Statistical Inference: the Big Picture

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Inference: the Big Picture Statistical Science 2011, Vol. 26, No. 1, 1–9 DOI: 10.1214/10-STS337 c Institute of Mathematical Statistics, 2011 Statistical Inference: The Big Picture1 Robert E. Kass Abstract. Statistics has moved beyond the frequentist-Bayesian con- troversies of the past. Where does this leave our ability to interpret re- sults? I suggest that a philosophy compatible with statistical practice, labeled here statistical pragmatism, serves as a foundation for infer- ence. Statistical pragmatism is inclusive and emphasizes the assump- tions that connect statistical models with observed data. I argue that introductory courses often mischaracterize the process of statistical in- ference and I propose an alternative “big picture” depiction. Key words and phrases: Bayesian, confidence, frequentist, statistical education, statistical pragmatism, statistical significance. 1. INTRODUCTION interpretations of posterior probability in terms of subjective belief, or confidence in terms of long-run The protracted battle for the foundations of statis- frequency, give students a limited and sometimes tics, joined vociferously by Fisher, Jeffreys, Neyman, confusing view of the nature of statistical inference. Savage and many disciples, has been deeply illumi- When used to introduce the expression of uncer- nating, but it has left statistics without a philoso- tainty based on a random sample, these caricatures phy that matches contemporary attitudes. Because forfeit an opportunity to articulate a fundamental each camp took as its goal exclusive ownership of inference, each was doomed to failure. We have all, attitude of statistical practice. or nearly all, moved past these old debates, yet our Most modern practitioners have, I think, an open- textbook explanations have not caught up with the minded view about alternative modes of inference, eclecticism of statistical practice. but are acutely aware of theoretical assumptions and The difficulties go both ways. Bayesians have de- the many ways they may be mistaken. I would sug- nied the utility of confidence and statistical signifi- gest that it makes more sense to place in the center cance, attempting to sweep aside the obvious success of our logical framework the match or mismatch of of these concepts in applied work. Meanwhile, for theoretical assumptions with the real world of data. arXiv:1106.2895v2 [stat.OT] 22 Jun 2011 their part, frequentists have ignored the possibility This, it seems to me, is the common ground that of inference about unique events despite their ubiq- Bayesian and frequentist statistics share; it is more uitous occurrence throughout science. Furthermore, fundamental than either paradigm taken separately; and as we strive to foster widespread understanding Robert E. Kass is Professor, Department of Statistics, of statistical reasoning, it is more important for be- Center for the Neural Basis of Cognition and Machine ginning students to appreciate the role of theoret- Learning Department, Carnegie Mellon University, ical assumptions than for them to recite correctly Pittsburgh, Pennsylvania 15213, USA e-mail: the long-run interpretation of confidence intervals. [email protected]. With the hope of prodding our discipline to right 1Discussed in 10.1214/11-STS337C, 10.1214/11-STS337A, a lingering imbalance, I attempt here to describe the 10.1214/11-STS337D and 10.1214/11-STS337B; rejoinder at dominant contemporary philosophy of statistics. 10.1214/11-STS337REJ. This is an electronic reprint of the original article 2. STATISTICAL PRAGMATISM published by the Institute of Mathematical Statistics in Statistical Science, 2011, Vol. 26, No. 1, 1–9. This I propose to call this modern philosophy statisti- reprint differs from the original in pagination and cal pragmatism. I think it is based on the following typographic detail. attitudes: 1 2 R. E. KASS 1. Confidence, statistical significance, and posterior probability are all valuable inferential tools. 2. Simple chance situations, where counting argu- ments may be based on symmetries that generate equally likely outcomes (six faces on a fair die; 52 cards in a shuffled deck), supply basic intuitions about probability. Probability may be built up to important but less immediately intuitive situ- ations using abstract mathematics, much the way Fig. 1. The big picture of statistical inference. real numbers are defined abstractly based on in- Statistical procedures are abstractly defined in tuitions coming from fractions. Probability is use- terms of mathematics but are used, in conjunc- tion with scientific models and methods, to explain fully calibrated in terms of fair bets: another way observable phenomena. This picture emphasizes the hypothet- to say the probability of rolling a 3 with a fair ical link between variation in data and its description using die is 1/6 is that 5 to 1 odds against rolling a 3 statistical models. would be a fair bet. 3. Long-run frequencies are important mathemati- conclusions most often concern scientific models cally, interpretively, and pedagogically. However, (or theories), so that their “real world” implica- it is possible to assign probabilities to unique tions (involving new data) are somewhat indirect events, including rolling a 3 with a fair die or (the new data will involve new and different ex- having a confidence interval cover the true mean, periments). without considering long-run frequency. Long-run The statistical models in Figure 1 could involve frequencies may be regarded as consequences of large function spaces or other relatively weak prob- the law of large numbers rather than as part of abilistic assumptions. Careful consideration