Human-Monkey Conflict in Sri Lanka

Total Page:16

File Type:pdf, Size:1020Kb

Human-Monkey Conflict in Sri Lanka Primate Conservation 2021 (35) An Ethnoprimatological Approach to Mitigating Sri Lanka’s Human-Monkey Conflicts R. Rudran1,2, S. J. Cabral de Mel3,4, A. Sumanapala5, R. K. de Mel3 and K. K. T. I. Mahindarathna2 1 Smithsonian Conservation Biology Institute, Front Royal, VA, USA 2SPEARS Foundation, Colombo, Sri Lanka 3National Institute of Fundamental Studies, Kandy, Sri Lanka 4Institute of Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia. 5Department of Zoology and Environmental Sciences, University of Colombo, Sri Lanka Abstract: Human-monkey conflicts became a serious problem in Sri Lanka due to extensive deforestation during and after the country’s 26-year ethnic war that ended in 2009. By 2015, these conflicts had affected most of the country’s administra- tive districts, and the Department of Wildlife Conservation (DWC) was under severe public and political pressure to resolve the problem. To help the underfunded and understaffed DWC to address this issue, SPEARS Foundation, a local non-gov- ernmental organization, reviewed the complaint letters the agency had received from different districts. Next, it adopted an ethno-primatological approach to deal with the problem and conducted field surveys in several districts to interview residents and document their experiences with human-monkey conflicts. Those who lived in most of these districts followed Buddhism, which is steeped in the philosophy of compassion towards all living beings. In two districts, however, the interviewees were predominantly Hindus, whose religion also promoted reverence and respect for animals. Nevertheless, during the field sur- veys these people were dealing with problems of reclaiming the homes and croplands they had abandoned several years before, when they fled the war zone. Their hardships included clearing the jungle and defending their crops against monkeys and other wildlife that had invaded their abandoned properties during the war. While experiencing such threats to their survival, they seemed to have ignored their ancient religious doctrine of reverence and respect for living things. Ignoring these noble tradi- tions of peaceful coexistence could have been avoided if a comprehensive plan was available to mitigate people’s conflict with monkeys. This article presents such a plan, rooted in the country’s cultural attributes and strengthened by the views expressed by those interviewed during the surveys. Key Words: Field surveys, interviewee responses, evidence-based conflict mitigation plan, community participation Introduction elephants. Furthermore, all monkey species are endemic to Sri Lanka (Molur et al. 2003) and are also identified on the Sri Lanka’s monkey populations consist of four sub- IUCN Red List of Threatened Species as either endangered species of the purple-faced langur (Semnopithecus vetulus), or threatened with extinction (Rudran 2019; Dittus 2020; three subspecies of the toque macaque (Macaca sinica) and Dittus and Watson 2020; Rudran et al. 2020). a single subspecies of the gray langur (Semnopithecus priam Despite their unique contribution to the world’s bio- thersites). The purple-faced langur and the toque macaque logical diversity and the threats facing their future survival, subspecies are distributed in all three climatic zones of the the people who complained to the Department of Wildlife country, while the gray langur is found only in Sri Lanka’s Conservation (DWC) about crop and property damage were dry zone (Fig. 1). Episodes of human-monkey conflicts clearly hostile towards these monkeys (Cabral et al. 2018). were, therefore, more widely distributed in the country than The harsh solutions many suggested to resolve human- human-elephant conflicts, which are mainly limited to the monkey conflicts also indicated a trend that was seriously dry zone (Prakash et al. 2020). Thus, human-monkey con- at odds with Sri Lanka’s deep-rooted culture of respect for flicts impact more Sri Lankans than problems caused by all living things. It was important, therefore, for the DWC 1 Rudran et al. Figure 1. Climatic Zones of Sri Lanka (from Karunaweera et al. 2014). to determine whether this trend was limited only to the complaints to the DWC between 2007 and 2015 (Cabral et complainants or reflected the views of a larger population, al. 2018). Before conducting a survey, our team used an before deciding to fulfill the agency’s official mandate to open-source GIS software (QGIS, 2015) to lay a 2 km × 2 protect wildlife. Taking the wrong decision would have km grid over a digital map of the district. The team then likely resulted in widespread backlash and condemnation of estimated the number of quadrats from which it could col- DWC, not only by conservationists but also by all Sri Lank- lect data during a six-day period. This estimate was based on ans who cherish their