(AGLAONEMA SIMPLEX BL.) FRUIT EXTRACT Ratana Kiatsongchai

Total Page:16

File Type:pdf, Size:1020Kb

(AGLAONEMA SIMPLEX BL.) FRUIT EXTRACT Ratana Kiatsongchai BIOLOGICAL PROPERTIES AND TOXICITY OF WAN KHAN MAK (AGLAONEMA SIMPLEX BL.) FRUIT EXTRACT Ratana Kiatsongchai A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Biology Suranaree University of Technology Academic Year 2015 ฤทธิ์ทางชีวภาพและความเป็นพิษของสารสกัดจากผลว่านขันหมาก (Aglaonema simplex Bl.) นางสาวรัตนา เกียรติทรงชัย วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลกั สูตรปริญญาวทิ ยาศาสตรดุษฎบี ัณฑิต สาขาวิชาชีววิทยาสิ่งแวดล้อม มหาวทิ ยาลัยเทคโนโลยสี ุรนารี ปีการศึกษา 2558 ACKNOWLEDGEMENTS First, I would like to sincerely thanks to Asst. Prof. Benjamart Chitsomboon my thesis advisor for her kindness and helpful. She supports both works and financials. She lightens up my spirit and inspires me to want to be better person. She gave me a chance that leads me to this day. I extend many thanks to my co-advisor, Dr. Chuleratana Banchonglikitkul for her excellent guidance, valuable advices, and kindly let me have a great research experience in her laboratory at The Thailand Institute of Scientific and Technological Research (TISTR), Pathum Thani. I also would like to thank Asst. Prof. Dr. Supatra Porasuphatana, Asst. Prof. Dr. Wilairat Leeanansaksiri, and Assoc. Prof. Dr. Nooduan Muangsan who were willing to participate in my thesis committee. I would never have been able to finish my dissertation without the financial support both of The OROG Fellowship from SUT Institute of Research and Development Program and The Thailand Institute of Scientific and Technological Research (TISTR) and many thanks go to my colleagues and friends, especially members of Dr. Benjamart’ laboratories. They are my best friends who are always willing to help in every circumstance. Lastly, I would also like to thank my family for their love, supports and understanding that help me to overcome many difficult moments. Ratana Kiatsongchai CONTENTS Page ABSTRACT IN THAI ................................................................................................... I ABSTRACT IN ENGLISH ........................................................................................ III ACKNOWLEDGEMENTS .......................................................................................... V CONTENTS…… ........................................................................................................ VI LIST OF TABLES ...................................................................................................... XI LIST OF FIGURES ................................................................................................... XII LIST OF ABBREVIATIONS .................................................................................... XV CHAPTER I INTRODUCTION ............................................................................................. 1 1.1 Significance of the study ............................................................................... 1 1.2 Research objectives ....................................................................................... 5 1.3 Research hypotheses ..................................................................................... 5 1.4 Scope and limitations of the study ................................................................ 6 1.5 Expected results ............................................................................................. 8 II LITERATURE REVIEWS............................................................................... 9 2.1 Agloanema simplex Bl. .................................................................................. 9 2.2 Traditional use and phytochemical properties of Agloanema simplex Bl. .............................................................................. 10 2.3 Phytochemical composition......................................................................... 12 2.4 Free radicals and antioxidants ..................................................................... 16 VII CONTENTS (Continued) Page 2.5 Toxicity test ................................................................................................. 20 2.6 Inflammation ............................................................................................... 22 2.7 Hypersensitivity ........................................................................................... 31 III MATERIALS AND METHODS .................................................................... 34 3.1 Materials ...................................................................................................... 36 3.1.1 Chemicals and reagents ..................................................................... 36 3.1.2 Experimental animals ........................................................................ 37 3.1.2.1 ICR mice .............................................................................. 37 3.1.2.2 Wistar rat ............................................................................... 38 3.1.3 Cell lines ............................................................................................ 38 3.1.3.1 Maintenances of RAW264.7 cells ........................................ 38 3.1.3.2 Maintenances of RBL-2H3 cells ........................................... 39 3.1.4 Plant materials .................................................................................. 40 3.2 Methods ....................................................................................................... 41 3.2.1 Plant extract preparation ................................................................... 