Calcconf2019 Papers 190910.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Calcconf2019 Papers 190910.Pdf Calculus in upper secondary and beginning university mathematics Conference held at the University of Agder, Kristiansand, Norway August 6-9, 2019 This conference was supported by the Centre for Research, Innovation and Coordination of Mathematics Teaching (MatRIC) Edited by John Monaghan, Elena Nardi and Tommy Dreyfus Suggested reference: J. Monaghan, E. Nardi and T. Dreyfus (Eds.) (2019), Calculus in upper secondary and beginning university mathematics – Conference proceedings. Kristiansand, Norway: MatRIC. Retrieved on [date] from https://matric-calculus.sciencesconf.org/ Table of contents Introduction Calculus in upper secondary and beginning university mathematics 1 Plenary lectures Biehler, Rolf The transition from Calculus and to Analysis – Conceptual analyses and supporting steps for students 4 Tall, David The Evolution of Calculus: A Personal Experience 1956–2019 18 Thompson, Patrick W. Making the Fundamental Theorem of Calculus fundamental to students’ calculus 38 Plenary panel González-Martín, Alejandro S.; Mesa, Vilma; Monaghan, John; Nardi, Elena (Moderator) From Newton’s first to second law: How can curriculum, pedagogy and assessment celebrate a more dynamic experience of calculus? 66 Contributed papers Bang, Henrik; Grønbæk, Niels; Larsen Claus Teachers’ choices of digital approaches to upper secondary calculus 67 Biza, Irene Calculus as a discursive bridge for Algebra, Geometry and Analysis: The case of tangent line 71 Bos, Rogier; Doorman, Michiel; Drijvers, Paul Supporting the reinvention of slope 75 Clark, Kathleen M. Examining students’ secondary-tertiary transition: Influences of history, disposition, and disciplinary engagement 79 Derouet, Charlotte Introducing the integral concept with probability tasks 83 Durand-Guerrier, Viviane; Montoya Delgadillo, Elizabeth; Vivier, Laurent Real exponential in discreteness-density-completeness contexts 87 Ely, Robert Teaching calculus with (informal) infinitesimals 91 Feudel, Frank Required knowledge of the derivative in economics – Results from a textbook analysis 95 ii González-Martín, Alejandro S.; Hernandes-Gomes, Gisela What happens after Calculus? Examples of the use of integrals in engineering: the case of Electromagnetism 99 Hagman, Jessica Ellis A vision for the future of college calculus 103 Herbst, Patricio; Shultz, Mollee How professional obligations can help understand decisions in the teaching of calculus across institutional contexts 107 Jennings, Michael; Goos, Merrilyn; Adams, Peter Teacher and lecturer perspectives on secondary school students’ understanding of the limit definition of the derivative 111 Kidron, Ivy The dual nature of reasoning in Calculus 115 Kontorovich, Igor’; Herbert, Rowan; Yoon, Caroline Students resolve a commognitive conflict between colloquial and calculus discourses on steepness 119 Kouropatov, Anatoli; Ovodenko, Regina Construction (and re-construction) and consolidation of knowledge about the inflection point: Students confront errors using digital tools 123 Mesa, Vilma; Liakos, Yannis; Boelkins, Matt Designing textbooks with enhanced features to increase student interaction and promote instructional change 127 Monaghan, John The place of limits in elementary calculus courses 131 Nilsen, Hans Kristian First-year engineering students’ reflections on the Fundamental Theorem of Calculus 135 Pinto, Alon Towards transition-oriented pedagogies in university calculus courses 139 Sangwin, Christopher J The mathematical apprentice: an organising principle for teaching calculus in the 21st century 143 Simmons, Courtney; Oehrtman, Michael Quantitatively Based Summation: A framework for student conception of definite integrals 147 Stewart, Sepideh; Reeder, Stacy Examining unresolved difficulties with school algebra in calculus 151 Swidan, Osama Construction of the mathematical meaning of the function-derivative relationship using dynamic digital artifacts 155 iii Thoma, Athina; Nardi, Elena Linear stability or graphical analysis? Routines and visual mediation in students’ responses to a stability of dynamical systems exam task 159 Törner, Günter The ‘Signature’ of a Teaching Unit – ‘Calculus’ as the ‘Heart’ within Standard Introductory Mathematical Courses 163 Viirman, Olov; Pettersson, Irina What to do when there is no formula? Navigating between less and more familiar routines for determining velocity in a calculus task for engineering students 167 Wangberg, Aaron; Gire, Elizabeth Raising Calculus to the Surface: Extending derivatives and concepts with multiple representations 171 iv Introduction Calculus in upper secondary and beginning university mathematics The genesis of the conference were discussions between us on what was being taught – and what could be taught – under the name ‘calculus’ in schools, colleges and universities in our countries. Whilst we have nothing against the differentiation and integration techniques of calculus, we saw and see calculus as much more than a set of techniques; at its heart is covariational change, rates of change and accumulations, which can be overlooked by foci on techniques. The idea for the conference came when we realised that MatRIC (www.matric.no), the Norwegian centre for excellence in university mathematics teaching, might support a conference on calculus and allow a bigger audience for our discussions; and MatRIC agreed to support us. The conference had