cultural roots. factors such as the condition of the road network available Since the DWC had practical limitations to determine to access different parts of the district and its human popu- whether the trend was widespread, the SPEARS Foundation lation density. If the district was large, the team planned stepped in to conduct field surveys in several districts and more than one six-day survey and determined the number of interview a large number of people to record their views on quadrats to be visited during each of them. human-monkey conflicts. The methods used to collect data About 50% of the quadrats chosen for data collection during and after the field surveys, and the results obtained included the residence of at least one person who had com- during both periods are presented below. This informa- plained to DWC. Quadrats from which there had been no tion should provide the DWC with valuable insights into complaints were chosen with the help of a random selec- Sri Lanka’s human-monkey conflicts, and how the agency tion tool in the QGIS software. If the randomly selected should deal with this culturally sensitive problem, while ful- quadrat without complaints fell on an area without houses filling its official responsibility to help conserve a unique (for example, forest/cropland) either the adjacent or closest component of the country’s wildlife. quadrat with a road network was selected. If the quadrat fell adjacent to or on a quadrat with complaint(s), the sub- Methods sequent quadrat selected for data collection was at least 2 km away. A team of university graduates familiar with this inves- During the survey, our team visited homes in each tigation’s data collection techniques conducted the field quadrat selected for data collection and conducted semi- surveys. The surveys focussed mainly on administrative structured interviews with occupants who were willing to districts that had submitted the largest number of public provide information needed to fill a standard questionnaire 2 Sri Lanka’s human-monkey conflicts Table 1. Number of people interviewed in 11 districts in Sri Lanka. (see Appendix). A similar, questionnaire-based survey of residents was used recently to investigate the island-wide District # % distribution of primates (Pastorini et al. 2021). The ques- Colombo 147 9.06 tionnaire used by our team collected data on people’s per- Kalutara 183 11.28 sonal background, their attitudes towards monkeys, and Kandy 282 17.38 when possible, estimates of financial losses these animals Matara 229 14.11 had caused through crop and property damage. Galle 240 14.79 Our team was unable to collect data for six days in some Gampaha 180 11.09 districts because of inclement weather, temporary shortage of project funds and inability to communicate with local Polonnaruwa 321 19.78 people due to language differences. The quadrat method Nuwara Eliya 11 0.68 of data collection was also not feasible in certain sparsely Badulla 2 0.12 populated districts with large plantations of export crops Jaffna 18 1.10 such as tea and cut flowers. When faced with such situations Kilinochchi 10 0.61 our team used the questionnaire to collect data opportunisti- Total 1623 cally when it met people with whom it shared a common language. The team was also unable to collect sufficient informa- Table 2. Age and education of Interviewees. tion on average monthly losses that interviewees sustained Age category # % Education # % due to crop and property damage. Its inability to obtain this (yrs) information was probably due to the relatively short dura- 18–25 75 4.62 None 21 1.3 tion of the interviews, when interviewees were unable to 26–35 223 13.7 Primary 191 11.8 calculate average monthly losses. To overcome this prob- 36–45 323 19.9 Secondary 1210 74.6 lem, after the surveys were completed our team mailed the 46–55 344 21.2 Tertiary 70 4.3 questionnaire to several divisional secretariats of the gov- ernment requesting them to distribute it to local communi- 56–65 349 21.5 Not listed 131 8.1 ties. This method of collecting data provided a larger pool >65 261 16.1 of crop and property damage information that is discussed Not listed 48 2.96 below. Table 3. Types of Employment of Interviewees. Results and Discussion Employment category # % Field survey details Unemployed 257 15.8 The SPEARS team conducted 13 field surveys of 11 Housewife 120 7.4 administrative districts from January 2016 to June 2018 Unskilled worker 78 4.8 (Table 1). During these surveys, the team used the question- Skilled worker 219 13.5 naire (see Appendix) to conduct 1,623 semi-structured inter- Entrepreneur 228 14.1 views and collect people’s personal data, including their Government employee 45 2.8 views about monkeys. Surveys conducted in the districts of Farmer 337 20.8 Nuwara Eliya, Badulla, Jaffna, and Kilinochchi lasted less Other 139 8.6 than six days due to one or more of the reasons already men- Not mentioned 200 12.3 tioned.
