D Version 17 th May 2005 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. intrathecal cationic manganese (III) porphyrin catalytic antioxidant therapy. Neurosci Lett 2004; 366:220-225. 6 Prepared by Susan Fagan, Pharm D Version 17 th May 2005 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. ARIMOCLOMOL PARAMETER REVELANT INFORMATION IDENTITY AND GENERAL INFORMATION Drug Class Heat shock protein inducer; may have as neurotrophic factor Manufacturer Cytrx Regulatory Approval Status Investigational (maybe preclinical only) Mechanism of Lindquist S, 1986: Interacts with, and amplifies the heat shock protein response, which has Action been shown to be a powerful cytoprotective mechanism. CASE FOR USE IN ALS Rationale Kieran D, 2004: Heat shock proteins (HSPs) are upregulated in ALS, but in motor neurons, there is evidence that they have reduced availability. Increasing HSP levels may protect motor neurons from apoptosis in ALS. Clinical Data None Animal Data Kieran D, 2004: Arimoclomol (10 mg/kg IP daily), starting at 35 days or 70 days (after symptoms emerged) in SOD mutant mice, resulted in a 22% increase in lifespan and improved hindlimb muscle function. The animals receiving the treatment also had significantly preserved body weight compared to controls. Delay of treatment until after the emergence of symptoms (70 days) did not impair the efficacy of the intervention! 7 Prepared by Susan Fagan, Pharm D Version 17 th May 2005 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. In Vitro Data None HUMAN USE PROFILE Examined None Indications Safety/Tolerability Unknown PK/Drug Unknown Interactions 8 Prepared by Susan Fagan, Pharm D Version 17 th May 2005 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. RELEVANT PRECLINICAL DATA Kalmar B, 2002: BRX-220 (is this arimoclomol??) pretreatment, improved the survival of motor neurons at 14 days after sciatic crush injury in rat pups BIMOCLOMOL (advanced Phase II in 1997 – Vigh, 1997) – close relative, also developed by Biorex R&D Biro k, 1997: ameliorates peripheral neuropathy in rats Erdo F, 1998: reduces vascular consequences of SAH in rats Biro K, 1998: improves early signs of retinopathy in diabetic rats Jednakovits A, 2000: prevents vascular changes in SHRs Lubbers NL, 2002: pretreatment decreased infarct size in a rat model of coronary ischemia and reperfusion MISCELLANEOUS SUMMARY: Needed prior to development as a treatment in ALS: 1. Pharmacokinetics and BBB penetration in humans 2. Therapeutic concentration in animal model 3. BBB penetration in mouse 4. Human Safety REFERENCES Kieran D, Kalmar B, Dick JRT, Riddoch-Contreras J, et al. Treatment with arimoclomol, a coninducer of heat shock proteins, delays disease progression in ALS mice. Nature Medicine. 2004 Apr. 10(4):402-405. 9 Prepared by Susan Fagan, Pharm D Version 17 th May 2005 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. CEFTRIAXONE PARAMETER REVELANT INFORMATION IDENTITY AND GENERAL INFORMATION Drug Class Antibacterial; cephalosporin Manufacturer Roche - Rocephin Regulatory Approval Status Approved Mechanism of Action Rothstein, 2005: Antiexcitatory and antioxidant (discovered through the NDSC program of 1040 compounds, of which 16 were cephalosporins). The cephalosporins seem to be antiglutamatergic by increasing astrocytic uptake of glutamate by the EAAT2 transporter (increased activity of the transporter). CASE FOR USE IN ALS Rationale Rothstein, 2005: NINDS in vitro assays of EAAT2 transporter and motor neurons demonstrated potential activity of the cephalosporins. Ceftriaxone was chosen for further study because of its superior penetration into the CNS and its long t ½. Clinical Data None 10 Prepared by Susan Fagan, Pharm