A Revision of the Genus Aglaonema (Araceae)

Total Page:16

File Type:pdf, Size:1020Kb

A Revision of the Genus Aglaonema (Araceae) SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 1 Dan Henry NicoZson A Revision of the Genus Aglaonema (Araceae) SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON I 969 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Institution, Joseph Henry articulated a program that included the following state- ment: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional.” This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowl- edge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. Each publica- tion is distributed by mailing lists to libraries, laboratories, institutes, and interested specialists throughout the world. Individual copies may be obtained from the Smith- sonian Institution Press as long as stocks are available. S. DILLONRIPLEY Secretary Smithsonian Institution Official publication date is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1969 For sale by the Superintendent of Documents, U.S. Govornment Printing Office Washington, D.C. 20902 - Price $1.25 Contents Page Abstract ............................. 1 Introduction ............................ 1 Aglaonema within the Family Araceae ................. 3 Taxonomic History of Aglaonema ................... 4 Cytology ............................. 6 Embryology ............................ 8 Morphology. ........................... 11 Plant Diseases ........................... 16 Aglaonema Schott .......................... 17 Dubious Binomials ......................... 59 Excluded Species .......................... 60 Identification List. ......................... 61 Literature Cited .......................... 63 ABSTRACT Nicolson, Dan Henry. A Revision of the Genus Aglaonema (Araceae) . Smithsonian Contributions to Botany, 1: 1-66. 1969.-This revision of Aglaonema (ranging from northeastern India through New Guinea) is based on study of over 1500 herbarium specimens in 33 herbaria, supplemented by field studies and over 100 personal col- lections made in southeastern Asia over a period of 18 months. Much of the literature of the genus is reviewed, particularly on cytology, embryology, and morphology. The taxonomic portion of the text includes keys, synonymies, descriptions, notes on range, habitat, typification as well as discussion of taxonomic and nomenclatural problems. The sections Aglaonema and Chamaecaulon are recognized for the first time. Although 76 binomials have been published for the genus, only 21 are recognized and accepted herein as species. No new species have been recognized. Introduction Dr. A. Kostermans (Bogor), Dr. H. E. Moore (Ithaca), and Dr. G. S. Bunting (Ithaca), who took Aglaonema is a genus of tropical aroids of 21 species special interest in my work and problems. native to southeastern Asia from northeastern India I thank the National Science Foundation for across southern China and Indonesia through New Graduate Fellowships numbers 20006 ( 1960-1961 ) , Guinea. All species are herbaceous. The generic name 21204 (1961-1962) and 32118 (1962-1963). Finally means “shining stamen” in Greek. I wish to thank my wife, who never faltered in her This paper is a condensation of a doctoral disser- enthusiasm and shouldered much of the routine work. tation accepted by Cornell University in 1964. The MATERIALSAND METHODS.-The first Stage Of this thesis is available through University Microfilms, Inc., study emphasized visiting the type-localities of as many of Ann Arbor, Michigan, as negative microfilm num- described taxa as possible and the herbaria known to ber 65-3347. Thanks are due to my special committee: have major collections of tropical Asiatic plants. Type- Drs. W. J. Dress (Chairman), R. E. Lee, H. P. Banks, localities were emphasized for two reasons : to collect and J. F. Cornman. I owe a particular debt to Dr. topotype material to help offset loss of type material G. H. M. Lawrence, who was chairman of my special destroyed during World War I1 and to obtain some committee in the initial stages. Mr. C. V. Morton of idea of variability in type-localities. Other considera- the Smithsonian Department of Botany also critically tions (political situations, contacts, time, money) read the manuscript and many of his suggestions were largely determined where and how long I could stay gratefully adopted. and study within the natural distribution of the genus I am also deeply grateful to Dean D. Umali and Aglaonema. The following rCsumC indicates how many Mr. J. V. Pancho of the Philippine College of Ag- months were spent in each country and in what prov- riculture, Mr. A. Dilmy (Bogor), Mr. J. Womersley inces (districts or divisions) collections were made: (Lae), Dr. H. M. Burkill (Singapore), Mr. Tem Smitinand (Bangkok), and Mr. J. A. R. Anderson Dates Country Provinces (Kuching) . These, plus others I have not mentioned, Sept. 60-Jan. 6 1 Philippines Agusan, Albay, Bukidnon, Catanduanes, Davao, deserve special thanks for arranging field trips with Laguna, Leyte, Misamis and for