four themes: 1. The school-university transition with a focus on calculus 2. The fundamental theorem of calculus 3. The use of digital technology in calculus 4. Calculus, and its teaching and learning, for various disciplines We comment on these themes but first note that calculus at school and calculus at university are not, at a global level, clearly differentiated areas or approaches to calculus: what is taught at school in one country may be taught at university in another country; university calculus courses, especially for non-mathematics majors, often revisit school calculus content. The latter, revisiting school calculus content at university, is one reason why the school-university transition, our first theme, is an important focus. Another reason why this focus is important is the jump from what might be called informal (or elementary) calculus at school to formal calculus (or analysis) at university, the latter involving e-d definitions and proofs. Not all students will experience this jump but mathematics majors will – and this jump to rigour is a noted area of difficulty for many students. The fourth theme, on teaching and learning calculus in various disciplines, is related to the first theme in as much as this teaching and learning occurs, almost exclusively, at the university level, to students who have come from school. It is an important theme in itself: what are appropriate calculus courses for economists, for engineers, etc. and how might these differ (in content and approach) to calculus courses for mathematics majors? This is also a developing area in terms of practical approaches and mathematics education research. The third theme, on the use of digital technology in calculus, exists because (i) mathematical software has the potential to restructure what and how calculus is taught and learnt and (ii) there are many initiatives that essentially incorporate digital technology in the teaching and learning of calculus. The second theme is the only theme to focus on a specific part of calculus, the fundamental theorem. It is there for many reasons. It was the main focus in our initial discussions on calculus. It is a beautiful and important part of calculus. It is quite often covered scantily and/or badly – including the maximal bad approach, the statement “integration is the reverse of differentiation”. There is at least one 1 approach to teaching it (as part of a full calculus course) that we all respect – Pat Thompson’s Project DIRACC. The themes were built into the plenaries: Rolf Biehler was briefed to address the first and fourth theme and Pat Thompson was briefed to address the middle two themes in their plenary addresses and papers. The themes also partially structured the contributed papers in as much as invitations to present a paper went out with the proviso that the paper should address at least one of the four themes. We now provide an overview of the plenary lectures, plenary panel and contributed papers presented but first repeat that the conference was conceived, from outset to completion, as a discussion conference: the conference was more than the sum of the plenary contributions and the presented papers! The opening plenary was by David Tall. David was not well enough to attend the conference and provided a video which you can watch on https://matric-calculus.sciencesconf.org/. David has, almost certainly, written more papers on the teaching and learning of calculus than anyone else in the world, from 1975 to today. Amongst many other things, he is noted for his software (SuperGraph), the concept of local straightness and his Three Worlds approach. His plenary paper, The evolution of Calculus: A personal experience 1956-2019, addresses issues that touch on the first three conference themes. Rolf Biehler has invested much of his academic thought and effort in the past decade to issues concerned with beginning university studies, in which calculus or analysis play a central role. The main focus of his plenary, The transition from calculus to analysis – conceptual analyses and supporting steps for students, is on the transition problem and concerns the move from school calculus to university
Recommended publications
  • Numerical Differentiation and Integration
    Chapter 4 Numerical Di↵erentiation and Integration 4.1 Numerical Di↵erentiation In this section, we introduce how to numerically calculate the derivative of a function. First, the derivative of the function f at x0 is defined as f x0 h f x0 f 1 x0 : lim p ` q´ p q. p q “ h 0 h Ñ This formula gives an obvious way to generate an approximation to f x0 : simply compute 1p q f x0 h f x0 p ` q´ p q h for small values of h. Although this way may be obvious, it is not very successful, due to our old nemesis round-o↵error. But it is certainly a place to start. 2 To approximate f x0 , suppose that x0 a, b ,wheref C a, b , and that x1 x0 h for 1p q Pp q P r s “ ` some h 0 that is sufficiently small to ensure that x1 a, b . We construct the first Lagrange ‰ Pr s polynomial P0,1 x for f determined by x0 and x1, with its error term: p q x x0 x x1 f x P0,1 x p ´ qp ´ qf 2 ⇠ x p q“ p q` 2! p p qq f x0 x x0 h f x0 h x x0 x x0 x x0 h p qp ´ ´ q p ` qp ´ q p ´ qp ´ ´ qf 2 ⇠ x “ h ` h ` 2 p p qq ´ for some ⇠ x between x0 and x1. Di↵erentiating gives p q f x0 h f x0 x x0 x x0 h f 1 x p ` q´ p q Dx p ´ qp ´ ´ qf 2 ⇠ x p q“ h ` 2 p p qq „ ⇢ f x0 h f x0 2 x x0 h p ` q´ p q p ´ q´ f 2 ⇠ x “ h ` 2 p p qq x x0 x x0 h p ´ qp ´ ´ qDx f 2 ⇠ x .