of the the definition of probability or confidence. connection between models and data is a core com- 4. Similarly, the subjective interpretation of poste- ponent of both the art of statistical practice and rior probability is important as a way of under- the science of statistical methodology. The purpose standing Bayesian inference, but it is not funda- of Figure 1 is to shift the grounds for discussion. mental to its use: in reporting a 95% posterior Note, in particular, that data should not be con- interval one need not make a statement such as, fused with random variables. Random variables live “My personal probability of this interval covering in the theoretical world. When we say things like, the mean is 0.95.” “Let us assume the data are normally distributed” 5. Statistical inferences of all kinds use statistical and we proceed to make a statistical inference, we models, which embody theoretical assumptions. do not need to take these words literally as asserting As illustrated in Figure 1, like scientific models, that the data form a random sample. Instead, this statistical models exist in an abstract framework; kind of language is a convenient and familiar short- to distinguish this framework from the real world hand for the much weaker assertion that, for our inhabited by data we may call it a “theoretical specified purposes, the variability of the data is ade- world.” Random variables, confidence intervals, quately consistent with variability that would occur and posterior probabilities all live in this theo- in a random sample. This linguistic amenity is used retical world. When we use a statistical model to routinely in both frequentist and Bayesian frame- make a statistical inference we implicitly assert works. Historically, the distinction between data and that the variation exhibited by data is captured random variables, the match of the model to the reasonably well by the statistical model, so that data, was set aside, to be treated as a separate topic the theoretical world corresponds reasonably well apart from the foundations of inference. But once to the real world. Conclusions are drawn by ap- the data themselves were considered random vari- plying a statistical inference technique, which is ables, the frequentist-Bayesian debate moved into a theoretical construct, to some real data. Fig- the theoretical world: it became a debate about the ure 1 depicts the conclusions as straddling the best way to reason from random variables to infer- theoretical and real worlds. Statistical inferences ences about parameters. This was consistent with may have implications for the real world of new developments elsewhere. In other parts of science, observable phenomena, but in scientific contexts, the distinction between quantities to be measured STATISTICAL INFERENCE 3 (A) (B) Fig. 2. (A) BARS fits to a pair of peri-stimulus time histograms displaying neural firing rate of a particular neuron under two alternative experimental conditions. (B) The two BARS fits are overlaid for ease of comparison. and their theoretical counterparts within a mathe- would report perception with probability p = 0.5. matical theory can be relegated to a different sub- Because the data reported by Hecht et al. involved ject—to a theory of errors. In statistics, we do not fairly large samples, we would obtain essentially the have that luxury, and it seems to me important, same answer if instead we applied Bayesian methods from a pragmatic viewpoint, to bring to center stage to get an interval having 95% posterior probability. the identification of models with data. The purpose But how should such an interval be interpreted? of doing so is that it provides different interpreta- A more recent example comes from DiMatteo, Gen- tions of both frequentist and Bayesian inference, in- ovese and Kass (2001), who illustrated a new non- terpretations which, I believe, are closer to the atti- parametric regression method
Recommended publications
  • Statistical Inferences Hypothesis Tests
    STATISTICAL INFERENCES HYPOTHESIS TESTS Maªgorzata Murat BASIC IDEAS Suppose we have collected a representative sample that gives some information concerning a mean or other statistical quantity. There are two main questions for which statistical inference may provide answers. 1. Are the sample quantity and a corresponding population quantity close enough together so that it is reasonable to say that the sample might have come from the population? Or are they far enough apart so that they likely represent dierent populations? 2. For what interval of values can we have a specic level of condence that the interval contains the true value of the parameter of interest? STATISTICAL INFERENCES FOR THE MEAN We can divide statistical inferences for the mean into two main categories. In one category, we already know the variance or standard deviation of the population, usually from previous measurements, and the normal distribution can be used for calculations. In the other category, we nd an estimate of the variance or standard deviation of the population from the sample itself. The normal distribution is assumed to apply to the underlying population, but another distribution related to it will usually be required for calculations. TEST OF HYPOTHESIS We are testing the hypothesis that a sample is similar enough to a particular population so that it might have come from that population. Hence we make the null hypothesis that the sample came from a population having the stated value of the population characteristic (the mean or the variation). Then we do calculations to see how reasonable such a hypothesis is. We have to keep in mind the alternative if the null hypothesis is not true, as the alternative will aect the calculations.