D Version 17 th May 2005 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. Animal Data Rothstein, 2005: G93A SOD1 mice were treated daily with 200 mg/kg IP, starting at 12 weeks of age and survival was prolonged 10 days (8%) over saline treated animals (122 days) (p>0.006). When the treatment was initiated at 6 weeks of age, the survival was similarly increased (10%- 122 vs 135 days). Treated animals also demonstrated improved body weight retention and grip strength. Rats given 200 mg/kg IP x 5 days had a 3-fold increase in GLT1 protein (glutamate transporter). In Vitro Data Rothstein, 2005: Increases EAAT2 activity and enhances synaptic glutamate clearance. - increased EAAT2 promoter in astroglial cell lines - lower concentrations (1 µM) required to increase EAAT2 than to protect motor neurons from toxicity in culture (100 µM) HUMAN USE PROFILE Examined Indications MD consult, 2004: Bacterial infections including meningitis, septicemia, etc Safety/Tolerability MD consult, 2004: Generally well-tolerated; side effects similar to other cephalosporins: superinfections, diarrhea (up to 50%), skin and blood dyscrasias. No serious adverse events when 4 g/day (maximum approved dose) was administered x 10-14 days. 11 Prepared by Susan Fagan, Pharm D Version 17 th May 2005 Detailed pharmacology review of neuroprotective agents for ALS Traynor BJ et al. Guglielmo, 2000: In 21 patients receiving 2 g q24 of ceftriaxone for 6-7 weeks for the treatment of osteomyelitis, no adverse effects were documented (no diarrhea or biliary symptoms). PK/Drug Pharmacokinetics: Interactions Patel, 1981: t ½ =4-6 hours in serum and is linear. Nau, 1993: t ½ = up to 18 hours in CSF. Chandrasekar, 1983: In humans with uninflamed meninges, 2 gm IV resulted in average peak concentrations in plasma of 262.4 mg/L and the peak in the CSF was 2.12 mg/L (about 1%), which occurred 3-4 hours post dose MD consult, 2004: t ½ increased to 12-15 hours in renal impairment; no dosage adjustment needed in hepatic dysfunction.
Recommended publications
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.402,830 B2 Cialella Et Al
    USOO940283OB2 (12) United States Patent (10) Patent No.: US 9.402,830 B2 Cialella et al. (45) Date of Patent: * Aug. 2, 2016 (54) METHODS OF TREATING DYSKINESIA AND FOREIGN PATENT DOCUMENTS RELATED DSORDERS WO 93.18767 A1 9, 1993 (71) Applicant: Melior Discovery, Inc., Exton, PA (US) OTHER PUBLICATIONS (72) Inventors: John Ciallella, Exton, PA (US); John Afanasev et al., Effects of amphetamine and Sydnocarbon dopamine Gruner, Exton, PA (US); Andrew G. release and free radical generation in rat striatum, Pharmacol Reaume, Exton, PA (US); Michael S. Biochem Behav, 2001, 69(3-4):653-8. Saporito, Exton, PA (US) Anderzhanova et al., Effect of d-amphetamine and Sydnocarb on the extracellular level of dopamine, 3,4-dihydroxyphenylacetic acid, and (73) Assignee: Melior Discovery, Inc., Exton, PA (US) hydroxyl radicals generation in rat striatum, Ann NY AcadSci, 2000, 914:137-45. Anderzhanova et al., Effects of Sydnocarb and D-amphetamine on the (*) Notice: Subject to any disclaimer, the term of this extracellular levels of amino acids in the rat caudate-putamen, Eur J patent is extended or adjusted under 35 Pharmacol, 2001, 428(1):87-95. U.S.C. 154(b) by 0 days. Bashkatova et al., Neuroshemical changes and neurotoxic effects of This patent is Subject to a terminal dis an acute treatment with Sydnocarb, a novel psychostimulant: com claimer. parison with D-amphetamine, Ann NY AcadSci, 2002,965: 180-192. Cody, Precursor medications as a source of methamphetamine and/or amphetamine positive drug testing results, J Occup Environ Med, (21) Appl. No.: 14/702,242 2002, 44(5):435-50.