41 3.2.2 Determination of chemical constituents ........................................... 42 3.2.3 Determination of phytochemical compounds................................... 44 3.2.3.1 Total phenolic content (TPC)................................................ 44 3.2.3.2 Total flavonoids content (TFC) ............................................ 45 3.2.3.3 Proanthocyanidins content .................................................... 45 3.2.4 Determination of antioxidant properties .......................................... 46 VIII CONTENTS (Continued) Page 3.2.4.1 DPPH assay ........................................................................... 46 3.2.4.2 FRAP assay ........................................................................... 47 3.2.4.3 Cellular antioxidant activity (CAA) assay ............................ 47 3.2.5 In vivo toxicities ................................................................................ 48 3.2.5.1 Acute oral toxicity test .......................................................... 48 3.2.5.2 Acute systemic toxicity test .................................................. 48 3.2.5.3 In vivo mutagenicity test ....................................................... 49 3.2.6 Dose range-finding studies ................................................................ 50 3.2.6.1 MTT method ......................................................................... 51 3.2.6.1.1 Cytotoxic effect of WKM extract towards RAW264.7 .............................................. 51 3.2.6.1.2 Cytotoxic effect of WKM extract towards RBL-2H3 ................................................ 52 3.2.6.2 Trypan blue exclusion method .............................................. 53 3.2.6.2.1 Cytotoxic effect of WKM extract towards RAW264.7 .............................................. 53 3.2.6.2.2 Cytotoxic effect of WKM extract towards RBL-2H3 ................................................ 54 3.2.7 Anti-allergy method .......................................................................... 55 3.2.8 Anti-inflammation method ................................................................ 56 3.2.8.1 nitrite assay ........................................................................... 57 IX CONTENTS (Continued) Page 3.2.8.2 expression of nitric oxide synthase and COX-2 ................... 57 3.3 Location of research .................................................................................... 59 3.4 Statistical analysis ....................................................................................... 59 IV RESULTS ......................................................................................................... 60 4.1 Phytochemical profile .................................................................................. 60 4.1.1 Percent yield of the WKM extraction ................................................ 60 4.1.2 Proximate composition of Wan Khan Mak dried fruit ...................... 60 4.1.3 Total phenolic content (TPC) ............................................................ 61 4.1.4 Total flavonoids content (TFC) ......................................................... 62 4.1.5 Proanthocyanidins content (PA) ........................................................ 62 4.2 Antioxidant properties of extract from WKM fruits ................................... 63 4.2.1 DPPH radical scavenging activity ..................................................... 63 4.2.2 Ferric Reducing/ Antioxidant Power (FRAP) assay ......................... 66 4.2.3 Cellular antioxidant activity (CAA) .................................................. 66 4.3 In vivo toxicity ............................................................................................. 69 4.3.1 Acute toxicity .................................................................................... 69 4.3.2 Systemic toxicity test........................................................................
Recommended publications
  • Indoor Plants Or Houseplants
    Visit us on the Web: www.gardeninghelp.org Indoor Plants or Houseplants Over the past twenty years houseplants have grown in popularity. Offered in a wide variety of sizes, shapes, colors and textures, houseplants beautify our homes and help soften our environment. They have been scientifically proven to improve our health by lowering blood pressure and removing pollutants from the air we breathe. When selecting a houseplant, choose reputable suppliers who specialize in growing houseplants. Get off to a good start by thoroughly examining each plant. Watch for brown edges and spindly growth with elongated stems and large gaps between new leaves. Inspect leaves and stem junctions for signs of insect or disease problems. Check any support stakes to make sure they are not hiding broken stems or branches. Finally, make sure the plant is placed in an area that suits its optimal requirements for light, temperature and humidity. Where to Place Your House Plants With the exception of the very darkest areas, you can always find a houseplant with growth requirements to match the environmental conditions in your home. The most important factors are light intensity and duration. The best way to determine the intensity of light at a window exposure area is to measure it with a light meter. A light meter measures light in units called foot-candles. One foot-candle is the amount of light from a candle spread over a square foot of surface area. Plants that prefer low light may produce dull, lifeless-looking leaves when exposed to bright light. Bright light can also cause leaf spots or brown-tipped scorched margins.