me, as well as housing for my family. Oriental, Negros In my visits to herbaria Dr. C. G. G. J. van Steenis Oriental, Quezon and the entire staff of the Rijksherbarium (Leiden) Jan. 61-June 61 Indonesia West Java were especially generous, as were, also, Dr. Alicia June 61-Aug. 61 Malaysia Johore, Penang, Perak, Sarawak, Selangor, Lourteig (Paris), Dr. K. Rechinger (Wien), Dr. G. Singapore Schultze (Berlin),Dr. W. T. Stearn (British Museum), Sept. 61-Nov. 61 Territory of Morobe District, Bougain- Dr. C. Bonner (Geneva), Mr. L. L. Forman (Kew), New Guinea, ville, New Britain, Papua Manokwari Dec. 61-Feb. 62 Thailand Bangkok, Chanthaburi, Dan Henry Nicolson, Department of Botany, Smithsonian Chieng Mai, Nakhon Institution, Washington, D.C. 20560. Nayok, Trat, Trang 1 2 SMITHSONIAN CONTRIBUTIONS TO BOTANY The number of my collections (total=103) of Koorders’ collections but none of Bunnemeijer’s and Aglaonema by country are as follows: Indonesia, 17; Kerr’s since they are more recent. Malaysia, 29; New Guinea, 3; Philippines, 34; Thai- Data were accumulated from each specimen. The land, 16; U.S.A., 4. habit of the stem was noted (erect, repent, or decum- Duplicates (an average of 4 per collection) were bent), its length measured or taken from field notes, distributed in the following order: 1, Washington and its largest diameter measured. Although experi- (US) ; 2, national herbarium of county of origin; ments were not performed, it is my impression that the 3, Ithaca (BH) ; 4, Leiden (L) ; 5, Kew (K) ; 6, Berlin width of a pressed and dried stem is approximately that of a fresh stem since the shrinkage in drying appears to (B) ; 7, Vienna (W) ; 8, Paris (P) ; 9, Manila (PNH) ; be matched by the increase due to flattening during 10, Bogor (BO) ; 11, Singapore (SING) ; 12, Calcutta pressing. Internode length was noted and was com- (CAL); 13, London (BM); 14, Geneva (G); 15, monly found to be about equal to the stem thickness; Cambridge (A) ; 16, New York (NY) ; 17, Brisbane i.e., internodes were longest on the thickest basal por- (BRI) ; 18, Bangkok (BK) . The abbreviations are the tion of the stem and shortest on the uppermost portion standard ones of Lanjouw and Stafleu ( 1964). of the stem. Petiolar length, petiolar sheath length, I have studied the available material of Aglaonema blade length, and blade width were measured on the in the following herbaria: most accessible and complete leaf on a specimen in or- Bogor (BO) 276 Kepong (KEP) 14 der to ensure that ratios comparing these measurements Kew (K) 242 Kuching (SAR) 12 would be real. If other complete leaves were available, Singapore (SING) 233 Stockholm (S) 11 one or two were measured to obtain an indication of Leiden (L) 133 Utrecht (U) 10 variability in the actual measurements and ratios be- Paris (P) 108 10 Munich (M) tween leaves on a given specimen. The petiolar sheath Calcutta (CAL) 73 Edinburgh (E) 7 London (BM) 70 Zurich (Z) 7 was noted as being scarious or membranous. Leaf shape Washington (US) 52 Bangkok (BKF) 5 and the shape of the leaf bases and apices were re- Manila (PNH) 46 Vienna ( W) 3 corded. The terminology for leaf shape follows that of New York (NY) 42 Lae (LAE) 3 the Committee on Terminology (1962) except that I Ithaca (BH) 38 Dehra Dun (DD) 3 regard their numbers 36 and 37 (q.v.) as lanceolate Bangkok (BK) 33 Brisbane (BRI) 2 Cambridge (A) 25 Brussels (BR) 2 (not narrowly ovate),
Recommended publications
  • Indoor Plants Or Houseplants
    Visit us on the Web: www.gardeninghelp.org Indoor Plants or Houseplants Over the past twenty years houseplants have grown in popularity. Offered in a wide variety of sizes, shapes, colors and textures, houseplants beautify our homes and help soften our environment. They have been scientifically proven to improve our health by lowering blood pressure and removing pollutants from the air we breathe. When selecting a houseplant, choose reputable suppliers who specialize in growing houseplants. Get off to a good start by thoroughly examining each plant. Watch for brown edges and spindly growth with elongated stems and large gaps between new leaves. Inspect leaves and stem junctions for signs of insect or disease problems. Check any support stakes to make sure they are not hiding broken stems or branches. Finally, make sure the plant is placed in an area that suits its optimal requirements for light, temperature and humidity. Where to Place Your House Plants With the exception of the very darkest areas, you can always find a houseplant with growth requirements to match the environmental conditions in your home. The most important factors are light intensity and duration. The best way to determine the intensity of light at a window exposure area is to measure it with a light meter. A light meter measures light in units called foot-candles. One foot-candle is the amount of light from a candle spread over a square foot of surface area. Plants that prefer low light may produce dull, lifeless-looking leaves when exposed to bright light. Bright light can also cause leaf spots or brown-tipped scorched margins.
