Cumulative CO2 , PPM, and Temperature

Total Page:16

File Type:pdf, Size:1020Kb

Cumulative CO2 , PPM, and Temperature Ocean-based Climate Solutions, Inc. www.ocean-based.com Santa Fe, NM 87501 505-231-7508 [email protected] All-Natural Biogeochemical CO2 Sequestration In Deep Ocean. Summary of Scientific Findings. Pump Design. Upwelling modeling, testing, data, and efficiency. Upwelling/Downwelling Estimated Annual Volumes. Downwelling Mechanics and Efficiencies. Nutrient Conversion and Net Carbon Sequestration From Upwelling. Dissolved Organic Carbon. Optimization: Projected Net CO2 Sequestered For Different Pumping Depths. Microbial Carbon Pump and Redfield Ratio. Safety Strategy. Environmental risk. CO2 Sequestration Estimate, Data Acquisition and Verification. Long-term Impact on Cumulative CO2 and Temperature Rise. Phased Installation and Cost Per Ton. Conclusion. References. Summary of Scientific Findings. • “…a new study from Woods Hole Oceanographic Institution (WHOI) shows that the efficiency of the ocean's "biological carbon pump" has been drastically underestimated, with implications for future climate assessments. By taking account of the depth of the euphotic, or sunlit zone, the authors found that about twice as much carbon sinks into the ocean per year than previously estimated.” [1] • Mathematical analysis and fluid dynamic modeling concludes that upwelled deep water quickly mixes and remains in the sunlit zone above the thermocline where the nutrients accumulate to trigger a bloom. [2] • Modeling also demonstrates when the warm, salty surface water is pumped down the tube, it cools and becomes denser below 300m, then sinking by gravity as it mixes into the deeper ocean. [3] • Deep water contains more nutrients as well as higher levels of dissolved CO2 compared to the surface ocean. Water upwelled from below about 300m contains surplus phosphate, enabling a second phytoplankton bloom that absorbs more CO2 than originally contained in the upwelled seawater. [4] • “Our models indicate that induced downwelling may be ~3 to 102 times more efficient than bubbling air, and 104 to 106 times more efficient than fountain aerators, at oxygenating hypoxic bottom waters.” [5] • The upper ocean contains about twice the level of dissolved organic carbon as the mid ocean, suggesting downwelling will directly sequester this excess surface carbon. [6] • Microbes living in the mid and deep ocean efficiently convert dissolved organic carbon (DOC) into “recalcitrant DOC” – radiocarbon dated at 5,000 years. [7] • “…BGC-Argo…measure six additional properties in addition to pressure, temperature and salinity measured by Argo, to include oxygen, pH, nitrate, downwelling light, chlorophyll fluorescence and the optical backscattering coefficient. The purpose of this addition is to enable the monitoring of ocean biogeochemistry and health, and in particular, monitor major processes such as ocean deoxygenation, acidification and warming and their effect on phytoplankton, the main source of energy of marine ecosystems.” [8] Pump Design. Powered by ocean waves, our upwelling and downwelling pump technology [9] naturally amplifies ocean biogeochemical processes to store more CO2 in the deep ocean and counteract climate change. Each pump upwells nutrient-enriched seawater from 500-m to the sunlit surface, triggering a phytoplankton bloom which absorbs dissolved CO2. This CO2-enriched water is concurrently downwelled below 600-m and sequestered for 1000’s of years. Fig. 1. Sketch of upwelling/downwelling wave-powered pump and biogeochemical response. With the long tubes made from extra-strong nylon ripstop fabric spooled onto the buoy and valves, each pump is compact for shipping and deploys automatically when offloaded at sea. A 2-ton counterweight attached to the bottom of the downwelling