    [Show full text]
  • MPI - Lecture 11
    MPI - Lecture 11 Outline • Smooth optimization – Optimization methods overview – Smooth optimization methods • Numerical differentiation – Introduction and motivation – Newton’s difference quotient Smooth optimization Optimization methods overview Examples of op- timization in IT • Clustering • Classification • Model fitting • Recommender systems • ... Optimization methods Optimization methods can be: 1 2 1. discrete, when the support is made of several disconnected pieces (usu- ally finite); 2. smooth, when the support is connected (we have a derivative). They are further distinguished based on how the method calculates a so- lution: 1. direct, a finite numeber of steps; 2. iterative, the solution is the limit of some approximate results; 3. heuristic, methods quickly producing a solution that may not be opti- mal. Methods are also classified based on randomness: 1. deterministic; 2. stochastic, e.g., evolution, genetic algorithms, . 3 Smooth optimization methods Gradient de- scent methods n Goal: find local minima of f : Df → R, with Df ⊂ R . We assume that f, its first and second derivatives exist and are continuous on Df . We shall describe an iterative deterministic method from the family of descent methods. Descent method - general idea (1) Let x ∈ Df . We shall construct a sequence x(k), with k = 1, 2,..., such that x(k+1) = x(k) + t(k)∆x(k), where ∆x(k) is a suitable vector (in the direction of the descent) and t(k) is the length of the so-called step. Our goal is to have fx(k+1) < fx(k), except when x(k) is already a point of local minimum. Descent method - algorithm overview Let x ∈ Df .
    [Show full text]
  • Number Theory
    “mcs-ftl” — 2010/9/8 — 0:40 — page 81 — #87 4 Number Theory Number theory is the study of the integers. Why anyone would want to study the integers is not immediately obvious. First of all, what’s to know? There’s 0, there’s 1, 2, 3, and so on, and, oh yeah, -1, -2, . Which one don’t you understand? Sec- ond, what practical value is there in it? The mathematician G. H. Hardy expressed pleasure in its impracticality when he wrote: [Number theorists] may be justified in rejoicing that there is one sci- ence, at any rate, and that their own, whose very remoteness from or- dinary human activities should keep it gentle and clean. Hardy was specially concerned that number theory not be used in warfare; he was a pacifist. You may applaud his sentiments, but he got it wrong: Number Theory underlies modern cryptography, which is what makes secure online communication possible. Secure communication is of course crucial in war—which may leave poor Hardy spinning in his grave. It’s also central to online commerce. Every time you buy a book from Amazon, check your grades on WebSIS, or use a PayPal account, you are relying on number theoretic algorithms. Number theory also provides an excellent environment for us to practice and apply the proof techniques that we developed in Chapters 2 and 3. Since we’ll be focusing on properties of the integers, we’ll adopt the default convention in this chapter that variables range over the set of integers, Z. 4.1 Divisibility The nature of number theory emerges as soon as we consider the divides relation a divides b iff ak b for some k: D The notation, a b, is an abbreviation for “a divides b.” If a b, then we also j j say that b is a multiple of a.