    [Show full text]
  • Seed Germination of the Corpse Giant Flower Amorphophallus Titanum
    Latifah and Purwantoro - Seed Germination of The Corpse Giant Flower Amorphophallus titanum SEED GERMINATION OF THE CORPSE GIANT FLOWER Amorphophallus titanum (Becc.) Becc. Ex Arcang: THE INFLUENCE OF TESTA [Perkecambahan Biji Bunga Bangkai Raksasa Amorphophallus titanum (Becc.) Becc. ex Arcang: Pengaruh Testa] Dian Latifah and RS Purwantoro 1Center for Plant Conservation-Bogor Botanic Garden, Indonesian Institute of Sciences (LIPI) Jl. Ir. H. Juanda no.13, Bogor, Indonesia 16122 e-mail: [email protected] ABSTRACT Amorphophallus titanum is famous as the gigantic inflorescense and economically prospective due to its 20% glucomannan contents. Various cultivation techniques including germination have been conducted due to the delay in the seed germination of Amorphophallus titanum. Previous studies revealed that A. titanum seeds has not produced faster and better germination rate. Therefore this research was aimed to test the following hypotheses: (1) Fruit pericarp and the pericarp inhibited the germination, (2) testa/seed coat inhibited germination, (3) GA3hormone promoted the germination rate. The germination pattern was also monitored. The experiments consisted of: Experiment 1: sowing the fruit with the seeds inside and Experiment 2 with two treatments: testa peeling and GA3 hormone treatments. The results of Experiment 1 showed that the fruit pericarp and the pericarp inhibited the germination for 124 days. Experiment 2 resulted in: (1) the delay of the germination for 7-35 days caused by the testa/seed coat, (2) GA3 hormone promoted the germination rate 2.19 coefficient of germination rate; and higher GA3 (1000 ppm) may enhance the seedling growth (reached the highest 23.6 ± 1.3).We also recorded developmental stages from the seed germination, first-leaf emergence and tuber development in series of photographs overtime during the experimental period.
    [Show full text]
  • Chapter 6 Care and Handling
    Chapter 6 Care and Handling The following TEKS will be addressed in this chapter: (6) The student knows the management factors of floral enterprises. The student is expected to: (A) use temperature, preservatives, and cutting techniques to increase keeping quality; (B) identify tools, chemicals, and equipment used in floral design; (C) fertilize, prune, and water tropical plants; (D) manage pests; and (E) demonstrate the technical skills for increasing the preservation of cut flowers and foliage. Care and Handling of Cut Flowers and Foliages Cut flowers, even though they have been separated from the parent plant, are living, actively metabolizing plant parts. These parts undergo the same basic aging process as the entire plant — only quicker. However, the rate of deterioration can be slowed down considerably by supplying the cut flower with its basic needs. The first and foremost need of a cut flower is water. Second is food. In addition, certain damaging factors such as exposure to ethylene gas, microbial attack and rough handling must be avoided. From a practical point of view, a controlled rate of opening is needed as well as maintenance of good color. All of these factors must be considered by everyone who handles the product. This includes growers wholesalers and retailers. In order to be competitive in the marketplace our product must be desirable to the consumer. Our flowers must be fresh for the customer to enjoy! Factors Affecting Quality There are several factors which play a part in keeping the quality of cut flowers at a high level: (1) the grower (2) moisture balance.