    [Show full text]
  • Higher-Order Asymptotics
    Higher-Order Asymptotics Todd Kuffner Washington University in St. Louis WHOA-PSI 2016 1 / 113 First- and Higher-Order Asymptotics Classical Asymptotics in Statistics: available sample size n ! 1 First-Order Asymptotic Theory: asymptotic statements that are correct to order O(n−1=2) Higher-Order Asymptotics: refinements to first-order results 1st order 2nd order 3rd order kth order error O(n−1=2) O(n−1) O(n−3=2) O(n−k=2) or or or or o(1) o(n−1=2) o(n−1) o(n−(k−1)=2) Why would anyone care? deeper understanding more accurate inference compare different approaches (which agree to first order) 2 / 113 Points of Emphasis Convergence pointwise or uniform? Error absolute or relative? Deviation region moderate or large? 3 / 113 Common Goals Refinements for better small-sample performance Example Edgeworth expansion (absolute error) Example Barndorff-Nielsen’s R∗ Accurate Approximation Example saddlepoint methods (relative error) Example Laplace approximation Comparative Asymptotics Example probability matching priors Example conditional vs. unconditional frequentist inference Example comparing analytic and bootstrap procedures Deeper Understanding Example sources of inaccuracy in first-order theory Example nuisance parameter effects 4 / 113 Is this relevant for high-dimensional statistical models? The Classical asymptotic regime is when the parameter dimension p is fixed and the available sample size n ! 1. What if p < n or p is close to n? 1. Find a meaningful non-asymptotic analysis of the statistical procedure which works for any n or p (concentration inequalities) 2. Allow both n ! 1 and p ! 1. 5 / 113 Some First-Order Theory Univariate (classical) CLT: Assume X1;X2;::: are i.i.d.
    [Show full text]
  • The Focused Information Criterion in Logistic Regression to Predict Repair of Dental Restorations
    THE FOCUSED INFORMATION CRITERION IN LOGISTIC REGRESSION TO PREDICT REPAIR OF DENTAL RESTORATIONS Cecilia CANDOLO1 ABSTRACT: Statistical data analysis typically has several stages: exploration of the data set; deciding on a class or classes of models to be considered; selecting the best of them according to some criterion and making inferences based on the selected model. The cycle is usually iterative and will involve subject-matter considerations as well as statistical insights. The conclusion reached after such a process depends on the model(s) selected, but the consequent uncertainty is not usually incorporated into the inference. This may lead to underestimation of the uncertainty about quantities of interest and overoptimistic and biased inferences. This framework has been the aim of research under the terminology of model uncertainty and model averanging in both, frequentist and Bayesian approaches. The former usually uses the Akaike´s information criterion (AIC), the Bayesian information criterion (BIC) and the bootstrap method. The last weigths the models using the posterior model probabilities. This work consider model selection uncertainty in logistic regression under frequentist and Bayesian approaches, incorporating the use of the focused information criterion (FIC) (CLAESKENS and HJORT, 2003) to predict repair of dental restorations. The FIC takes the view that a best model should depend on the parameter under focus, such as the mean, or the variance, or the particular covariate values. In this study, the repair or not of dental restorations in a period of eighteen months depends on several covariates measured in teenagers. The data were kindly provided by Juliana Feltrin de Souza, a doctorate student at the Faculty of Dentistry of Araraquara - UNESP.