    [Show full text]
  • UNDERSTANDING PHARMACOLOGY of ANTIEPILEPTIC DRUGS: Content
    UNDERSTANDING PHARMACOLOGY OF ANTIEPILEPTIC DRUGS: PK/PD, SIDE EFFECTS, DRUG INTERACTION THANARAT SUANSANAE, BPharm, BCPP, BCGP Assistance Professor of Clinical Pharmacy Faculty of Pharmacy, Mahidol University Content Mechanism of action Pharmacokinetic Adverse effects Drug interaction 1 Epileptogenesis Neuronal Network Synaptic Transmission Stafstrom CE. Pediatr Rev 1998;19:342‐51. 2 Two opposing signaling pathways for modulating GABAA receptor positioning and thus the excitatory/inhibitory balance within the brain Bannai H, et al. Cell Rep 2015. doi: 10.1016/j.celrep.2015.12.002 Introduction of AEDs in the World (US FDA Registration) Mechanism of action Pharmacokinetic properties Adverse effects Potential to develop drug interaction Formulation and administration Rudzinski LA, et al. J Investig Med 2016;64:1087‐101. 3 Importance of PK/PD of AEDs in Clinical Practice Spectrum of actions Match with seizure type Combination regimen Dosage regimen Absorption Distribution Metabolism Elimination Drug interactions ADR (contraindications, cautions) Mechanisms of Neuronal Excitability Voltage sensitive Na+ channels Voltage sensitive Ca2+ channels Voltage sensitive K+ channel Receptor‐ion channel complex Excitatory amino acid receptor‐cation channel complexes • Glutamate • Aspartate GABA‐Cl‐ channel complex 4 Mechanism of action of clinically approved anti‐seizure drugs Loscher W, et al. CNS Drugs 2016;30:1055‐77. Summarize Mechanisms of Action of AEDs AED Inhibition of Increase in Affinity to Blockade of Blockade of Activation of Other glutamate GABA level GABAA sodium calcium potassium excitation receptor channels channels channels Benzodiazepines + Brivaracetam + + Carbamazepine + + (L) Eslicarbazepine + Ethosuximide + (T) Felbamate +(NMDA) + + + + (L) + Gabapentin + (N, P/Q) Ganaxolone + Lacosamide + Lamotrigine + + + + (N, P/Q, R, T) + inh. GSK3 Levetiracetam + + (N) SV2A, inh.
    [Show full text]
  • Bumetanide Enhances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures
    Bumetanide Enhances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Cleary, Ryan T., Hongyu Sun, Thanhthao Huynh, Simon M. Manning, Yijun Li, Alexander Rotenberg, Delia M. Talos, et al. 2013. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures. PLoS ONE 8(3): e57148. Published Version doi:10.1371/journal.pone.0057148 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10658064 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Bumetanide Enhances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures Ryan T. Cleary1, Hongyu Sun1, Thanhthao Huynh1, Simon M. Manning1,3, Yijun Li2, Alexander Rotenberg1, Delia M. Talos1, Kristopher T. Kahle5, Michele Jackson1, Sanjay N. Rakhade1, Gerard Berry2, Frances E. Jensen1,4* 1 Department of Neurology, Children’s Hospital Boston, Boston, Massachusetts, United States of America, 2 Division of Genetics and Metabolism, Children’s Hospital Boston, Boston, Massachusetts, United States of America, 3 Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America, 4 Program in Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America, 5 Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America Abstract Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na+-K+-2 Cl2 cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period.
    [Show full text]
  • Dual Variable Domain Immunoglobulins and Uses Thereof
    (19) TZZ Z_T (11) EP 2 899 209 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.07.2015 Bulletin 2015/31 C07K 16/22 (2006.01) A61K 39/39 (2006.01) G01N 33/68 (2006.01) (21) Application number: 15153941.8 (22) Date of filing: 28.04.2009 (84) Designated Contracting States: • PHILLIPS, Andrew AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Libertyville, IL 60048 (US) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • WANG, Jieyi PT RO SE SI SK TR Lake Bluff, IL 60044 (US) Designated Extension States: • BELL, Randy, L. BA RS Mountain Green UT 84050 (US) (30) Priority: 29.04.2008 US 125834 P • NORVELL, Suzanne, M. 08.07.2008 US 134283 P Long Grove, IL 60047 (US) 23.10.2008 US 197191 P • LI, Yingchun 12.11.2008 US 199009 P Buffalo Grove, IL 60089 (US) • LIU, Junjian (62) Document number(s) of the earlier application(s) in Shrewsbury, MA 01545 (US) accordance with Art. 76 EPC: • YING, Hua 09739578.4 / 2 282 769 Holden, MA 01520 (US) (71) Applicant: Abbvie Inc. (74) Representative: Finnegan Europe LLP North Chicago, IL 60064 (US) 16 Old Bailey London EC4M 7EG (GB) (72) Inventors: • GHAYUR, Tariq Remarks: Holliston, MA 01746 (US) •Thecomplete document including Reference Tables • MORGAN-LAPPE, Susan, E. and the Sequence Listing can be downloaded from Chicago, IL 60656 (US) the EPO website • REILLY, Edward, B. •This application was filed on 05-02-2015 as a Libertyville, IL 60048 (US) divisional application to the application mentioned • KINGSBURY, Gillian, A.