    [Show full text]
  • Interior Plants: Selection and Care
    AZ1025 Interior Plants: Selection and Care 5/98 ELIZABETH D AVISON Some may be purchased at relatively low cost from garden Lecturer, Plant Sciences centers or from garden catalogs. Their readings of Low, Medium and High can give “ballpark figures,” and they can eliminate much of the guesswork in selecting plants (originally authored by Dr. Charles Sacamano, Extension that are adapted to light levels in a given location. Horticulture Specialist, and Dr. Douglas A. Bailey, If sunlight is the major light source you may determine Assistant Professor, Plant Sciences) which category your indoor location falls into by using the following descriptions: Almost any indoor environment is more pleasant and High Light: areas within four feet of large south-east or attractive when living plants are a part of the setting. In west facing windows. apartments, condominiums and single family residences, plants add warmth, personality and year-round beauty. Medium Light: locations in a range of four to eight feet Shopping centers, hotels and resorts take full advantage of from south and east windows and west windows that the colorful, relaxed atmosphere created by green growing do not receive direct sun. things. Offices, banks and other commercial buildings rely Low Light: areas more than eight feet from windows as in on interior plants to humanize the work environment and the center of a room, a hallway or an inside wall. increase productivity. Northern exposures often fall into this category, even There are other important, often overlooked functions close to the window. Many locations that receive only performed by indoor plants. These include directing or artificial light are also low light situations.
    [Show full text]
  • Araceae) in Bogor Botanic Gardens, Indonesia: Collection, Conservation and Utilization
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 140-152 DOI: 10.13057/biodiv/d190121 The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization YUZAMMI Center for Plant Conservation Botanic Gardens (Bogor Botanic Gardens), Indonesian Institute of Sciences. Jl. Ir. H. Juanda No. 13, Bogor 16122, West Java, Indonesia. Tel.: +62-251-8352518, Fax. +62-251-8322187, ♥email: [email protected] Manuscript received: 4 October 2017. Revision accepted: 18 December 2017. Abstract. Yuzammi. 2018. The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization. Biodiversitas 19: 140-152. Bogor Botanic Gardens is an ex-situ conservation centre, covering an area of 87 ha, with 12,376 plant specimens, collected from Indonesia and other tropical countries throughout the world. One of the richest collections in the Gardens comprises members of the aroid family (Araceae). The aroids are planted in several garden beds as well as in the nursery. They have been collected from the time of the Dutch era until now. These collections were obtained from botanical explorations throughout the forests of Indonesia and through seed exchange with botanic gardens around the world. Several of the Bogor aroid collections represent ‘living types’, such as Scindapsus splendidus Alderw., Scindapsus mamilliferus Alderw. and Epipremnum falcifolium Engl. These have survived in the garden from the time of their collection up until the present day. There are many aroid collections in the Gardens that have potentialities not widely recognised. The aim of this study is to reveal the diversity of aroids species in the Bogor Botanic Gardens, their scientific value, their conservation status, and their potential as ornamental plants, medicinal plants and food.