    [Show full text]
  • Ethnomathematics and Education in Africa
    Copyright ©2014 by Paulus Gerdes www.lulu.com http://www.lulu.com/spotlight/pgerdes 2 Paulus Gerdes Second edition: ISTEG Belo Horizonte Boane Mozambique 2014 3 First Edition (January 1995): Institutionen för Internationell Pedagogik (Institute of International Education) Stockholms Universitet (University of Stockholm) Report 97 Second Edition (January 2014): Instituto Superior de Tecnologias e Gestão (ISTEG) (Higher Institute for Technology and Management) Av. de Namaacha 188, Belo Horizonte, Boane, Mozambique Distributed by: www.lulu.com http://www.lulu.com/spotlight/pgerdes Author: Paulus Gerdes African Academy of Sciences & ISTEG, Mozambique C.P. 915, Maputo, Mozambique ([email protected]) Photograph on the front cover: Detail of a Tonga basket acquired, in January 2014, by the author in Inhambane, Mozambique 4 CONTENTS page Preface (2014) 11 Chapter 1: Introduction 13 Chapter 2: Ethnomathematical research: preparing a 19 response to a major challenge to mathematics education in Africa Societal and educational background 19 A major challenge to mathematics education 21 Ethnomathematics Research Project in Mozambique 23 Chapter 3: On the concept of ethnomathematics 29 Ethnographers on ethnoscience 29 Genesis of the concept of ethnomathematics among 31 mathematicians and mathematics teachers Concept, accent or movement? 34 Bibliography 39 Chapter 4: How to recognize hidden geometrical thinking: 45 a contribution to the development of an anthropology of mathematics Confrontation 45 Introduction 46 First example 47 Second example
    [Show full text]
  • Video Lessons for Illustrative Mathematics: Grades 6-8 and Algebra I
    Video Lessons for Illustrative Mathematics: Grades 6-8 and Algebra I The Department, in partnership with Louisiana Public Broadcasting (LPB), Illustrative Math (IM), and SchoolKit selected 20 of the critical lessons in each grade level to broadcast on LPB in July of 2020. These lessons along with a few others are still available on demand on the SchoolKit website. To ensure accessibility for students with disabilities, all recorded on-demand videos are available with closed captioning and audio description. Updated on August 6, 2020 Video Lessons for Illustrative Math Grades 6-8 and Algebra I Background Information: Lessons were identified using the following criteria: 1. the most critical content of the grade level 2. content that many students missed due to school closures in the 2019-20 school year These lessons constitute only a portion of the critical lessons in each grade level. These lessons are available at the links below: • Grade 6: http://schoolkitgroup.com/video-grade-6/ • Grade 7: http://schoolkitgroup.com/video-grade-7/ • Grade 8: http://schoolkitgroup.com/video-grade-8/ • Algebra I: http://schoolkitgroup.com/video-algebra/ The tables below contain information on each of the lessons available for on-demand viewing with links to individual lessons embedded for each grade level. • Grade 6 Video Lesson List • Grade 7 Video Lesson List • Grade 8 Video Lesson List • Algebra I Video Lesson List Video Lessons for Illustrative Math Grades 6-8 and Algebra I Grade 6 Video Lesson List 6th Grade Illustrative Mathematics Units 2, 3,
    [Show full text]
  • History of Mathematics
    History of Mathematics James Tattersall, Providence College (Chair) Janet Beery, University of Redlands Robert E. Bradley, Adelphi University V. Frederick Rickey, United States Military Academy Lawrence Shirley, Towson University Introduction. There are many excellent reasons to study the history of mathematics. It helps students develop a deeper understanding of the mathematics they have already studied by seeing how it was developed over time and in various places. It encourages creative and flexible thinking by allowing students to see historical evidence that there are different and perfectly valid ways to view concepts and to carry out computations. Ideally, a History of Mathematics course should be a part of every mathematics major program. A course taught at the sophomore-level allows mathematics students to see the great wealth of mathematics that lies before them and encourages them to continue studying the subject. A one- or two-semester course taught at the senior level can dig deeper into the history of mathematics, incorporating many ideas from the 19th and 20th centuries that could only be approached with difficulty by less prepared students. Such a senior-level course might be a capstone experience taught in a seminar format. It would be wonderful for students, especially those planning to become middle school or high school mathematics teachers, to have the opportunity to take advantage of both options. We also encourage History of Mathematics courses taught to entering students interested in mathematics, perhaps as First Year or Honors Seminars; to general education students at any level; and to junior and senior mathematics majors and minors. Ideally, mathematics history would be incorporated seamlessly into all courses in the undergraduate mathematics curriculum in addition to being addressed in a few courses of the type we have listed.