    [Show full text]
  • The Method of Maximum Likelihood for Simple Linear Regression
    08:48 Saturday 19th September, 2015 See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/ Lecture 6: The Method of Maximum Likelihood for Simple Linear Regression 36-401, Fall 2015, Section B 17 September 2015 1 Recapitulation We introduced the method of maximum likelihood for simple linear regression in the notes for two lectures ago. Let's review. We start with the statistical model, which is the Gaussian-noise simple linear regression model, defined as follows: 1. The distribution of X is arbitrary (and perhaps X is even non-random). 2. If X = x, then Y = β0 + β1x + , for some constants (\coefficients", \parameters") β0 and β1, and some random noise variable . 3. ∼ N(0; σ2), and is independent of X. 4. is independent across observations. A consequence of these assumptions is that the response variable Y is indepen- dent across observations, conditional on the predictor X, i.e., Y1 and Y2 are independent given X1 and X2 (Exercise 1). As you'll recall, this is a special case of the simple linear regression model: the first two assumptions are the same, but we are now assuming much more about the noise variable : it's not just mean zero with constant variance, but it has a particular distribution (Gaussian), and everything we said was uncorrelated before we now strengthen to independence1. Because of these stronger assumptions, the model tells us the conditional pdf 2 of Y for each x, p(yjX = x; β0; β1; σ ). (This notation separates the random variables from the parameters.) Given any data set (x1; y1); (x2; y2);::: (xn; yn), we can now write down the probability density, under the model, of seeing that data: n n (y −(β +β x ))2 Y 2 Y 1 − i 0 1 i p(yijxi; β0; β1; σ ) = p e 2σ2 2 i=1 i=1 2πσ 1See the notes for lecture 1 for a reminder, with an explicit example, of how uncorrelated random variables can nonetheless be strongly statistically dependent.
    [Show full text]
  • Use of the Kurtosis Statistic in the Frequency Domain As an Aid In
    lEEE JOURNALlEEE OF OCEANICENGINEERING, VOL. OE-9, NO. 2, APRIL 1984 85 Use of the Kurtosis Statistic in the FrequencyDomain as an Aid in Detecting Random Signals Absmact-Power spectral density estimation is often employed as a couldbe utilized in signal processing. The objective ofthis method for signal ,detection. For signals which occur randomly, a paper is to compare the PSD technique for signal processing frequency domain kurtosis estimate supplements the power spectral witha new methodwhich computes the frequency domain density estimate and, in some cases, can be.employed to detect their presence. This has been verified from experiments vith real data of kurtosis (FDK) [2] forthe real and imaginary parts of the randomly occurring signals. In order to better understand the detec- complex frequency components. Kurtosis is defined as a ratio tion of randomlyoccurring signals, sinusoidal and narrow-band of a fourth-order central moment to the square of a second- Gaussian signals are considered, which when modeled to represent a order central moment. fading or multipath environment, are received as nowGaussian in Using theNeyman-Pearson theory in thetime domain, terms of a frequency domain kurtosis estimate. Several fading and multipath propagation probability density distributions of practical Ferguson [3] , has shown that kurtosis is a locally optimum interestare considered, including Rayleigh and log-normal. The detectionstatistic under certain conditions. The reader is model is generalized to handle transient and frequency modulated referred to Ferguson'swork for the details; however, it can signals by taking into account the probability of the signal being in a be simply said thatit is concernedwith detecting outliers specific frequency range over the total data interval.
    [Show full text]
  • What Is Statistic?
    What is Statistic? OPRE 6301 In today’s world. ...we are constantly being bombarded with statistics and statistical information. For example: Customer Surveys Medical News Demographics Political Polls Economic Predictions Marketing Information Sales Forecasts Stock Market Projections Consumer Price Index Sports Statistics How can we make sense out of all this data? How do we differentiate valid from flawed claims? 1 What is Statistics?! “Statistics is a way to get information from data.” Statistics Data Information Data: Facts, especially Information: Knowledge numerical facts, collected communicated concerning together for reference or some particular fact. information. Statistics is a tool for creating an understanding from a set of numbers. Humorous Definitions: The Science of drawing a precise line between an unwar- ranted assumption and a forgone conclusion. The Science of stating precisely what you don’t know. 2 An Example: Stats Anxiety. A business school student is anxious about their statistics course, since they’ve heard the course is difficult. The professor provides last term’s final exam marks to the student. What can be discerned from this list of numbers? Statistics Data Information List of last term’s marks. New information about the statistics class. 95 89 70 E.g. Class average, 65 Proportion of class receiving A’s 78 Most frequent mark, 57 Marks distribution, etc. : 3 Key Statistical Concepts. Population — a population is the group of all items of interest to a statistics practitioner. — frequently very large; sometimes infinite. E.g. All 5 million Florida voters (per Example 12.5). Sample — A sample is a set of data drawn from the population.