    [Show full text]
  • (AGLAONEMA SIMPLEX BL.) FRUIT EXTRACT Ratana Kiatsongchai
    BIOLOGICAL PROPERTIES AND TOXICITY OF WAN KHAN MAK (AGLAONEMA SIMPLEX BL.) FRUIT EXTRACT Ratana Kiatsongchai A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Biology Suranaree University of Technology Academic Year 2015 ฤทธิ์ทางชีวภาพและความเป็นพิษของสารสกัดจากผลว่านขันหมาก (Aglaonema simplex Bl.) นางสาวรัตนา เกียรติทรงชัย วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลกั สูตรปริญญาวทิ ยาศาสตรดุษฎบี ัณฑิต สาขาวิชาชีววิทยาสิ่งแวดล้อม มหาวทิ ยาลัยเทคโนโลยสี ุรนารี ปีการศึกษา 2558 ACKNOWLEDGEMENTS First, I would like to sincerely thanks to Asst. Prof. Benjamart Chitsomboon my thesis advisor for her kindness and helpful. She supports both works and financials. She lightens up my spirit and inspires me to want to be better person. She gave me a chance that leads me to this day. I extend many thanks to my co-advisor, Dr. Chuleratana Banchonglikitkul for her excellent guidance, valuable advices, and kindly let me have a great research experience in her laboratory at The Thailand Institute of Scientific and Technological Research (TISTR), Pathum Thani. I also would like to thank Asst. Prof. Dr. Supatra Porasuphatana, Asst. Prof. Dr. Wilairat Leeanansaksiri, and Assoc. Prof. Dr. Nooduan Muangsan who were willing to participate in my thesis committee. I would never have been able to finish my dissertation without the financial support both of The OROG Fellowship from SUT Institute of Research and Development Program and The Thailand Institute of Scientific and Technological Research (TISTR) and many thanks go to my colleagues and friends, especially members of Dr. Benjamart’ laboratories. They are my best friends who are always willing to help in every circumstance. Lastly, I would also like to thank my family for their love, supports and understanding that help me to overcome many difficult moments.
    [Show full text]
  • Understanding the Origin and Rapid Diversification of the Genus Anthurium Schott (Araceae), Integrating Molecular Phylogenetics, Morphology and Fossils
    University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 8-3-2011 Understanding the origin and rapid diversification of the genus Anthurium Schott (Araceae), integrating molecular phylogenetics, morphology and fossils Monica Maria Carlsen University of Missouri-St. Louis, [email protected] Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Biology Commons Recommended Citation Carlsen, Monica Maria, "Understanding the origin and rapid diversification of the genus Anthurium Schott (Araceae), integrating molecular phylogenetics, morphology and fossils" (2011). Dissertations. 414. https://irl.umsl.edu/dissertation/414 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Mónica M. Carlsen M.S., Biology, University of Missouri - St. Louis, 2003 B.S., Biology, Universidad Central de Venezuela – Caracas, 1998 A Thesis Submitted to The Graduate School at the University of Missouri – St. Louis in partial fulfillment of the requirements for the degree Doctor of Philosophy in Biology with emphasis in Ecology, Evolution and Systematics June 2011 Advisory Committee Peter Stevens, Ph.D. (Advisor) Thomas B. Croat, Ph.D. (Co-advisor) Elizabeth Kellogg, Ph.D. Peter M. Richardson, Ph.D. Simon J. Mayo, Ph.D Copyright, Mónica M. Carlsen, 2011 Understanding the origin and rapid diversification of the genus Anthurium Schott (Araceae), integrating molecular phylogenetics, morphology and fossils Mónica M. Carlsen M.S., Biology, University of Missouri - St. Louis, 2003 B.S., Biology, Universidad Central de Venezuela – Caracas, 1998 Advisory Committee Peter Stevens, Ph.D.
    [Show full text]
  • The Philippine Men & Women of Science | Volume XXVII
    The Philippine Men & Women of Science | Volume XXVII The Philippine Men & Women of Science | Volume XXVII The PHILIPPINE MEN AND WOMEN OF SCIENCE Volume 27, December 2013 issue is published by the Science and Technology Information Institute – Department of Science and Technology (STII-DOST), General Santos Ave., Bicutan, Taguig City, Philippines. Editorial Board and Staff: Raymund E. Liboro, Assistant Secretary and Officer-in-Charge; Rosie A. Almocera, Chief, Information Resources and Analysis Division (IRAD); Geraldine B. Ducusin, Supervising Science Research Specialist; Josefina A. Mahinay, Science Research Specialist II (Scientist Database Manager); Marievic V. Narquita, Science Research Specialist II and Robelyn M. Cruz, Science Research Specialist II (IT Support Staff); Annie Lyn D. Bacani and Jeffrey T. Centeno, Document specialist. Copyleft (Q) 2012 by the Science and Technology Information Institute. This content is free for use by the public for education and research purposes only but not for commercial profit. Payment, if required, is for the subsidized costs of paper and printing only. Attribution to the Science and Technology Information Institute as the publisher is required at all times. Disclaimer: Utmost concern for accuracy and quality is taken in production of this content but the Science and Technology Information Institute waives responsibility from any adverse effect that may result from the inappropriate use of this content. Preface The Philippine Men and Women of Science is one of the in-house publications generated from the Scientists Database, being maintained by the Science and Technology Information Institute (STII), the information arm of the Department of Science and Technology (DOST). It contains bio- bibliographical information of the living scientists who have excelled in their careers with their scientific and technical contributions published in various scientific and technical journals here and abroad.