    [Show full text]
  • Chapter 6 Care and Handling
    Chapter 6 Care and Handling The following TEKS will be addressed in this chapter: (6) The student knows the management factors of floral enterprises. The student is expected to: (A) use temperature, preservatives, and cutting techniques to increase keeping quality; (B) identify tools, chemicals, and equipment used in floral design; (C) fertilize, prune, and water tropical plants; (D) manage pests; and (E) demonstrate the technical skills for increasing the preservation of cut flowers and foliage. Care and Handling of Cut Flowers and Foliages Cut flowers, even though they have been separated from the parent plant, are living, actively metabolizing plant parts. These parts undergo the same basic aging process as the entire plant — only quicker. However, the rate of deterioration can be slowed down considerably by supplying the cut flower with its basic needs. The first and foremost need of a cut flower is water. Second is food. In addition, certain damaging factors such as exposure to ethylene gas, microbial attack and rough handling must be avoided. From a practical point of view, a controlled rate of opening is needed as well as maintenance of good color. All of these factors must be considered by everyone who handles the product. This includes growers wholesalers and retailers. In order to be competitive in the marketplace our product must be desirable to the consumer. Our flowers must be fresh for the customer to enjoy! Factors Affecting Quality There are several factors which play a part in keeping the quality of cut flowers at a high level: (1) the grower (2) moisture balance.
    [Show full text]
  • Interior Plants: Selection and Care
    AZ1025 Interior Plants: Selection and Care 5/98 ELIZABETH D AVISON Some may be purchased at relatively low cost from garden Lecturer, Plant Sciences centers or from garden catalogs. Their readings of Low, Medium and High can give “ballpark figures,” and they can eliminate much of the guesswork in selecting plants (originally authored by Dr. Charles Sacamano, Extension that are adapted to light levels in a given location. Horticulture Specialist, and Dr. Douglas A. Bailey, If sunlight is the major light source you may determine Assistant Professor, Plant Sciences) which category your indoor location falls into by using the following descriptions: Almost any indoor environment is more pleasant and High Light: areas within four feet of large south-east or attractive when living plants are a part of the setting. In west facing windows. apartments, condominiums and single family residences, plants add warmth, personality and year-round beauty. Medium Light: locations in a range of four to eight feet Shopping centers, hotels and resorts take full advantage of from south and east windows and west windows that the colorful, relaxed atmosphere created by green growing do not receive direct sun. things. Offices, banks and other commercial buildings rely Low Light: areas more than eight feet from windows as in on interior plants to humanize the work environment and the center of a room, a hallway or an inside wall. increase productivity. Northern exposures often fall into this category, even There are other important, often overlooked functions close to the window. Many locations that receive only performed by indoor plants. These include directing or artificial light are also low light situations.
    [Show full text]
  • Araceae) in Bogor Botanic Gardens, Indonesia: Collection, Conservation and Utilization
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 140-152 DOI: 10.13057/biodiv/d190121 The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization YUZAMMI Center for Plant Conservation Botanic Gardens (Bogor Botanic Gardens), Indonesian Institute of Sciences. Jl. Ir. H. Juanda No. 13, Bogor 16122, West Java, Indonesia. Tel.: +62-251-8352518, Fax. +62-251-8322187, ♥email: [email protected] Manuscript received: 4 October 2017. Revision accepted: 18 December 2017. Abstract. Yuzammi. 2018. The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization. Biodiversitas 19: 140-152. Bogor Botanic Gardens is an ex-situ conservation centre, covering an area of 87 ha, with 12,376 plant specimens, collected from Indonesia and other tropical countries throughout the world. One of the richest collections in the Gardens comprises members of the aroid family (Araceae). The aroids are planted in several garden beds as well as in the nursery. They have been collected from the time of the Dutch era until now. These collections were obtained from botanical explorations throughout the forests of Indonesia and through seed exchange with botanic gardens around the world. Several of the Bogor aroid collections represent ‘living types’, such as Scindapsus splendidus Alderw., Scindapsus mamilliferus Alderw. and Epipremnum falcifolium Engl. These have survived in the garden from the time of their collection up until the present day. There are many aroid collections in the Gardens that have potentialities not widely recognised. The aim of this study is to reveal the diversity of aroids species in the Bogor Botanic Gardens, their scientific value, their conservation status, and their potential as ornamental plants, medicinal plants and food.