tube provides the gravity-sinking force and keeps the fabric tubes oriented vertically once deployed. This weight (and attached tubes) sinks as the surface buoy slides off a passing wave, closing the top-mounted 1-way valve and efficiently forcing water down the tube. As the buoy rides up the next wave, this downwelled water is released while the 1-way valve at Fig. 2. CEO Philip Kithil with 1/3 scale prototype, December 2018. bottom of the upwelling tube closes, forcing water up the tube where it is released on the next wave cycle. a b c Fig 3. (a) Pump loaded onto deployment vessel, Morro Bay CA. (b) Design sketch of pump. (c) Buoy converted to raft-shape upon deployment. Upwelling modeling, testing, data, and efficiency. Mathematical analysis [2] by Professor Atmocean* Pump Efficient In Mixing Horizontal Spread of the “Cold Pool” at Isaac Ginis from the University of Because Water Is Released In Parcels Bottom of Mixed Layer From Gravity Rhode Island Graduate School of Oceanography in 2008 concluded: 1) When more-dense deep cold water R T1 h parcels are pumped into the warmer T3 surface layer, they sink and mix T2 becoming neutrally-buoyant, “piling-up” Confidential Confidential on top of the thermocline. Fig 4. Sketches of upwelling water parcels mixing above thermocline. *Atmocean is parent company. 2) Variations in wave height/period deliver variable flows – mimicking natural ocean upwelling processes. These conclusions indicate the nutrient-enriched deeper water will accumulate above the thermocline in the sunlit zone, achieving critical nutrient ratios needed to trigger and maintain a bloom. We documented wave-powered upwelling from 500 feet Test Results 12-11-05 Bermuda: depth in Bermuda in 2005, followed by our 2007 test off Atmocean's Wave-Driven Pump San Diego obtaining data showing one-way valve open- Brings Up Cold Water From 500' Deep close cycles combined with temperature data, which 23.0 3 22.5 gives a flow rate of 4.8 m per minute. 22.0 21.5 21.0 Comparing wave-driven upwelling flow rate to 20.5 20.0 theoretical gives upwelling pump efficiency of 73.3%. C. Degrees, 19.5 19.0 For downwelling, gravity-driven sinking of the heavy 18.5 bottom weight gives estimated efficiency of 94.9%. 18.0 12/11/05… 12/11/05… 12/11/05… 12/11/05… 12/11/05… 12/11/05… 12/11/05… 12/11/05… 12/11/05… Bottom Temp Inside Tube At Top Outside Tube At Top Surface Temp Fig. 5. Test data showing temperature change at top of upwelling tube – Bermuda Dec 2005. Fig. 6. Test data showing valve open/close cycle and temperature change at top of upwelling tube – San Diego, March 2007 Upwelling/Downwelling Estimated Annual Volumes Analysis of data from National Data Buoy Center (www.ndbc.noaa.gov) wave heights and wave periods from their buoy #51001 located 100nm north of Oahu Hawaii allows calculation of nominal annual pumped volumes. In the Atlantic, we use NDBC data from #41049, 300nm SSE of Bermuda. To estimate both upwelling and downwelling volumes, we cutoff waves over 3m height and disregard pumped volume from waves under 0.5m. Pacific waves deliver about 10% more upwelling volume annually than Atlantic waves. Nominal Pumped Volume (m3) Data Buoy 51001 - Hawaii 2016 2017 2018 Average Efficiency Annual Volume Upwelling 24,428,009 23,055,034 24,283,096 23,922,046 73.3% 17,545,907 Downwelling 24,428,009 23,055,034 24,283,096 23,922,046 94.9% 22,707,561 Table 1. Projected upwelling and downwelling annual volumes based on data from National Data Buoy Center #51001 north of Hawaii. Applying these estimated upwelling and downwelling volumes to nutrient stoichiometries at depth determines CO2 sequestration (see below). Downwelling Mechanics and Efficiencies. In 2017-18, we coordinated computational fluid dynamics downwelling studies by Sandia National Laboratories [3] which found density of downwelled