    [Show full text]
  • Pure Mathematics
    Why Study Mathematics? Mathematics reveals hidden patterns that help us understand the world around us. Now much more than arithmetic and geometry, mathematics today is a diverse discipline that deals with data, measurements, and observations from science; with inference, deduction, and proof; and with mathematical models of natural phenomena, of human behavior, and social systems. The process of "doing" mathematics is far more than just calculation or deduction; it involves observation of patterns, testing of conjectures, and estimation of results. As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, mathematics relies on logic rather than on observation as its standard of truth, yet employs observation, simulation, and even experimentation as means of discovering truth. The special role of mathematics in education is a consequence of its universal applicability. The results of mathematics--theorems and theories--are both significant and useful; the best results are also elegant and deep. Through its theorems, mathematics offers science both a foundation of truth and a standard of certainty. In addition to theorems and theories, mathematics offers distinctive modes of thought which are both versatile and powerful, including modeling, abstraction, optimization, logical analysis, inference from data, and use of symbols. Mathematics, as a major intellectual tradition, is a subject appreciated as much for its beauty as for its power. The enduring qualities of such abstract concepts as symmetry, proof, and change have been developed through 3,000 years of intellectual effort. Like language, religion, and music, mathematics is a universal part of human culture.
    [Show full text]
  • Calculus Lab 4—Difference Quotients and Derivatives (Edited from U. Of
    Calculus Lab 4—Difference Quotients and Derivatives (edited from U. of Alberta) Objective: To compute difference quotients and derivatives of expressions and functions. Recall Plotting Commands: plot({expr1,expr2},x=a..b); Plots two Maple expressions on one set of axes. plot({f,g},a..b); Plots two Maple functions on one set of axes. plot({f(x),g(x)},x=a..b); This allows us to plot the Maple functions f and g using the form of plot() command appropriate to Maple expressions. If f and g are Maple functions, then f(x) and g(x) are the corresponding Maple expressions. The output of this plot() command is precisely the same as that of the preceding (function version) plot() command. 1. We begin by using Maple to compute difference quotients and, from them, derivatives. Try the following sequence of commands: 1 f:=x->1/(x^2-2*x+2); This defines the function f (x) = . x 2 − 2x + 2 (f(2+h)-f(2))/h; This is the difference quotient of f at the point x = 2. simplify(%); Simplifies the last expression. limit(%,h=0); This gives the derivative of f at the point where x = 2. Exercise 1: Find the difference quotient and derivative of this function at a general point x (hint: make a simple modification of the above steps). This f (x + h) − f (x) means find and f’(x). Record your answers below. h Use this to evaluate the derivative at the points x = -1 and x = 4. (It may help to remember the subs() command here; for example, subs(x=1,e1); means substitute x = 1 into the expression e1).
    [Show full text]
  • 3.2 the Derivative As a Function 201
    SECT ION 3.2 The Derivative as a Function 201 SOLUTION Figure (A) satisfies the inequality f .a h/ f .a h/ f .a h/ f .a/ C C 2h h since in this graph the symmetric difference quotient has a larger negative slope than the ordinary right difference quotient. [In figure (B), the symmetric difference quotient has a larger positive slope than the ordinary right difference quotient and therefore does not satisfy the stated inequality.] 75. Show that if f .x/ is a quadratic polynomial, then the SDQ at x a (for any h 0) is equal to f 0.a/ . Explain the graphical meaning of this result. D ¤ SOLUTION Let f .x/ px 2 qx r be a quadratic polynomial. We compute the SDQ at x a. D C C D f .a h/ f .a h/ p.a h/ 2 q.a h/ r .p.a h/ 2 q.a h/ r/ C C C C C C C 2h D 2h pa2 2pah ph 2 qa qh r pa 2 2pah ph 2 qa qh r C C C C C C C D 2h 4pah 2qh 2h.2pa q/ C C 2pa q D 2h D 2h D C Since this doesn’t depend on h, the limit, which is equal to f 0.a/ , is also 2pa q. Graphically, this result tells us that the secant line to a parabola passing through points chosen symmetrically about x a is alwaysC parallel to the tangent line at x a. D D 76. Let f .x/ x 2.