    [Show full text]
  • Aglaonema the Cuttings Were Placed Inside a Propaga- Richard J
    JOBNAME: horts 43#6 2008 PAGE: 1 OUTPUT: August 20 01:22:48 2008 tsp/horts/171632/02986 HORTSCIENCE 43(6):1900–1901. 2008. in a shaded greenhouse and stuck in 50-celled trays containing Vergro Container Mix A (Verlite Co., Tampa, FL) on 25 Aug. 2006. ‘Mondo Bay’ Aglaonema The cuttings were placed inside a propaga- Richard J. Henny1,3 and J. Chen2 tion tent (maximum irradiance of 80 mmolÁm–2Ás–1) for 8 weeks. The rooted cut- University of Florida, Institute of Food and Agricultural Science, tings were allowed to acclimatize for 2 Mid-Florida Research and Education Center, 2725 Binion Road, Apopka, additional weeks. At this time, one-half of FL 32703 the liners were potted one plant per 1.6-L pot using with Vergro Container Mix A (60% Additional index words. Aglaonema nitidum, Aglaonema commutatum, Chinese evergreen, Canadian peat:20% perlite:20% vermiculite) foliage plant, foliage plant production, plant breeding and one-half using Fafard 2 Mix (Conrad Fafard, Agawam, MA; 55% Canadian peat:25% perlite:20% vermiculite) substrate. The genus Aglaonema (family Araceae), that are highlighted by lighter gray–green Plants were grown in randomized block commonly referred to as Chinese evergreens, areas (RHS 191A; Fig. 1). These gray–green experimental design in a shaded greenhouse, have been important ornamental tropical variegated areas appear in uneven 8- to 10-mm a maximum irradiance of 125 mmolÁm–2Ás–1, foliage plants since the 1930s (Smith and wide bands associated with the lateral veins. under natural photoperiod and a temperature Scarborough, 1981). Aglaonema are a reli- The bands originate from the midrib and range of 15 to 34 °C.
    [Show full text]
  • Ornamental Garden Plants of the Guianas, Part 3
    ; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse.
    [Show full text]
  • Assessment on Diversity and Abundance of Araceae in Limestone and Pyroclastics Areas in Gua Musang, Kelantan, Malaysia
    Journal of Tropical Resources and Sustainable Science ISSN: 2289-3946 Volume 1 Number 1, January 2013:16-24 Universiti Malaysia Kelantan Publisher ASSESSMENT ON DIVERSITY AND ABUNDANCE OF ARACEAE IN LIMESTONE AND PYROCLASTICS AREAS IN GUA MUSANG, KELANTAN, MALAYSIA 1NIK YUSZRIN BIN YUSOF, 1ZULHAZMAN HAMZAH, 2FATIMAH KAYAT AND 2ZULHISYAM A.K. 1Department of Earth Science, Faculty of Earth Science, Universiti Malaysia Kelantan Jeli Campus, Locked Bag 100, 16700, Jeli, Kelantan, Malaysia 2Faculty of Agro Based Industry, Universiti Malaysia Kelantan Jeli Campus, Locked Bag 100, 16700, Jeli, Kelantan, Malaysia Corresponding author: [email protected] Abstract: The study was conducted in Gua Musang, Kelantan, namely; Kuala Koh N 04° 52’ 02.2”/ E 102° 26’ 33.3” (represents pyroclastics area) and Tanah Puteh N 04° 46’ 11.9”/ E 101° 58’ 35.5” (represents limestone area). A square plot (100 x 100 m) was set-up in both locations for sampling of Araceae. The result shows diversity of Araceae in limestone (28 species ha-1) is higher as compared to pyroclastics area (21 species ha-1). The most abundant species in limestone are Anadendrum microstachyum, Homalomena griffithii, Rhaphidophora tenuis and Schismatoglottis brevicuspis. In pyroclastics area, the most abundant is S. calyptrata followed by, S. scortechinii, S. brevicuspis and A. microstachyum. The common species in both areas was hemiepiphytic R. mangayi. The least abundant species in limestone are Amorphophallus sp. and Homalomena Chamaecladon Supergroup. Meanwhile, Scindapsus perakensis, Homalomena Cyrtocladon Supergroup, H. pontederiifolia and Aglaonema simplex were counted as least abundant species in pyroclastics area. Geological features, topography (whether on-slope, on- ridge or edge of stream), and altitude are the most influencing factor on distribution and abundance of aroids species.