surface water inside a tube became equal to external water density at ~300m depth, due to greater density (by cooling) of the downwelled water combined with its unchanged surface salinity-density. The mixing model is seen here for outflow at 1,000m depth: Figure 7. Modeling by Sandia National Laboratories of gravity-induced outflow mixing at 1,000m. A recent paper by David Koweek et.al. “Evaluating hypoxia alleviation through induced downwelling” [4] verified downwelling efficiency: “Our models indicate that induced downwelling may be ~3 to 102 times more efficient than bubbling air, and 104 to 106 times more efficient than fountain aerators, at oxygenating hypoxic bottom waters.” Nutrient Conversion and Net Carbon Sequestration From Upwelling Net C export via a dual bloom was hypothesized by University of Hawaii Professor David Karl et.al. in their iconic 2008 paper “Nitrogen fixation-enhanced carbon sequestration in low-nitrate, low-chlorophyll seascapes” [5]. Table 1 provides estimated volumes sequestered per m-3 upwelled, for depth-measured nutrient concentrations: Table 2. Copy of table 1 from [4]. Dissolved Organic Carbon. In 2010 Dennis Hansell et.al. published “Dissolved Organic Matter In The Ocean - A Controversy Stimulates New Insights” [6] suggesting vast ocean reservoirs of dissolved organic carbon (DOC), previously not well characterized, with levels of ~80 mmol/m-3 found in the upper ocean. Their abstract reads “Containing as much carbon as the atmosphere, marine dissolved organic matter is one of Earth’s major carbon reservoirs. With invigoration of scientific inquiries into the global carbon cycle, our ignorance of its role in ocean biogeochemistry became untenable. Fig. 8. Copy of Fig. 2 from [5] Rapid mobilization of relevant research two decades ago required the community to overcome early false leads, but subsequent progress in examining the global dynamics of this material has been steady. Continuous improvements in analytical skill coupled with global ocean hydrographic
Recommended publications
  • BIOGRAPHRIES and ABSTRACTS from HMS Challenger to Argo And
    BIOGRAPHRIES AND ABSTRACTS From HMS Challenger to Argo and Beyond - Introduction Prof Chris Folland, Met Office Abstract | The purpose of this introductory talk is first to welcome all speakers and participants followed by a brief mention of the backgrounds of the organisers, and how they relate to the topic of the meeting. The revolutionary nature of the ARGO program for oceanography, and climate applications in particular, will be emphasised helped by selected update to date information from the ARGO web site. Finally, the structure of the meeting will be summarised. I will then introduce the next speaker, John Gould. Biography | Professor Chris Folland headed the Met Office Hadley Centre’s Climate Variability and Seasonal Forecasting Group (1990-2008), retiring as a Research Fellow in 2017. Chris was a Lead Author for four reports of the Intergovernmental Panel on Climate Change (IPCC) where, like other Lead Authors, he shared in the Nobel Peace Prize awarded to IPCC in 2007. He has several fellowships and has won a number of national and international awards. Chris remains Honorary Professor at the University of East Anglia, Guest Professor of Climatology at the University of Gothenburg, Sweden and Adjunct Professor at the University of Southern Queensland, Australia. From thermometers to Robots - evolution and revolution Dr W John Gould, National Oceanography Centre Abstract | The talk will show how our ability to collect temperature and salinity profiles from the open ocean has developed starting with the early voyages of HMS Challenger and SMS Gazelle in the1870s, through the 1920s and 30s (Discovery Investigations and Meteor Expedition) to the 1940s and the invention of the bathythermograph.