    [Show full text]
  • Aglaonema the Cuttings Were Placed Inside a Propaga- Richard J
    JOBNAME: horts 43#6 2008 PAGE: 1 OUTPUT: August 20 01:22:48 2008 tsp/horts/171632/02986 HORTSCIENCE 43(6):1900–1901. 2008. in a shaded greenhouse and stuck in 50-celled trays containing Vergro Container Mix A (Verlite Co., Tampa, FL) on 25 Aug. 2006. ‘Mondo Bay’ Aglaonema The cuttings were placed inside a propaga- Richard J. Henny1,3 and J. Chen2 tion tent (maximum irradiance of 80 mmolÁm–2Ás–1) for 8 weeks. The rooted cut- University of Florida, Institute of Food and Agricultural Science, tings were allowed to acclimatize for 2 Mid-Florida Research and Education Center, 2725 Binion Road, Apopka, additional weeks. At this time, one-half of FL 32703 the liners were potted one plant per 1.6-L pot using with Vergro Container Mix A (60% Additional index words. Aglaonema nitidum, Aglaonema commutatum, Chinese evergreen, Canadian peat:20% perlite:20% vermiculite) foliage plant, foliage plant production, plant breeding and one-half using Fafard 2 Mix (Conrad Fafard, Agawam, MA; 55% Canadian peat:25% perlite:20% vermiculite) substrate. The genus Aglaonema (family Araceae), that are highlighted by lighter gray–green Plants were grown in randomized block commonly referred to as Chinese evergreens, areas (RHS 191A; Fig. 1). These gray–green experimental design in a shaded greenhouse, have been important ornamental tropical variegated areas appear in uneven 8- to 10-mm a maximum irradiance of 125 mmolÁm–2Ás–1, foliage plants since the 1930s (Smith and wide bands associated with the lateral veins. under natural photoperiod and a temperature Scarborough, 1981). Aglaonema are a reli- The bands originate from the midrib and range of 15 to 34 °C.
    [Show full text]
  • A Taxonomic Revision of Araceae Tribe Potheae (Pothos, Pothoidium and Pedicellarum) for Malesia, Australia and the Tropical Western Pacific
    449 A taxonomic revision of Araceae tribe Potheae (Pothos, Pothoidium and Pedicellarum) for Malesia, Australia and the tropical Western Pacific P.C. Boyce and A. Hay Abstract Boyce, P.C. 1 and Hay, A. 2 (1Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, U.K. and Department of Agricultural Botany, School of Plant Sciences, The University of Reading, Whiteknights, P.O. Box 221, Reading, RS6 6AS, U.K.; 2Royal Botanic Gardens, Mrs Macquarie’s Road, Sydney, NSW 2000, Australia) 2001. A taxonomic revision of Araceae tribe Potheae (Pothos, Pothoidium and Pedicellarum) for Malesia, Australia and the tropical Western Pacific. Telopea 9(3): 449–571. A regional revision of the three genera comprising tribe Potheae (Araceae: Pothoideae) is presented, largely as a precursor to the account for Flora Malesiana; 46 species are recognized (Pothos 44, Pothoidium 1, Pedicellarum 1) of which three Pothos (P. laurifolius, P. oliganthus and P. volans) are newly described, one (P. longus) is treated as insufficiently known and two (P. sanderianus, P. nitens) are treated as doubtful. Pothos latifolius L. is excluded from Araceae [= Piper sp.]. The following new synonymies are proposed: Pothos longipedunculatus Ridl. non Engl. = P. brevivaginatus; P. acuminatissimus = P. dolichophyllus; P. borneensis = P. insignis; P. scandens var. javanicus, P. macrophyllus and P. vrieseanus = P. junghuhnii; P. rumphii = P. tener; P. lorispathus = P. leptostachyus; P. kinabaluensis = P. longivaginatus; P. merrillii and P. ovatifolius var. simalurensis = P. ovatifolius; P. sumatranus, P. korthalsianus, P. inaequalis and P. jacobsonii = P. oxyphyllus. Relationships within Pothos and the taxonomic robustness of the satellite genera are discussed. Keys to the genera and species of Potheae and the subgenera and supergroups of Pothos for the region are provided.