    [Show full text]
  • Discovery of New AMPA Antagonist, Perampanel, Implication of Role in Seizure Disorders
    Discovery of New AMPA Antagonist, Perampanel, Implication of Role in Seizure Disorders 著者 花田 敬久 year 2015 その他のタイトル 新規AMPA型グルタミン酸受容体拮抗剤ぺランパネル の発見とけいれん性疾患における役割 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2015 報告番号 12102甲第7534号 URL http://hdl.handle.net/2241/00135054 Discovery of New AMPA Antagonist, Perampanel, Implication of Role in Seizure Disorders May 2015 Takahisa HANADA 1 Discovery of New AMPA Antagonist, Perampanel, Implication of Role in Seizure Disorders Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy (Doctoral Program in Life Sciences and Bioengineering) Takahisa HANADA 2 Contents Chapter I. Preface Chapter II. Creation of new AMPA antagonist · Abstract · Introduction · Materials and Methods · Discussion and Conclusion · Figures and Tables Chapter III. Characterization as Therapeutic Agent for Epilepsy · Abstract · Introduction · Materials and Methods · Results · Discussion and Conclusion · Figures and Tables Chapter I V. Therapeutic treatment in Status Epilepticus · Abstract · Introduction · Materials and Methods · Results · Discussion and Conclusion · Figures and Tables Chapter V. Conclusion Chapter VI. Acknowledgements Chapter VII. References 3 Chapter I: Preface The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Glutamate is a principal excitatory neurotransmitter in central nervous system (CNS). It causes strong excitation via activation of receptors at post synaptic membrane and elicits action potential when accumulation of receptor activity is occurred. It is also well recognized that glutamate receptor has a significant role in synaptic plasticity. It is therefore very important neurotransmitter in signal processing in CNS. Perturbation of glutamatergic neurotransmission could elicit various symptoms or diseases including seizures, abnormal movements, sensory abnormality, neuronal degeneration etc (Meldrum, 2000).
    [Show full text]
  • Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures
    Hindawi Publishing Corporation ISRN Neurology Volume 2013, Article ID 875834, 48 pages http://dx.doi.org/10.1155/2013/875834 Review Article Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures A. S. Bazyan1 and G. van Luijtelaar2 1 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia 2 Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands Correspondence should be addressed to G. van Luijtelaar; [email protected] Received 21 January 2013; Accepted 6 February 2013 Academic Editors: R. L. Macdonald, Y. Wang, and E. M. Wassermann Copyright © 2013 A. S. Bazyan and G. van Luijtelaar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be dueto an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic Ih pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes.