    [Show full text]
  • Importance of Argo in Mediterranean Operational Oceanography Network (MOON)
    Importance of Argo in Mediterranean Operational Oceanography Network (MOON) Srdjan Dobricic Centro Euro-Mediterraneo per i Cambiamenti Climatici and Nadia Pinardi Istituto Nazionale di Geofisica e Vulcanologia Italy OutlineOutline • The Operational Oceanographic Service in the Mediterranean Sea: products, core services and applications (downstream services) • Use of Argo floats in MOON TheThe OperationalOperational OceanographyOceanography approachapproach Numerical Multidisciplinary Data assimilation models of Multi-platform for optimal field hydrodynamics Observing estimates and ecosystem, system and coupled (permanent uncertainty a/synchronously and estimates relocatable) to atmospheric forecast Continuos production of nowcasts/forecasts of relevant environmental state variables The operational approach: from large to coastal space scales (NESTING), weekly to monthly time scales EuropeanEuropean OPERATIONALOPERATIONAL OCEANOGRAPHY:OCEANOGRAPHY: thethe GlobalGlobal MonitoringMonitoring ofof EnvironmentEnvironment andand SecuritySecurity (GMES)(GMES) conceptconcept The Marine Core Service will deliver regular and systematic reference information on the state of the oceans and regional seas of known quality and accuracy TheThe implementationimplementation ofof operationaloperational oceanographyoceanography inin thethe MediterraneanMediterranean Sea:Sea: 1995-today1995-today Numerical models of RT Observing System hydrodynamics satellite SST, SLA, and VOS-XBT, moored biochemistry multiparametric buoys, at basin scale ARGO and gliders
    [Show full text]
  • Global Assessment of Semidiurnal Internal Tide Aliasing in Argo Profiles
    OCTOBER 2019 H E N N O N E T A L . 2523 Global Assessment of Semidiurnal Internal Tide Aliasing in Argo Profiles TYLER D. HENNON AND MATTHEW H. ALFORD Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California ZHONGXIANG ZHAO Applied Physics Laboratory, University of Washington, Seattle, Washington (Manuscript received 16 May 2019, in final form 17 July 2019) ABSTRACT Though unresolved by Argo floats, internal waves still impart an aliased signal onto their profile mea- surements. Recent studies have yielded nearly global characterization of several constituents of the stationary internal tides. Using this new information in conjunction with thousands of floats, we quantify the influence of the stationary, mode-1 M2 and S2 internal tides on Argo-observed temperature. We calculate the in situ temperature anomaly observed by Argo floats (usually on the order of 0.18C) and compare it to the anomaly expected from the stationary internal tides derived from altimetry. Globally, there is a small, positive cor- relation between the expected and in situ signals. There is a stronger relationship in regions with more intense internal waves, as well as at depths near the nominal mode-1 maximum. However, we are unable to use this relationship to remove significant variance from the in situ observations. This is somewhat surprising, given that the magnitude of the altimetry-derived signal is often on a similar scale to the in situ signal, and points toward a greater importance of the nonstationary internal tides than previously assumed. 1. Introduction within internal tide or near inertial frequency bands.
    [Show full text]
  • Using Argo Under Sea Ice
    Using Argo under sea ice Arctic Olaf Klatt Olaf Boebel Eberhard Fahrbach Alfred-Wegener-Institut, Bremerhaven Antarctic Climate variability Polar regions play a critical role in setting the rate and nature of global climate variability, e.g. • heat budget • freshwater budget • carbon budget In the past the high latitude oceans have been drastically under-sampled, particularly in winter TlifhlililTemperature anomalies from the climatological mean (Böning et al..2008) Outline • Introduction • Towards ice compatible floats – Antarctic (Weddell Sea) realisation • Ice Sensing Algorithm • Interim Store • RAFOS-Receivers • Array of Sound sources – Arctic planning • Arctic ISA • Physical Ice Protection Ice compatibility of Argo floats: a 3 step process Ice protection Interim storage Under Ice location (ISA, aISA) (iStore) (RAFOS) Aborts ascent when sea – Provides delayed mode Provides subsurface ice is expected at the profile when surfacing profile position when surface impossible surfacing impossible protects the fragile parts agaitthiinst the ice pressure Successful (()Weddell Sea) Successful (()Weddell Sea) Successful (()Weddell Sea) Arctic update under test No update is needed Installation of a small array is planed Weddell Sea solutions • Ice ppgrotection: Antarctic ice sensing was defined If the median of the temperature between 50db and 20db (T|p=(50,45,40,35,30,25,20 dbar) ) is less -1.79 °C abort surface attempt ÆIncreased the “survival probability” and doubled the life time of floats in ice invested areas. Recent Argo float d ist ribut io n WddllSWeddell Sea d dtata WOCE: CTD-sttitations AWI floa ts 1100 CTD casts 7000 float profiles WddllSWeddell Sea d dtata WOCE: CTD-sttitations AWI floa ts winter winter < 300 CTD casts >3000 float profiles Weddell Sea solutions • Ice protection: Antarctic ice sensing was defined If t he me dian of t he temperature b etween 50db and 20db ( T|p=(50,45,40,35,30,25,20 dbar) )i) is less 1.79 °C abort surface attempt ÆIncreased the “survival probability” and doubled the life time of floats in ice invested areas.