Recommended publications
  • Keshav Ravi by Keshav Ravi
    by Keshav Ravi by Keshav Ravi Preface About the Author In the whole world, there are more than 30,000 species Keshav Ravi is a caring and compassionate third grader threatened with extinction today. One prominent way to who has been fascinated by nature throughout his raise awareness as to the plight of these animals is, of childhood. Keshav is a prolific reader and writer of course, education. nonfiction and is always eager to share what he has learned with others. I have always been interested in wildlife, from extinct dinosaurs to the lemurs of Madagascar. At my ninth Outside of his family, Keshav is thrilled to have birthday, one personal writing project I had going was on the support of invested animal advocates, such as endangered wildlife, and I had chosen to focus on India, Carole Hyde and Leonor Delgado, at the Palo Alto the country where I had spent a few summers, away from Humane Society. my home in California. Keshav also wishes to thank Ernest P. Walker’s Just as I began to explore the International Union for encyclopedia (Walker et al. 1975) Mammals of the World Conservation of Nature (IUCN) Red List species for for inspiration and the many Indian wildlife scientists India, I realized quickly that the severity of threat to a and photographers whose efforts have made this variety of species was immense. It was humbling to then work possible. realize that I would have to narrow my focus further down to a subset of species—and that brought me to this book on the Endangered Mammals of India.
    [Show full text]
  • The Taxonomy of Primates in the Laboratory Context
    P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992).
    [Show full text]
  • The Behavioral Ecology of the Tibetan Macaque
    Fascinating Life Sciences Jin-Hua Li · Lixing Sun Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associ- ated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthu- siasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Jin-Hua Li • Lixing Sun • Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Editors Jin-Hua Li Lixing Sun School of Resources Department of Biological Sciences, Primate and Environmental Engineering Behavior and Ecology Program Anhui University Central Washington University Hefei, Anhui, China Ellensburg, WA, USA International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology Anhui, China School of Life Sciences Hefei Normal University Hefei, Anhui, China Peter M. Kappeler Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research Göttingen, Germany Department of Anthropology/Sociobiology University of Göttingen Göttingen, Germany ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-030-27919-6 ISBN 978-3-030-27920-2 (eBook) https://doi.org/10.1007/978-3-030-27920-2 This book is an open access publication.
    [Show full text]
  • Nonhuman Primates
    Zoological Studies 42(1): 93-105 (2003) Dental Variation among Asian Colobines (Nonhuman Primates): Phylogenetic Similarities or Functional Correspondence? Ruliang Pan1,2,* and Charles Oxnard1 1School of Anatomy and Human Biology, University of Western Australia, Crawley, Perth, WA 6009, Australia 2Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China (Accepted August 27, 2002) Ruliang Pan and Charles Oxnard (2003) Dental variation among Asian colobines (nonhuman primates): phy- logenetic similarities or functional correspondence? Zoological Studies 42(1): 93-105. In order to reveal varia- tions among Asian colobines and to test whether the resemblance in dental structure among them is mainly associated with similarities in phylogeny or functional adaptation, teeth of 184 specimens from 15 Asian colobine species were measured and studied by performing bivariate (allometry) and multivariate (principal components) analyses. Results indicate that each tooth shows a significant close relationship with body size. Low negative and positive allometric scales for incisors and molars (M2s and M3s), respectively, are each con- sidered to be related to special dental modifications for folivorous preference of colobines. Sexual dimorphism in canine eruption reported by Harvati (2000) is further considered to be associated with differences in growth trajectories (allometric pattern) between the 2 sexes. The relationships among the 6 genera of Asian colobines found greatly differ from those proposed in other studies. Four groups were detected: 1) Rhinopithecus, 2) Semnopithecus, 3) Trachypithecus, and 4) Nasalis, Pygathrix, and Presbytis. These separations were mainly determined by differences in molar structure. Molar sizes of the former 2 groups are larger than those of the latter 2 groups.