    [Show full text]
  • Studies on the Araceae of Sulawesi I: New Taxa of Schismatoglottis and Homalomena, and a Preliminary Checklist and Keys for Sulawesi
    ISSN 1346-7565 Acta Phytotax. Geobot. 61 (1): 40–50 (2011) Studies on the Araceae of Sulawesi I: New Taxa of Schismatoglottis and Homalomena, and a Preliminary Checklist and Keys for Sulawesi Agung KurniAwAn1, BAyu Adjie1 And Peter C. BoyCe2 1Bali Botanic Garden, Indonesian Institute of Sciences [LIPI], Candikuning, Baturiti, Tabanan, Bali 82191, Indonesia. *[email protected] (author for correspondence); 2Pusat Pengajian Sains Kajihayat [School of Biological Sciences], Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia Schismatoglottis inculta Kurniawan & P. C. Boyce and Homalomena vittifolia Kurniawan & P. C. Boyce are described and illustrated as a new species from Sulawesi. Recognition of these novelties takes the aroid flora of Sulawesi to 41 species of which 15 (> 35%) are endemic. None of the 17 recorded genera are endemic, and one (Colocasia) is non-indigenous. Two species occur as adventives (Alocasia macrorrhi- zos and Amorphophallus paeoniifolius), and one (Colocasia esculenta) occurs semi-naturalized as an escape from cultivation as a carbohydrate crop. A preliminary checklist of the Araceae of Sulawesi is of- fered, and keys to the genera, and to the Sulawesi species of Schismatoglottis and Homalomena, are pre- sented. Key words: Araceae, Sulawesi, Schismatoglottis, Homalomena While recent years has seen a marked in- tacular, have been described in recent years, e.g., crease in knowledge of the woody flora of Su- Alocasia balgooyi A. Hay (Hay 1998), A. mega- lawesi (e.g., Keßler et al. 2002), the herbaceous watiae Yuzammi & A. Hay (Yuzammi & Hay and mesophytic flora remains one of the least 2003), A. suhirmanniana Yuzammi & Hay (Yu- well-documented for any of the larger landmass- zammi & Hay 1998), Rhaphidophora sabit P.
    [Show full text]
  • History and Current Status of Systematic Research with Araceae
    HISTORY AND CURRENT STATUS OF SYSTEMATIC RESEARCH WITH ARACEAE Thomas B. Croat Missouri Botanical Garden P. O. Box 299 St. Louis, MO 63166 U.S.A. Note: This paper, originally published in Aroideana Vol. 21, pp. 26–145 in 1998, is periodically updated onto the IAS web page with current additions. Any mistakes, proposed changes, or new publications that deal with the systematics of Araceae should be brought to my attention. Mail to me at the address listed above, or e-mail me at [email protected]. Last revised November 2004 INTRODUCTION The history of systematic work with Araceae has been previously covered by Nicolson (1987b), and was the subject of a chapter in the Genera of Araceae by Mayo, Bogner & Boyce (1997) and in Curtis's Botanical Magazine new series (Mayo et al., 1995). In addition to covering many of the principal players in the field of aroid research, Nicolson's paper dealt with the evolution of family concepts and gave a comparison of the then current modern systems of classification. The papers by Mayo, Bogner and Boyce were more comprehensive in scope than that of Nicolson, but still did not cover in great detail many of the participants in Araceae research. In contrast, this paper will cover all systematic and floristic work that deals with Araceae, which is known to me. It will not, in general, deal with agronomic papers on Araceae such as the rich literature on taro and its cultivation, nor will it deal with smaller papers of a technical nature or those dealing with pollination biology.
    [Show full text]
  • Bacterial Leaf Diseases of Foliage Plants Are the Same and Are Discussed Later in This Fact Sheet
    MAGR GOVS MN 2000 FSPP-30, revised 1976 ['· . '} ,1,,,,.. PLANT PATHOLOGY NO. 30-REVISED 1976 Bacterial Leaf Diseases of SUSAN J. OVEREND, WARD C. STIENSTRA Foliage Plants Many foliage plants are susceptible to bacterial diseases, low. The centers of older lesions often turn brown. As the disease especially during gloomy winter months. Common symptoms progresses, affected leaves turn yellow and drop from the stem. include leaf spots, blights, and wilting. Bacterial diseases re­ stricted to the leaves can often be controlled. WHAT ARE BACTERIA? Bacteria are microscopic single-cell organisms that repro­ duce by dividing in half. This process may occur as often as once every 20 minutes, or it may take several hours. In some of the faster multiplying species, a single bacterium can pro­ duce over 47 million descendants in 12 hours. Approximately 170 species of bacteria can cause disease on foliage plants. Bacteria cannot penetrate directly into plant tissue, but must enter through wounds or natural openings such as stomata (pores for air exchange) in leaves. CONDITIONS FAVORABLE FOR THE GROWTH AND MULTIPLICATION OF BACTERIA Bacteria are normally present on plant surfaces but will only cause problems when conditions are favorable for their growth and multiplication. These conditions include high hu­ midity, crowding, and poor air circulation around plants. Figure 1. Bacterial Leaf Spot and Tipburn (Xanthomonasdieffenbachiae) _Misting plants will provide a film of water on the leaves where on a Dieffenbachia leaf. Notice the yellowing of the leaf margin. The bacteria can multiply. older infected area has turned brown. Bacteria were isolated from the Too much, too little, or irregular watering can put plants rectangular cut in the leaf.