    [Show full text]
  • Argo and Ocean Heat Content: Progress and Issues
    Argo and Ocean Heat Content: Progress and Issues Dean Roemmich, Scripps Ins2tu2on of Oceanography, USA, October 2013, CERES Mee2ng Outline • What makes Argo different from 20th century oceanography? • Issues for heat content es2maon: measurement errors, coverage bias, the deep ocean. • Regional and global ocean heat gain during the Argo era, 2006 – 2013. How do Argo floats work? Argo floats collect a temperature and salinity profile and a trajectory every 10 days, with data returned by satellite and made available within 24 hours via 20 min on sea surface the GTS and internet (hXp://www.argo.net) . Collect T/S profile on 9 days dri_ing ascent 1000 m Temperature Salinity Map of float trajectory Temperature/Salinity relation 2000 m Cost of an Argo T,S profile is ~ $170. Typical cost of a shipboard CTD profile ~$10,000. Argo’s 1,000,000th profile was collected in late 2012, and 120,000 profiles are being added each year. Global Oceanography Argo AcCve Argo floats Global-scale Oceanography All years, Non-Argo T,S Float technology improvements New generaon floats (SOLO-II, Navis, ARVOR, NOVA) • Profile 0-2000 dbar anywhere in the world ocean. • Use Iridium 2-way telecoms: – Short surface 2me (15 mins) greatly reduces surface divergence, grounding, bio-fouling, damage. – High ver2cal resolu2on (2 dbar full profile). – Improved surface layer sampling (1 dbar resolu2on, with pump cutoff at 1 dbar). • Lightweight (18 kg) for shipping and deployment. • Increased baery life for > 300 cycles (6 years @ 7-days). SIO Deep SOLO SOLO-II, WMO ID 5903539 (le_), deployed 4/2011. Note strong (10 cm/s) annual veloci2es at 1000 m This Deep SOLO completed 65 cycles to 4000 m and is rated to 6000 m.
    [Show full text]
  • Argo “Use Cases” Records Ref
    Argo “use cases” records Ref.: D7.11_V1.1 Date: 16/07/2021 Euro-Argo Research Infrastructure Sustainability and Enhancement Project (EA RISE Project) - 824131 Under EC review This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 824131. Call INFRADEV-03-2018-2019: Individual support to ESFRI and other world-class research infrastructures Disclaimer: This Deliverable reflects only the author’s views and the European Commission is not responsible for any use that may be made of the information contained therein. Document Reference Project Euro-Argo RISE - 824131 Deliverable number D7.11 Deliverable title Argo “use cases” records Description Argo “use cases” records: Use cases presented in a format understandable by the general public, and featured on the Euro- Argo website Work Package number WP7 Work Package title Euro-Argo RISE visibility: communication and dissemination towards user’s community Lead Institute E-A ERIC Lead authors E. EVRARD, M. BOLLARD Contributors C. GOURCUFF, S. POULIQUEN, P. ROIHA Submission date 16/07/2021 Due date [M30] - June 2021 Comments Accepted by C. GOURCUFF Document History Version Issue Date Author Comments V1.0 30/06/2021 E. Evrard & M. First draft Bollard V1.1 16/07/2021 E. Evrard Integration of WP7 partners’ comments Argo “use cases” records – D7.11_V1.1 3 EXECUTIVE SUMMARY Argo use cases aim at highlighting the different applications of Argo data use to promote the importance of Argo data for research and societal benefits. These use cases, covering different categories of Euro-Argo users, are targeted to the general public but also to policy-makers and funders and are presented in a format easily understandable.