    [Show full text]
  • Interim Report
    Interim Report Distribution, ecology and habitat use of the Himalayan gray langur Semnopithecus ajax in Jammu and Kashmir, India. Background Himalayan gray langur, Semnopithecus ajax, is considered endangered due to its endemicity to Himalayan region and its declining population size (Groves and Molur, 2008). This primate was formerly considered a subspecies of Semnopithecus entellus (Brandon-Jones 2004, Brandon-Jones and others 2004; and Napier 1985). However, recent studies confirm its status as a species, Semnopithecus ajax (Groves 2001; Ashalakshmi 2015). Due to pre- existing confusion in taxonomy, its current distribution and conservation status are poorly understood. An assessment of (1) geographical distribution and population status, (2) conservation status, and (3) habitat use and feeding ecology are the need of the hour to develop conservation action plans for this species, across its natural range. The very first sighting record of this species was likely from Sikkim at 2700m in 1855 (Hooker 1855). Later it has been recorded in various other parts of Himalayas, e.g., in Nepal (Bishop 1975), Himachal Pradesh (Sugiyama 1976), Pakistan (Roberts 1997) and Kashmir (Lawrence 1895; Brandon-Jones 2004; Molur 2008). In this study, I propose to assess the geographical distribution, status, habitat use and feeding ecology of Himalayan gray langur in Kashmir. Kashmir (32° N, 72° E; Jammu & Kashmir state), in north western India, is an oval-shaped valley surrounded with a chain of mountains ranging from 1600m to 5000m and above. The valley has a mix of forests, orchards, croplands, and human habitation. Due to altitudinal variation, there is variation in temperature and vegetation type.
    [Show full text]
  • The Japan Monkey Centre Primates Brain Imaging Repository for Comparative Neuroscience: an Archive of Digital Records Including Records for Endangered Species
    Primates (2018) 59:553–570 https://doi.org/10.1007/s10329-018-0694-3 ORIGINAL ARTICLE The Japan Monkey Centre Primates Brain Imaging Repository for comparative neuroscience: an archive of digital records including records for endangered species Tomoko Sakai1,2,3,4 · Junichi Hata2,3,5 · Hiroki Ohta3 · Yuta Shintaku6,7 · Naoto Kimura7 · Yuki Ogawa3 · Kazumi Sogabe8 · Susumu Mori1,9 · Hirotaka James Okano3 · Yuzuru Hamada10 · Shinsuke Shibata2 · Hideyuki Okano2,5 · Kenichi Oishi1 Received: 26 February 2018 / Accepted: 9 October 2018 / Published online: 24 October 2018 © The Author(s) 2018 Abstract Advances in magnetic resonance imaging (MRI) and computational analysis technology have enabled comparisons among various primate brains in a three-dimensional electronic format. Results from comparative studies provide information about common features across primates and species-specifc features of neuroanatomy. Investigation of various species of non- human primates is important for understanding such features, but the majority of comparative MRI studies have been based on experimental primates, such as common marmoset, macaques, and chimpanzee. A major obstacle has been the lack of a database that includes non-experimental primates’ brain MRIs. To facilitate scientifc discoveries in the feld of comparative neuroanatomy and brain evolution, we launched a collaborative project to develop an open-resource repository of non-human primate brain images obtained using ex vivo MRI. As an initial open resource, here we release a collection of structural MRI and difusion tensor images obtained from 12 species: pygmy marmoset, owl monkey, white-fronted capuchin, crab-eating macaque, Japanese macaque, bonnet macaque, toque macaque, Sykes’ monkey, red-tailed monkey, Schmidt’s guenon, de Brazza’s guenon, and lar gibbon.
    [Show full text]
  • Population Dynamics of the Toque Monkey, Macaca Sinica
    /?7_f-P'^KS Population Dynamics of the Toque Monkey, Macaca sinica 1975. In: "Socioecology and Psychology of Primates". ii. II. 'l\ittle, ed., I out on xtiblishers: 'Dhe Hague, pp. 125-151 WOLFGANG P. J. DITTUS INTRODUCTION Fundamental to any understanding of the adaptation of animals to their natural environment is the knowledge of their numbers and life and death characteristics. The data on population dynamics to be presented here is based on a three and one-half year field study of the toque macaque, Macaca sinica (Linnaeus 1771) of Sri Lanka (Ceylon). Publications deal- ing with aspects of ecology and behavior are in preparation. The toque macaque, a member of the family Cercopithecidae, shares the subgenus Zati (Reichenbach 1862) with the bonnet macaque, M. radiata (Geoffroy 1812), of southern India and possibly M. assamensis (McClelland 1839) of northeastern India and Burma (Hill and Bernstein 1969). In its range M. sinica is confined to the forested regions of Ceylon, and three subspecies have been recognized; M. s. sinica (Linnaeus 1771), M. s. aurijrons(Pocock 1931), andM. s. op'tsthomelas(Hill 1942), Research was supported, in part, by National Science Foundation grant GB-3545, awarded to Dr. John F. Eisenberg; National Institute of Mental Health grant RolMH15673-01; -02; research grant 686 from the National Geographic Society; and Smithsonian Institution Foreign Currency Program grant SFC-7004, awarded to Dr. I. F. Eisenberg and Dr. Suzanne Ripley. It is a pleasure to express my gratitude to Dr. John F. Eisenberg whose support, advice and kind encouragement made this research a reality. I thank especially Messrs.