    [Show full text]
  • General Pharmacology
    GENERAL PHARMACOLOGY Winners of “Nobel” prize for their contribution to pharmacology Year Name Contribution 1923 Frederick Banting Discovery of insulin John McLeod 1939 Gerhard Domagk Discovery of antibacterial effects of prontosil 1945 Sir Alexander Fleming Discovery of penicillin & its purification Ernst Boris Chain Sir Howard Walter Florey 1952 Selman Abraham Waksman Discovery of streptomycin 1982 Sir John R.Vane Discovery of prostaglandins 1999 Alfred G.Gilman Discovery of G proteins & their role in signal transduction in cells Martin Rodbell 1999 Arvid Carlson Discovery that dopamine is neurotransmitter in the brain whose depletion leads to symptoms of Parkinson’s disease Drug nomenclature: i. Chemical name ii. Non-proprietary name iii. Proprietary (Brand) name Source of drugs: Natural – plant /animal derivatives Synthetic/semisynthetic Plant Part Drug obtained Pilocarpus microphyllus Leaflets Pilocarpine Atropa belladonna Atropine Datura stramonium Physostigma venenosum dried, ripe seed Physostigmine Ephedra vulgaris Ephedrine Digitalis lanata Digoxin Strychnos toxifera Curare group of drugs Chondrodendron tomentosum Cannabis indica (Marijuana) Various parts are used ∆9Tetrahydrocannabinol (THC) Bhang - the dried leaves Ganja - the dried female inflorescence Charas- is the dried resinous extract from the flowering tops & leaves Papaver somniferum, P album Poppy seed pod/ Capsule Natural opiates such as morphine, codeine, thebaine Cinchona bark Quinine Vinca rosea periwinkle plant Vinca alkaloids Podophyllum peltatum the mayapple
    [Show full text]
  • Deficiency of Cyclin-Dependent Kinase-Like 5 Causes Spontaneous Epileptic Seizures in Neonatal Mice
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.983981. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Deficiency of cyclin-dependent kinase-like 5 causes spontaneous epileptic seizures in neonatal mice Abbreviated title: Early-onset seizures in CDKL5-deficient mice Wenlin Liao1,2 *, Kun-Ze Lee3, San-Hua Su1,4 and Yuju Luo1 1 Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan 2 Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei 116, Taiwan 3 Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan 4 Department of Chinese Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan (Present address) * To whom correspondence should be addressed: Wenlin Liao, PhD Associate Professor Institute of Neuroscience, National Cheng-Chi University 64, Sec. 2, Chi-Nan Road, Wen-Shan District Taipei 116, Taiwan Phone: 886-2-29393091 ext. 89621 Email: [email protected] • Number of pages (37) • Number of figures (7), tables (1), multimedia (2), and 3D models (0) • Number of words for abstract (237), introduction (507), and discussion (1278) Conflict of interest The authors declare no competing financial interests. Acknowledgments We thank Dr. Jin-Chung Chen for providing equipment for grip strength measurement and critical reading of the paper. This work is supported by grants from the Ministry of Science and Technology, Taiwan [MOST107-2320-B-004-001-MY3 to WL; MOST108- 2636-B-110-001 to KZL] and the International Foundation of CDKL5 Research, USA [2015~2019 to WL].
    [Show full text]
  • 193 Nitric Oxide, a New Player in L-Dopa-Induced Dyskinesia? Elaine
    [Frontiers in Bioscience, Elite, 7, 193-221, January 1, 2015] Nitric oxide, a new player in l-dopa-induced dyskinesia? Elaine Del Bel1,2,3, Fernando E Padovan-Neto2,3, Mariza Bortolanza1,2, Vitor Tumas2,3, Aderbal S Aguiar Junior4, Rita Raisman-Vozari5, Rui D Prediger4 1Department of Morphology, Physiology and Basic Pathology, School of Odontology of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil, 2Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Ribeirao Preto, SP, Brazil, 3Department of Neuroscience and Behavior, University of Sao Paulo, Ribeirao Preto Medical School, Ribeirao Preto SP, Brazil, 4Department of Farmacology, Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianopolis, SC, Brazil, 5INSERM UMR 1127, CNRS UMR 7225, UPMC, CRICM, Experimental therapeutics Neurodegeneration, Salpetriere Hospital – Batiment ICM (Institute of the Brain and Spinal Cord), Paris, France TABLE OF CONTENTS 1. Abstract 2. Introduction 3. L-DOPA-induced dyskinesias: a brief summary 4. Emerging treatments for L-DOPA-induced dyskinesia 4.1. Other Dopaminergic components 4.2. Glutamatergic component 4.3. Adrenergic component 4.4. Adenosine component 4.5. Serotonergic component 5. Nitric Oxide: signaling pathways in striatal circuitry and Parkinson’s disease 6. Nitric Oxide in L-DOPA-induced dyskinesia 7. Clinical Considerations 8. Conclusion 9. Acknowledgements 10. References 1. ABSTRACT L-3,4-Dihydroxyphenylalanine (L-DOPA) review attempts to highlight the role of nitric oxide remains the most effective symptomatic treatment (NO) in PD and provide a comprehensive picture of of Parkinson’s disease (PD). However, the long- recent preclinical findings from our group and others term use of L-DOPA causes, in combination with showing its potential involvement in dyskinesia.