    [Show full text]
  • Use of Argo Data for Sea Level Monitoring
    Use of Argo data for global mean sea level trends monitoring Stephanie Guinehut(1), Gilles Larnicol(1), Anne-Lise Dhomps(1), Mickael Ablain(1), Joel Dorandeu(1), Anny Cazenave(2), Alix Lombard(3), William Llovel(2) (1) CLS, Space Oceanography Division, Ramonville St Agne (2) LEGOS, OMP, Toulouse (3) CNES, Toulouse Objectives Tide gauges and satellite altimeter measurements indicate that the global mean sea level is currently rising and that very likely this rise is related to global warming (IPCC, 2007). Because of expected negative impacts that will affect human societies living in vulnerable coastal regions worldwide, sea level rise has important societal implications. It is thus of crucial importance to precisely measure rates of sea level rise globally and regionally and understand the various factors causing sea level rise. The global mean sea level change as measured from satellite altimeter results in total from steric (effect of temperature and salinity) plus eustatic (ocean mass) changes. In order to separate these two physical processes, temperature and salinity profiles measurements from the global Argo array of profiling floats are used to quantify the steric contribution to sea level change. Data and method are first presented. The impact of the sampling of the Argo observations is then discussed. Finally, mean sea level trends from total and steric parts are described. Data and method The full Argo dataset has been uploaded from the Coriolis Global Data Acquisition Center as of February 2008 (http://www.coriolis.eu.org). For this study, when available, delayed-mode data are preferred to real-time ones (i.e.
    [Show full text]
  • SPATIAL DISTRIBUTION of Thunnus.Sp, VERTICAL and HORIZONTAL SUB-SURFACE MULTILAYER TEMPERATURE PROFILES of IN-SITU AGRO FLOAT DATA in INDIAN OCEAN
    Journal of Coastal Development ISSN : 1410-5217 Volume 14, Number 1, October 2010 : 61 - 74 Accredited : 83/Dikti/Kep/2009 Original Paper SPATIAL DISTRIBUTION OF Thunnus.sp, VERTICAL AND HORIZONTAL SUB-SURFACE MULTILAYER TEMPERATURE PROFILES OF IN-SITU AGRO FLOAT DATA IN INDIAN OCEAN. Agus Hartoko* Department of Fisheries. Faculty of Fisheries and Marine Science, Diponegoro University, Semarang 50275. Indonesia Received : July, 2, 2010 ; Accepted : Agust, 10, 2010 ABSTRACT The study was the first ever attempt in fisheries oceanography sciences to explore the empiric correlation between the spatial distribution of tuna (Thunnus.sp) and sub-surface in-situ temperature data. By means of optimalization and use of an in-situ data of both vertical and horizontal which will be processed into a multilayer subsurface seawater temperature of ARGO Float in Indian ocean. So far only sea surface temperature (with temperature around 29 °C) data were used to look for the correlation for tuna spatial distribution, while the Thunnus.sp swimming layer as widely known is in about 80 – 250m depth with seawater temperature between 15 – 23 °C. The noble character of ARGO Float data is as in-situ data recorded directly by the sensors, transmitted to the satellite, transmitted to the ground station and ready to be used by researcher all over the world.In the study, about 216 seawater temperature coordinates of ARGO Float and actual tuna catch data in the same day were used to represent the dry season (April – November 2007) analysis, and about 90 data were used for the rainy season (December – March 2007). The actual tuna catch and its coordinates data were collected with permission from PT.