    [Show full text]
  • Fl. China 23: 22–23. 2010. 15. AGLAONEMA Schott, Wiener Z
    Fl. China 23: 22–23. 2010. 15. AGLAONEMA Schott, Wiener Z. Kunst 1829: 892. 1829. 广东万年青属 guang dong wan nian qing shu Li Heng (李恒 Li Hen); Peter C. Boyce Herbs, evergreen, sometimes robust. Stem epigeal, erect to decumbent and mostly unbranched or creeping and often branched, internodes green, becoming brown with age, smooth, often rooting at nodes when decumbent. Leaves several, forming an apical crown; petiole shorter than leaf blade, sheath usually long; leaf blade often with striking, silvery and pale green variegated patterns, ovate-elliptic or narrowly elliptic, rarely broadly ovate or sublinear, base often unequal, attenuate to rounded, rarely cordate; primary lateral veins pinnate, often weakly differentiated, running into marginal vein, higher order venation parallel-pinnate. Inflorescences 1–9 per each floral sympodium; peduncle shorter or longer than petioles, sometimes deflexed in fruit. Spathe caducous, persistent, or marcescent, erect, green to whitish, boat-shaped to convolute, not differentiated into tube and blade, ovate to ± globose, slightly to strongly decurrent, often apiculate. Spadix cylindric to clavate, shorter or longer than spathe, stipe long to almost absent; female zone rather few flowered, either separated by staminodes or contiguous with, and much shorter than, male zone; male zone fertile to apex, rarely with staminodes basally. Flowers unisexual, naked. Female flowers: ovary subglobose, 1-loculed; ovule 1, anatropous, broadly ovoid; funicle very short; placenta basal; stylar region short, thick; stigma broad, disciform, concave centrally. Male flowers: stamens free, not forming clear floral groups; filaments usually distinct, connective thickened; thecae opposite, obovoid, short, dehiscing by apical pore or reniform transverse slit. Fruit an ellipsoid berry, outer layer fleshy green but turning yellow, rarely white and finally red.
    [Show full text]
  • Vascular Plant Composition and Diversity of a Coastal Hill Forest in Perak, Malaysia
    www.ccsenet.org/jas Journal of Agricultural Science Vol. 3, No. 3; September 2011 Vascular Plant Composition and Diversity of a Coastal Hill Forest in Perak, Malaysia S. Ghollasimood (Corresponding author), I. Faridah Hanum, M. Nazre, Abd Kudus Kamziah & A.G. Awang Noor Faculty of Forestry, Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia Tel: 98-915-756-2704 E-mail: [email protected] Received: September 7, 2010 Accepted: September 20, 2010 doi:10.5539/jas.v3n3p111 Abstract Vascular plant species and diversity of a coastal hill forest in Sungai Pinang Permanent Forest Reserve in Pulau Pangkor at Perak were studied based on the data from five one hectare plots. All vascular plants were enumerated and identified. Importance value index (IVI) was computed to characterize the floristic composition. To capture different aspects of species diversity, we considered five different indices. The mean stem density was 7585 stems per ha. In total 36797 vascular plants representing 348 species belong to 227 genera in 89 families were identified within 5-ha of a coastal hill forest that is comprises 4.2% species, 10.7% genera and 34.7% families of the total taxa found in Peninsular Malaysia. Based on IVI, Agrostistachys longifolia (IVI 1245), Eugeissona tristis (IVI 890), Calophyllum wallichianum (IVI 807), followed by Taenitis blechnoides (IVI 784) were the most dominant species. The most speciose rich families were Rubiaceae having 27 species, followed by Dipterocarpaceae (21 species), Euphorbiaceae (20 species) and Palmae (14 species). According to growth forms, 57% of all species were trees, 13% shrubs, 10% herbs, 9% lianas, 4% palms, 3.5% climbers and 3% ferns.
    [Show full text]