    [Show full text]
  • Subspecies of Sri Lankan Mammals As Units of Biodiversity Conservation, with Special Reference to the Primates
    Ceylon Journal of Science (Bio. Sci.) 42(2): 1-27, 2013 DOI: http://dx.doi.org/10.4038/cjsbs.v42i2.6606 LEAD ARTICLE Subspecies of Sri Lankan Mammals as Units of Biodiversity Conservation, with Special Reference to the Primates Wolfgang P. J. Dittus1, 2 1National Institute of Fundamental Studies, Kandy 2000, Sri Lanka. 2Smithsonian Conservation Biology Institute, Washington, DC 20013, USA. ABSTRACT Subspecies embody the evolution of different phenotypes as adaptations to local environmental differences in keeping with the concept of the Evolutionary Significant Unit (ESU). Sri Lankan mammals, being mostly of Indian-Indochinese origins, were honed, in part, by the events following the separation of Sri Lanka from Gondwana in the late Miocene. The emerging new Sri Lankan environment provided a varied topographic, climatic and biotic stage and impetus for new mammalian adaptations. This history is manifest nowhere as clearly as in the diversity of non-endemic and endemic genera, species and subspecies of Sri Lankan mammals that offer a cross-sectional time-slice (window) of evolution in progress: 3 of 53 genera (6%), and 22 of 91 species (24%) are endemic, but incorporating subspecies, the majority 69 of 108 (64%) Sri Lankan land-living indigenous mammal taxa are diversified as endemics. (Numerical details may change with taxonomic updates, but the pattern is clear). These unique forms distinguish Sri Lankan mammals from their continental relatives, and contribute to the otherwise strong biogeographic differences within the biodiversity hotspot shared with the Western Ghats. Regardless of the eventual fates of individual subspecies or ESU’s they are repositories of phenotypic and genetic diversity and crucibles for the evolution of new endemic species and genera.
    [Show full text]
  • Seasonal Variations in Food Supply for Wild Primates Claude Marcel Hladik
    Seasonal Variations in Food Supply for Wild Primates Claude Marcel Hladik To cite this version: Claude Marcel Hladik. Seasonal Variations in Food Supply for Wild Primates. I. de GARINE & G. A. HARRISON. Coping with Uncertainty in Food Supply, Clarendon Press, Oxford, pp.1-25, 1988. hal-00578690 HAL Id: hal-00578690 https://hal.archives-ouvertes.fr/hal-00578690 Submitted on 27 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. observé le14février1975surunîlotdel’Ivindo Ikata, jeunegorillemâle Coprophagie Uncertainty in Food Supply Primates. In : I. de GARINE et G. A. HARRISON HLADIK, C.(Eds.), M. (1988) — Seasonal Variations in Food Supply for Wild Document publiéen1988: . Clarendon Press, Oxford : 1-25. Coping with " - 2 ~ :;; "~- ~ ~~ ~ ~ t- ~ ~ " - ~i~ o " H > .§ cZ 3 xXX X 0- en ~ ~ >~ Q. "0 ~IRI~xxxxxxxxxxxx "0 9. - t>C>t>t>t>t> 0 xxxxxxxxxxxxxxxxxxxw 00000 I~ t>!>t>t>!>t>c>t>t>c>t> ° lxxxxxxxxxx o 0000000000 n {> 5~ Ixx00x000x 0 {> 0 Z "Tlx.,- (\l 2 5 Q~ 0x0000 :E ;:::0: :E IT _" 0 iE Ul_ 0< xxx000000 "g. " {> xxxx <0 000000000 ~ ~ {>{> xxxx 00000 ~" {>{> ~ 0xx000 0S c~ xxx -< o ~z Z ." o o " n 1(") ;; Body weight in grams ~ 0" 0~ ~ 0 0 0 00; 0 0~ <0 ~I :r 0 0Z r < ,.