    [Show full text]
  • How an Argo Float Works Argo Data Applications of Argo Data
    Oceans play a key role in the global climate system by storing and transporting heat and freshwater over thousands of kilometres. The heat capacity of the top three metres of the ocean is equivalent to that of all of the atmosphere, so changes About half the floats in the in ocean heat content and freshwater fluxes play a large role in Australian region are provided by climate change and variability. Historically, a lack of sustained, IMOS and partners. high resolution observations of the atmosphere and oceans has Argo Australia is the third largest hindered our ability to forecast climate and ocean conditions. contributor of active floats to the Argo floats provide global measurements of temperature, salinity array (after the USA and Japan). Argo has made available over and currents in the upper 2,000 metres of the ocean. Argo data 53,000 deep ocean profiles has revolutionised our ability to examine global scale ocean around Australia (over 17,000 from circulation and air-sea interactions, and to improve climate models IMOS floats), and over 500,000 and predictions. Argo Australia is the Australian contribution to the globally. Data is available within ARGO international Argo program. 24 hours as part of the real-time data stream and highly quality- controlled data is available after 6 months, as part of the delayed- mode data stream. Argo data now comprises the single largest source of in situ ocean data and, in quantity, has exceeded all historical winter data available for the Southern Hemisphere. Applications of Argo data International Argo provides data from the global oceans.
    [Show full text]
  • On the Future of Argo: a Global, Full-Depth, Multi-Disciplinary Array
    fmars-06-00439 August 1, 2019 Time: 15:59 # 1 REVIEW published: 02 August 2019 doi: 10.3389/fmars.2019.00439 On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array Dean Roemmich1*†, Matthew H. Alford1†, Hervé Claustre2†, Kenneth Johnson3†, Brian King4†, James Moum5†, Peter Oke6†, W. Brechner Owens7†, Sylvie Pouliquen8†, Sarah Purkey1†, Megan Scanderbeg1†, Toshio Suga9†, Susan Wijffels7†, Nathalie Zilberman1†, Dorothee Bakker10, Molly Baringer11, Mathieu Belbeoch12, Henry C. Bittig2, Emmanuel Boss13, Paulo Calil14, Fiona Carse15, Thierry Carval8, Fei Chai16, Diarmuid Ó. Conchubhair17, Fabrizio d’Ortenzio2, Giorgio Dall’Olmo18, Damien Desbruyeres8, Katja Fennel19, Ilker Fer20, Raffaele Ferrari21, Gael Forget21, Howard Freeland22, Tetsuichi Fujiki23, Marion Gehlen24, Blair Greenan25, Robert Hallberg26, Toshiyuki Hibiya27, Shigeki Hosoda23, Steven Jayne7, Markus Jochum28, Gregory C. Johnson29, KiRyong Kang30, Nicolas Kolodziejczyk31, Arne Körtzinger32, Pierre-Yves Le Traon33, Yueng-Djern Lenn34, Guillaume Maze8, Kjell Arne Mork35, Tamaryn Morris36, Takeyoshi Nagai37, Jonathan Nash5, Alberto Naveira Garabato4, Are Olsen20, Rama Rao Pattabhi38, Satya Prakash38, Stephen Riser39, Catherine Schmechtig40, Claudia Schmid11, Emily Shroyer5, Andreas Sterl41, Philip Sutton42, Lynne Talley1, Toste Tanhua32, Virginie Thierry8, Sandy Thomalla43, John Toole7, Ariel Troisi44, Thomas W. Trull6, Jon Turton15, Pedro Joaquin Velez-Belchi45, Waldemar Walczowski46, Haili Wang47, Rik Wanninkhof11, Amy F. Waterhouse1, Stephanie Waterman48, Andrew
    [Show full text]
  • A Paradigm for Ocean Observations in the 21St Century