    [Show full text]
  • Propanenitrile Derivatives As Orally Active AMPA Receptor Antagonists
    Vol. 67, No. 7 Chem. Pharm. Bull. 67, 699–706 (2019) 699 Regular Article Synthesis and Pharmacological Evaluation of 3-[(4-Oxo-4H-pyrido[3,2- e][1,3]thiazin-2-yl)(phenyl)amino]propanenitrile Derivatives as Orally Active AMPA Receptor Antagonists Hiroshi Inami,* Jun-ichi Shishikura, Tomoyuki Yasunaga, Masaaki Hirano, Takenori Kimura, Hiroshi Yamashita, Kazushige Ohno, and Shuichi Sakamoto† Drug Discovery Research, Astellas Pharma Inc.; 21 Miyukigaoka, Tsukuba, Ibaraki 305–8585, Japan. Received December 11, 2018; accepted April 24, 2019 In our search for novel orally active α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, we found that conversion of an allyl group in the lead compound 2-[allyl(4-methyl- phenyl)amino]-4H-pyrido[3,2-e][1,3]thiazin-4-one (4) to a 2-cyanoethyl group significantly increased in- hibitory activity against AMPA receptor-mediated kainate-induced toxicity in rat hippocampal cultures. Here, we synthesized 10 analogs bearing a 2-cyanoethyl group and administered them to mice to evaluate their anticonvulsant activity in maximal electroshock (MES)- and pentylenetetrazol (PTZ)-induced seizure tests, and their effects on motor coordination in a rotarod test. 3-{(4-Oxo-4H-pyrido[3,2-e][1,3]thiazin- 2-yl)[4-(trifluoromethoxy)phenyl]amino}propanenitrile (25) and 3-[(2,2-difluoro-2H-1,3-benzodioxol-5-yl)- (4-oxo-4H-pyrido[3,2-e][1,3]thiazin-2-yl)amino]propanenitrile (27) exhibited potent anticonvulsant activity in both seizure tests and induced minor motor disturbances as indicated in the rotarod test. The protective index values of 25 and 27 for MES-induced seizures (10.7 and 12.0, respectively) and PTZ-induced seizures (6.0 and 5.6, respectively) were considerably higher compared with those of YM928 (5) and talampanel (1).
    [Show full text]
  • Development of an Experimentally Useful Model of Acute Myocardial Infarction: 2/3 Nephrectomized Triple Nitric Oxide Synthases-Deficient Mouse
    Journal of Molecular and Cellular Cardiology 77 (2014) 29–41 Contents lists available at ScienceDirect Journal of Molecular and Cellular Cardiology journal homepage: www.elsevier.com/locate/yjmcc Original article Development of an experimentally useful model of acute myocardial infarction: 2/3 nephrectomized triple nitric oxide synthases-deficient mouse Taro Uchida a,1,YumiFurunob,1, Akihide Tanimoto c,YumikoToyohirad, Kumiko Arakaki e, Mika Kina-Tanada a, Haruaki Kubota a,MayukoSakanashia, Toshihiro Matsuzaki a, Katsuhiko Noguchi a, Junko Nakasone a, Tomonori Igarashi f, Susumu Ueno f, Masayuki Matsushita g, Shogo Ishiuchi h, Hiroaki Masuzaki i,YusukeOhyae, Nobuyuki Yanagihara d, Hiroaki Shimokawa j,YutakaOtsujib,MasahitoTamurab,MasatoTsutsuia,⁎ a Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan b Second Department of Internal Medicine, School of Medicine, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan c Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan d Department of Pharmacology, School of Medicine, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan e Third Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan f Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health,
    [Show full text]