    [Show full text]
  • Ontogeny of Positional Behavior in Captive Silvered Langurs (Trachypithecus Cristatus)
    Ontogeny of Positional Behavior in Captive Silvered Langurs (Trachypithecus cristatus) A Senior Honors Thesis Presented in Partial Fulfillment of the Requirements for graduation with research distinction in Anthropological Science in the undergraduate colleges of The Ohio State University by Amy Eakins The Ohio State University March 2010 Project Advisor: Professor W. Scott McGraw, Department of Anthropology ABSTRACT Compared to most other mammalian groups, primates are known for the great diversity of positional behavior they exhibit. Their positional repertoire is not static through time, but rather changes with age. As primates age and body size increases, the manner in which animals navigate their environment responds to shifting biomechanical, nutritional, socio-behavioral and reproductive factors. In this study, I examined positional behavior in a colony of captive colobine monkeys, hypothesizing that locomotor and postural diversity will increase with age due to changing physiological and ecological processes. I predicted that as animals mature, their positional diversity will increase as they become more adept at negotiating their three- dimensional environments. I examined age effects on positional behavior in silvered langurs (Trachypithecus cristatus) housed at the Columbus Zoo. Data were collected from January – August 2009 using instantaneous focal animal sampling on a breeding group containing four adults, two juveniles, and one infant. During each scan I recorded the focal animal’s identity, maintenance activity, substrate, and postural (19 categories) or locomotor (12 categories) behavior. Chi-square tests were performed on the data set of 4504 scans. Contrary to expectations, my analyses show that the number of observed positional behaviors did not change significantly with age, although the types of behaviors observed did change.
    [Show full text]
  • 2007 Primate Teacher
    Guide to South Asian Primates for Teachers and Students of All Ages Lorises Langurs Macaques Gibbons Compiled and Edited by Sally Walker and Sanjay Molur Illustrations by Stephen Nash Guide to South Asian Primates for Teachers and Students of All Ages Sally Walker & Sanjay Molur (Compilers & Editors) Compiled from Status of South Asian Primates. Report of the Conservation Assessment and Management Plan CAMP Workshop 2003, recent notes on primates taxonomy from several sources and practical action suggestion for kids Published by: Zoo Outreach Organisation and Primate Specialist Group – South Asia in collaboration with Wildlife Information & Liaison Development Society Copyright:© Zoo Outreach Organisation 2007 This publication can be reproduced for educational and non-commercial purposes without prior permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior permission (in writing) of the copyright holder. ISBN: 81-88722-20-0 Citation: Walker, S. & S. Molur (Compilers & Editors) 2007. Guide to South Asian Primates for Teachers and Students of All Ages. Zoo Outreach Organisation, PSG South Asia and WILD, Coimbatore, India. Illustrations by: Stephen Nash Sponsored by: Margot Marsh Biodiversity Foundation Primate Action Fund/ Conservation International Compiled by: Sally Walker and Sanjay Molur from the book Molur et al. (2003). Status of South Asian Primates, Report of the Conservation Assessment and Management Plan CAMP Workshop, Coimbatore, 2003 Proofreading by: R. Marimuthu; Typesetting by: Latha Ravikumar The international boundaries of India reproduced in this book are neither purported to be correct nor authentic by the Survey of India directives.
    [Show full text]
  • OPTIMAL FORAGING on the ROOF of the WORLD: a FIELD STUDY of HIMALAYAN LANGURS a Dissertation Submitted to Kent State University
    OPTIMAL FORAGING ON THE ROOF OF THE WORLD: A FIELD STUDY OF HIMALAYAN LANGURS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Kenneth A. Sayers May 2008 Dissertation written by Kenneth A. Sayers B.A., Anderson University, 1996 M.A., Kent State University, 1999 Ph.D., Kent State University, 2008 Approved by ____________________________________, Dr. Marilyn A. Norconk Chair, Doctoral Dissertation Committee ____________________________________, Dr. C. Owen Lovejoy Member, Doctoral Dissertation Committee ____________________________________, Dr. Richard S. Meindl Member, Doctoral Dissertation Committee ____________________________________, Dr. Charles R. Menzel Member, Doctoral Dissertation Committee Accepted by ____________________________________, Dr. Robert V. Dorman Director, School of Biomedical Sciences ____________________________________, Dr. John R. D. Stalvey Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES ............................................................................................... vi LIST OF TABLES ............................................................................................... viii ACKNOWLEDGEMENTS .....................................................................................x Chapter I. PRIMATES AT THE EXTREMES ..................................................1 Introduction: Primates in marginal habitats ......................................1 Prosimii .............................................................................................2
    [Show full text]