    [Show full text]
  • Putting Differentials Back Into Calculus
    Putting Differentials Back into Calculus Tevian Dray Corinne A. Manogue Department of Mathematics Department of Physics Oregon State University Oregon State University Corvallis, OR 97331 Corvallis, OR 97331 [email protected] [email protected] September 14, 2009 ... many mathematicians think in terms of infinitesimal quantities: apparently, however, real mathematicians would never allow themselves to write down such thinking, at least not in front of the children. Bill McCallum [16] Calculus is rightly viewed as one of the intellectual triumphs of modern civilization. Math- ematicians are also justly proud of the work of Cauchy and his contemporaries in the early 19th century, who provided rigorous justification of the methods introduced by Newton and Leibniz 150 years previously. Leibniz introduced the language of differentials to describe the calculus of infinitesimals, which were later ridiculed by Berkeley as “ghosts of departed quantities” [4]. Modern calculus texts mention differentials only in passing, if at all. Nonetheless, it is worth remembering that calculus was used successfully during those 150 years. In practice, many scientists and engineers continue to this day to apply calculus by manipulating differentials, and for good reason. It works. The differentials of Leibniz [15] — not the weak imitation found in modern texts — capture the essence of calculus, and should form the core of introductory calculus courses. 1 Practice The preliminary terror ... can be abolished once for all by simply stating what is the meaning — in common-sense terms — of the two principal symbols that are used in calculating. These dreadful symbols are: (1) d, which merely means “a little bit of”.
    [Show full text]
  • On Mathematics As Sense- Making: an Informalattack on the Unfortunate Divorce of Formal and Informal Mathematics
    On Mathematics as Sense­ Making: An InformalAttack On the Unfortunate Divorce of Formal and Informal 16 Mathematics Alan H. Schoenfeld The University of California-Berkeley This chapter explores the ways that mathematics is understood and used in our culture and the role that schooling plays in shaping those mathematical under­ standings. One of its goals is to blur the boundaries between forma] and informal mathematics: to indicate that, in real mathematical thinking, formal and informal reasoning are deeply intertwined. I begin, however, by briefly putting on the formalist's hat and defining formal reasoning. As any formalist will tell you, it helps to know what the boundaries are before you try to blur them. PROLOGUE: ON THE LIMITS AND PURITY OF FORMAL REASONING QUA FORMAL REASONING To get to the heart of the matter, formal systems do not denote; that is, formal systems in mathematics are not about anything. Formal systems consist of sets of symbols and rules for manipulating them. As long as you play by the rules, the results are valid within the system. But if you try to apply these systems to something from the real world (or something else), you no longer engage in formal reasoning. You are applying the mathematics at that point. Caveat emp­ tor: the end result is only as good as the application process. Perhaps the clearest example is geometry. Insofar as most people are con­ cerned, the plane or solid (Euclidean) geometry studied in secondary school provides a mathematical description of the world they live in and of the way the world must be.
    [Show full text]
  • Calculus Without Limits—Almost
    Calculus Without Limits—Almost By John C. Sparks 1663 LIBERTY DRIVE, SUITE 200 BLOOMINGTON, INDIANA 47403 (800) 839-8640 www.authorhouse.com Calculus Without Limits Copyright © 2004, 2005 John C. Sparks All rights reserved. No part of this book may be reproduced in any form—except for the inclusion of brief quotations in a review— without permission in writing from the author or publisher. The exceptions are all cited quotes, the poem “The Road Not Taken” by Robert Frost (appearing herein in its entirety), and the four geometric playing pieces that comprise Paul Curry’s famous missing-area paradox. Back cover photo by Curtis Sparks ISBN: 1-4184-4124-4 First Published by Author House 02/07/05 2nd Printing with Minor Additions and Corrections Library of Congress Control Number: 2004106681 Published by AuthorHouse 1663 Liberty Drive, Suite 200 Bloomington, Indiana 47403 (800)839-8640 www.authorhouse.com Printed in the United States of America Dedication I would like to dedicate Calculus Without Limits To Carolyn Sparks, my wife, lover, and partner for 35 years; And to Robert Sparks, American warrior, and elder son of geek; And to Curtis Sparks, reviewer, critic, and younger son of geek; And to Roscoe C. Sparks, deceased, father of geek. From Earth with Love Do you remember, as do I, When Neil walked, as so did we, On a calm and sun-lit sea One July, Tranquillity, Filled with dreams and futures? For in that month of long ago, Lofty visions raptured all Moonstruck with that starry call From life beyond this earthen ball..
    [Show full text]