    [Show full text]
  • Structured Statistical Models of Inductive Reasoning
    CORRECTED FEBRUARY 25, 2009; SEE LAST PAGE Psychological Review © 2009 American Psychological Association 2009, Vol. 116, No. 1, 20–58 0033-295X/09/$12.00 DOI: 10.1037/a0014282 Structured Statistical Models of Inductive Reasoning Charles Kemp Joshua B. Tenenbaum Carnegie Mellon University Massachusetts Institute of Technology Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describe 4 applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabi- listic inferences about the extensions of novel properties, but the priors for the 4 models are defined over different kinds of structures that capture different relationships between the categories in a domain. The framework therefore shows how statistical inference can operate over structured background knowledge, and the authors argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning. Keywords: inductive reasoning, property induction, knowledge representation, Bayesian inference Humans are adept at making inferences that take them beyond This article describes a formal approach to inductive inference the limits of their direct experience.
    [Show full text]
  • Statistical Inference: Paradigms and Controversies in Historic Perspective
    Jostein Lillestøl, NHH 2014 Statistical inference: Paradigms and controversies in historic perspective 1. Five paradigms We will cover the following five lines of thought: 1. Early Bayesian inference and its revival Inverse probability – Non-informative priors – “Objective” Bayes (1763), Laplace (1774), Jeffreys (1931), Bernardo (1975) 2. Fisherian inference Evidence oriented – Likelihood – Fisher information - Necessity Fisher (1921 and later) 3. Neyman- Pearson inference Action oriented – Frequentist/Sample space – Objective Neyman (1933, 1937), Pearson (1933), Wald (1939), Lehmann (1950 and later) 4. Neo - Bayesian inference Coherent decisions - Subjective/personal De Finetti (1937), Savage (1951), Lindley (1953) 5. Likelihood inference Evidence based – likelihood profiles – likelihood ratios Barnard (1949), Birnbaum (1962), Edwards (1972) Classical inference as it has been practiced since the 1950’s is really none of these in its pure form. It is more like a pragmatic mix of 2 and 3, in particular with respect to testing of significance, pretending to be both action and evidence oriented, which is hard to fulfill in a consistent manner. To keep our minds on track we do not single out this as a separate paradigm, but will discuss this at the end. A main concern through the history of statistical inference has been to establish a sound scientific framework for the analysis of sampled data. Concepts were initially often vague and disputed, but even after their clarification, various schools of thought have at times been in strong opposition to each other. When we try to describe the approaches here, we will use the notions of today. All five paradigms of statistical inference are based on modeling the observed data x given some parameter or “state of the world” , which essentially corresponds to stating the conditional distribution f(x|(or making some assumptions about it).
    [Show full text]
  • Statistical Models in R Some Examples
    Statistical Models Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Statistical Models Outline Statistical Models Linear Models in R Statistical Models Regression Regression analysis is the appropriate statistical method when the response variable and all explanatory variables are continuous. Here, we only discuss linear regression, the simplest and most common form. Remember that a statistical model attempts to approximate the response variable Y as a mathematical function of the explanatory variables X1;:::; Xn. This mathematical function may involve parameters. Regression analysis attempts to use sample data find the parameters that produce the best model Statistical Models Linear Models The simplest such model is a linear model with a unique explanatory variable, which takes the following form. y^ = a + bx: Here, y is the response variable vector, x the explanatory variable, y^ is the vector of fitted values and a (intercept) and b (slope) are real numbers. Plotting y versus x, this model represents a line through the points. For a given index i,y ^i = a + bxi approximates yi . Regression amounts to finding a and b that gives the best fit. Statistical Models Linear Model with 1 Explanatory Variable ● 10 ● ● ● ● ● 5 y ● ● ● ● ● ● y ● ● y−hat ● ● ● ● 0 ● ● ● ● x=2 0 1 2 3 4 5 x Statistical Models Plotting Commands for the record The plot was generated with test data xR, yR with: > plot(xR, yR, xlab = "x", ylab = "y") > abline(v = 2, lty = 2) > abline(a = -2, b = 2, col = "blue") > points(c(2), yR[9], pch = 16, col = "red") > points(c(2), c(2), pch = 16, col = "red") > text(2.5, -4, "x=2", cex = 1.5) > text(1.8, 3.9, "y", cex = 1.5) > text(2.5, 1.9, "y-hat", cex = 1.5) Statistical Models Linear Regression = Minimize RSS Least Squares Fit In linear regression the best fit is found by minimizing n n X 2 X 2 RSS = (yi − y^i ) = (yi − (a + bxi )) : i=1 i=1 This is a Calculus I problem.