    A Paradigm for Ocean Observations in the 21st Century Dean Roemmich, Scripps Institution of Oceanography, USA, Susan Wijffels, CSIRO/Centre for Australian Weather and Climate Research, Australia and the Argo Steering Team December 2012 Outline • The roots of Argo: From 20th century global-scale oceanography to 21st century global oceanography. • What has Argo achieved relative to its initial objectives? • What are the next challenges for Argo? Argo’s 1,000,000th profile was collected a month ago! Global Oceanography Argo Global-scale Oceanography All years, Non-Argo T,S Argo has transformed global-scale oceanography into global oceanography. Argo: 1,000,000 T/S profiles. 5 years of August Argo T,S profiles (2007-2011). All August T/S profiles (> 1000 m, 1951 - 2000). The 21st century paradigm is systematic global ocean observations: a subsurface 20th Century: 534,905 T/S profiles > 1000 m observing system having “satellite-like” space-time coverage. Global-scale oceanography began with the Challenger Expedition (1872 – 1876) Challenger 1872-1876 ``One of the objects of the Expedition was to collect information as to the distribution of temperature in the waters of the ocean . not only at the surface, but at the bottom, and at intermediate depths'‘ (Wyville Thomson and Murray, 1885) Charles Wyville Thomson Progress in oceanography is synonymous with advances in technology Basic tools of mid-20th century physical oceanography: Nansen bottles and DSRTs Clamping Nansen bottle on the wire. A pressure- protected Deep- Sea Reversing thermometer Nansen bottles came into use around 1910. DSRT’s were accurate to a few thousandths of a °C Depth, from protected/unprotected pairs of thermometers, to ~5 m.
    [Show full text]
  • Argo and Other Drifters* Underway Samplimg Tide Gauges Animal
    Platform Repeat Argo and Underway Moorings Tide gauges Animal Glider/AUV Satellite Airborne Ice stations Ice Shelf hydrography other samplimg sensors Stations & drifters* Traverses (surface) Parameter Temperature XBT, XCTD Yes <- suspended moorings CTDs, and distributed temperature sensing (DTS) Salinity XBT, XCTD Yes <- suspended moorings CTDs Velocity In surface Yes Surface <- moorings layer (ADCPs) Tracers Nutrients Developing Oxygen Yes Microstructure Sea ice Wind, accumulation If ice-free Automatic Automatic weather weather stations on stations on ice shelves ice shelves and fast ice and fast ice Sea surface height If ice-free (SLR) SeaBed pressure Ice SHELF topography InSAR, Radar Radar (RES) GPS (spot and Laser and Laser values or altimetry altimetry traverse) Ice SHELF thickness buoyancy Radio Echo seismic, estimates Sounding RES from surface (RES), topography buoyancy estimates from surface topography Ice SHELF flow speed InSAR, GPS feature tracking, Glacier topography InSAR, Radar Radar (RES) GPS and Laser and Laser altimetry altimetry Glacier flow speed InSAR, GPS, feature boreholes tracking, to measure depth profiles of velocity. SST If ice-free SSS If ice-free Bottom topography gravimetry seismic below ice SHELF Bottom topography gravimetry seismic (seafloor Bathymetry under floating ice ?) Bottom topography RES, RES, (Bedrock under gravimetry Seismic grounded ice) Ice SHELF Basal upward Phase melt/freeze rates looking Coherent altimeter RES (instrument at surface) Ice SHELF englacial Embedded Embedded temperatures (for temperatur temperatur ocean ice heat e sensors e sensors: transfer fluxes) (boreholes) thermistor chains or DTS (boreholes) * Good as complement to other methods, but there is a problem with the drifters moving out of the measurement region too fast.
    [Show full text]