    [Show full text]
  • Of Connecting Plants and People
    THE NEWSLEttER OF THE SINGAPORE BOTANIC GARDENS VOLUME 34, JANUARY 2010 ISSN 0219-1688 of connecting plants and people p13 Collecting & conserving Thai Convolvulaceae p2 Sowing the seeds of conservation in an oil palm plantation p8 Spindle gingers – jewels of Singapores forests p24 VOLUME 34, JANUARY 2010 Message from the director Chin See Chung ARTICLES 2 Collecting & conserving Thai Convolvulaceae George Staples 6 Spotlight on research: a PhD project on Convolvulaceae George Staples 8 Sowing the seeds of conservation in an oil palm plantation Paul Leong, Serena Lee 12 Propagation of a very rare orchid, Khoo-Woon Mui Hwang, Lim-Ho Chee Len Robiquetia spathulata Whang Lay Keng, Ali bin Ibrahim 150 years of connecting plants and people: Terri Oh 2 13 The making of stars Two minds, one theory - Wallace & Darwin, the two faces of evolution theory I do! I do! I do! One evening, two stellar performances In Search of Gingers Botanical diplomacy The art of botanical painting Fugitives fleurs: a unique perspective on floral fragments Falling in love Born in the Gardens A garden dialogue - Reminiscences of the Gardens 8 Children celebrate! Botanical party Of saints, ships and suspense Birthday wishes for the Gardens REGULAR FEATURES Around the Gardens 21 Convolvulaceae taxonomic workshop George Staples What’s Blooming 18 22 Upside down or right side up? The baobab tree Nura Abdul Karim Ginger and its Allies 24 Spindle gingers – jewels of Singapores forests Jana Leong-Škornicková From Education Outreach 26 “The Green Sheep” – a first for babies and toddlers at JBCG Janice Yau 27 International volunteers at the Jacob Ballas Children’s Garden Winnie Wong, Janice Yau From Taxonomy Corner 28 The puzzling bathroom bubbles plant..
    [Show full text]
  • The Importance of Petiole Structure on Inhabitability by Ants in Piper Sect. Macrostachys (Piperaceae)
    Blackwell Publishing LtdOxford, UKBOJBotanical Journal of the Linnean Society0024-40742007 The Linnean Society of London? 2007 153•• 181191 Original Article ANT DOMATIA IN PIPER SECT. MACROSTACHYS E. J. TEPE ET AL. Botanical Journal of the Linnean Society, 2007, 153, 181–191. With 3 figures The importance of petiole structure on inhabitability by ants in Piper sect. Macrostachys (Piperaceae) ERIC. J. TEPE*, MICHAEL A. VINCENT and LINDA E. WATSON Department of Botany, Miami University, Oxford, OH 45056, USA Received July 2005; accepted for publication August 2006 Several Central American species of Piper sect. Macrostachys have obligate associations with ants, in which the ant partner derives food and shelter from modified plant structures and, in turn, protects the plant against fungal infection and herbivory. In addition to these obligate ant-plants (i.e. myrmecophytes), several other species in Piper have resident ants only sometimes (facultative), and still other plant species never have resident ants. Sheathing petioles of sect. Macrostachys form the domatia in which ants nest. Myrmecophytes in sect. Macrostachys have tightly closed petiole sheaths with bases that clasp the stem. These sheathing petioles appear to be the single most important plant character in the association between ants and species of sect. Macrostachys. We examined the structure and variation of petioles in these species, and our results indicate that minor modifications in a small number of petiolar characters make the difference between petioles that are suitable for habitation by ants and those that are not. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 153, 181–191. ADDITIONAL KEYWORDS: ant–plant mutualisms – domatia – myrmecophytes – pearl bodies.
    [Show full text]