    [Show full text]
  • A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications
    Special Publication 800-22 Revision 1a A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications AndrewRukhin,JuanSoto,JamesNechvatal,Miles Smid,ElaineBarker,Stefan Leigh,MarkLevenson,Mark Vangel,DavidBanks,AlanHeckert,JamesDray,SanVo Revised:April2010 LawrenceE BasshamIII A Statistical Test Suite for Random and Pseudorandom Number Generators for NIST Special Publication 800-22 Revision 1a Cryptographic Applications 1 2 Andrew Rukhin , Juan Soto , James 2 2 Nechvatal , Miles Smid , Elaine 2 1 Barker , Stefan Leigh , Mark 1 1 Levenson , Mark Vangel , David 1 1 2 Banks , Alan Heckert , James Dray , 2 San Vo Revised: April 2010 2 Lawrence E Bassham III C O M P U T E R S E C U R I T Y 1 Statistical Engineering Division 2 Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 Revised: April 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Patrick Gallagher, Director A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems.
    [Show full text]
  • Understanding Statistical Hypothesis Testing: the Logic of Statistical Inference
    Review Understanding Statistical Hypothesis Testing: The Logic of Statistical Inference Frank Emmert-Streib 1,2,* and Matthias Dehmer 3,4,5 1 Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland 2 Institute of Biosciences and Medical Technology, Tampere University, 33520 Tampere, Finland 3 Institute for Intelligent Production, Faculty for Management, University of Applied Sciences Upper Austria, Steyr Campus, 4040 Steyr, Austria 4 Department of Mechatronics and Biomedical Computer Science, University for Health Sciences, Medical Informatics and Technology (UMIT), 6060 Hall, Tyrol, Austria 5 College of Computer and Control Engineering, Nankai University, Tianjin 300000, China * Correspondence: [email protected]; Tel.: +358-50-301-5353 Received: 27 July 2019; Accepted: 9 August 2019; Published: 12 August 2019 Abstract: Statistical hypothesis testing is among the most misunderstood quantitative analysis methods from data science. Despite its seeming simplicity, it has complex interdependencies between its procedural components. In this paper, we discuss the underlying logic behind statistical hypothesis testing, the formal meaning of its components and their connections. Our presentation is applicable to all statistical hypothesis tests as generic backbone and, hence, useful across all application domains in data science and artificial intelligence. Keywords: hypothesis testing; machine learning; statistics; data science; statistical inference 1. Introduction We are living in an era that is characterized by the availability of big data. In order to emphasize the importance of this, data have been called the ‘oil of the 21st Century’ [1]. However, for dealing with the challenges posed by such data, advanced analysis methods are needed.
    [Show full text]
  • Introduction to Statistical Methods Lecture 1: Basic Concepts & Descriptive Statistics
    Introduction to Statistical Methods Lecture 1: Basic Concepts & Descriptive Statistics Theophanis Tsandilas [email protected] !1 Course information Web site: https://www.lri.fr/~fanis/courses/Stats2019 My email: [email protected] Slack workspace: stats-2019.slack.com !2 Course calendar !3 Lecture overview Part I 1. Basic concepts: data, populations & samples 2. Why learning statistics? 3. Course overview & teaching approach Part II 4. Types of data 5. Basic descriptive statistics Part III 6. Introduction to R !4 Part I. Basic concepts !5 Data vs. numbers Numbers are abstract tokens or symbols used for counting or measuring1 Data can be numbers but represent « real world » entities 1Several definitions in these slides are borrowed from Baguley’s book on Serious Stats Example Take a look at this set of numbers: 8 10 8 12 14 13 12 13 Context is important in understanding what they represent ! The age in years of 8 children ! The grades (out of 20) of 8 students ! The number of errors made by 8 participants in an experiment from a series of 100 experimental trials ! A memorization score of the same individual over repeated tests !7 Sampling The context depends on the process that generated the data ! collecting a subset (sample) of observations from a larger set (population) of observations of interest The idea of taking a sample from a population is central to understanding statistics and the heart of most statistical procedures. !8 Statistics A sample, being a subset of the whole population, won’t necessarily resemble it. Thus, the information the sample provides about the population is uncertain.
    [Show full text]