The Future of Modern Set Theory

Total Page:16

File Type:pdf, Size:1020Kb

The Future of Modern Set Theory Annals of the Japan Association for Philosophy of Science, March 1994 1 The Future of Modern Set Theory James E. BAUMGARTNER The biggest obstacle to discussing the future of set theory is surely the fact that set theorists are almost universally pessimistic. There appears to be a powerful feeling that the end of set theory is nigh, and as far as I can tell this seems to have been true for about seventy years, almost as long as there have been set theorists. Perhaps to be a set theorist is to be pessimistic. Of course, there are other fields that suffer from similar attitudes, physics, for example. Consider the article by John Maddox in the November 25 issue of Nature entitled "Has physics come to an end ?" Now many would think that set theory is a great deal more secure than physics. Nearly all mathematics can be fit inside it, for example, and there are proofs of the incompleteness and undecidability of even tiny portions of set theory. But that is not the point, the pessimists say. The question is not whether there remain undecidable propositions in set theory, but whether there are interesting, fundamental, essentially set-theoretical issues still to be decided. Number theory can certainly be fit into set theory, but it is unfair to appropriate hard number- theoretical questions and pass them off as set theory. A good view of the situation may be obtained by considering briefly the history of set theory. It was only a little more than a hundred years ago that Cantor began the study of cardinal and ordinal numbers that gave rise to the subject. And in some sense he settled most of the simple questions that came to mind. An exception was the Continuum Hypothesis, of course; Hilbert was kind enough to give it a prominent position in his problem list, but most people expected it to have a straightforward although possibly difficult solution. And once it was settled, what would remain of set theory ? Another result that postdated Cantor was the result of J.Konig about cardinal exponentiation. Nowadays it is common to describe that result as simply saying that cf(2ƒÉ)>ƒÉ for any cardinal .1. Until rather recently, however, it was common to see Konig's result stated in a fairly elaborate form after all, it said everything about cardinal exponentiation that Cantor had neglected to find, and there surely was not so much to the subject. Cantor's work on cardinal and ordinal numbers was finally applied in the 1920's by Hausdorff and the Polish set theorists, particularly including Sierpinski. A variety of topological spaces with interesting properties were constructed, as were more general set-theoretical objects like families of almost-disjoint sets, ordered sets Dartmouth College, Department of Mathematics and Computer Science, Hanover, New Hampshire 03755 USA -187- 2 James E. BAUMGARTNER vol. 8 and the like. And only the known properties of cardinal and ordinal numbers were used. But was this set theory ? Or was it topology (in the case of Hausdorff) or infinite combinatorics (in the case of Sierpinski)? In his book Hypothese du Continu Sierpinski even worked out dozens of propositions equivalent to the Continuum Hypothesis. Surely once that was settled nothing else would be left. The most significant development occurred only in 1939 when Godel defined the constructible sets and showed that the class L of such sets is a natural inner model for the axioms ZFC of set theory, and that in addition the Generalized Continuum Hypothesis (GCH) is true in L. So the Continuum Hypothesis is at least consistent with the other axioms of set theory. Of course, this sheds little light on the actual truth or falsity of the Continuum Hypothesis, and the real value of Godel's result was not well understood by those working in the field at the time. The result must have seemed isolated, with little clear application to the real problems of set theory. The following two decades saw the birth in Hungary of the partition calculus in work of Erdos, Rado and others. This work made free use of GCH since by Godel's result GCH could not be disproved from the axioms; a joke was even made that ZF+GCH should be known as ZFE (with E standing for Erdos). Nonetheless a substantial body of results was obtained from ZFC alone, but the real character of the work was not fundamental set theory, but rather more like the infinite com binatorics of Sierpinski. If a paper with the title of this one had been written at the end of the 1950's, it would undoubtedly have been pessimistic. With the exception of Godel's result, which had had no successors, set theory was in much the same condition it had been left in by Cantor. True, considerable application of set-theoretical ideas had appeared in the work of Hausdorff, Sierpinski, Erdos, Rado, and others, but not much progress on the fundamental questions had been made in 75 years. What could be the future of such a subject ? Then came the 1960's. Unexpectedly an enormous variety of fundamental results began to appear. One of the first was an observation of Scott concerning an old definition of Ulam. Ulam considered infinite sets which bear o-complete {0, 1}- measure defined on all subsets. From the definitions was derived the modern idea of a measurable cardinal, and Scott proved that if there is a measurable cardinal then V •‚ L. Of course, one can view this as saying that in L there are no measurable cardinals, but this is complicated by the fact that if there is a measurable cardinal then there is a model for ZFC in which necessarily not all sets are constructible. This is quite different from the situation for GCH. And this was almost immediately followed by Cohen's famous work on forcing and generic sets, a fundamental, new construction that finally established the consistency of the negation of the Continuum Hypothesis. Moreover, it was clear almost from the beginning that Cohen's construction, especially as modified by Scott -188- No. 4 The Future of Modern Set Theory 3 and Solovay, was extremely powerful and could be used to settle a vast number of old problems that had been eclipsed by the concern for the Continuum Hypothesis. Cohen was also able to settle questions about the provability of various forms of the Axiom of Choice (usually they were not provable). Suddenly set theory was a hot topic, and many bright young graduate students were attracted by it. In 1967 there was a six-week meeting at UCLA including nearly all those working in set theory. The vast majority of the participants were under 30. If a paper about the future of set theory had been written at that time, and several were, for the first time the tone would have been optimistic. The explosion in set theory had some powerful reverberations. There were a great number of results and independence methods developed very quickly, and Solovay even found ways to force over models containing large cardinals, inacces sible or measurable, to answer old questions. In his dissertation, Silver applied some of the technology on partition relations developed by Hajnal and others to make much clearer the relation between a universe containing a large cardinal (such as an Erdos cardinal) and L. And finally, by the end of the decade Jensen had made tremendous progress into the theory of L itself, including the definition of various combinatorial properties that had far-reaching consequences in many different areas of set theory and model theory. The work done in the decade of the 1960's must have been largely unimaginable only a few years earlier. For one thing, even the character of set theory seemed to have changed. What objects does set theory study ? The work of Cohen, Jensen, and their successors suggested strongly that it is not the properties of sets so much as the properties of models of set theory. The method of forcing really provided a way to convert one model into another. Jensen's work showed the importance of considering mappings between various partial models of set theory that were either elementary or nearly so (say, ƒ°n for some n), and this effort was extended another way by Kunen's dissertation in which an inner model like L for the existence of a measurable cardinal was studied in connection with elementary mappings obtained from iteration of the natural elementary embedding obtained from the measure. This now provides a way of placing set theory within the usual categyry theoretic view of mathematics. If every part of mathematics is distinguished by the so-called objects and morphisms that it studies, then we can describe the objects of set theory as models of (part of) set theory, and the morphisms as mappings that are elementary (or nearly so). Now, this characterization is not perfect but it is good enough to suggest why set theory has taken its place as a clearly distinguishable part of mathematics. Most of the recent work in set theory has been in the areas established during the 1960's. Beginning with the work of Mitchell on models with many measurable -189- 4 James E. BAUMGARTNER Vol. 8 cardinals, a great deal of work has been done studying inner models for various species of large cardinals, and much remains to be done. Even the kinds of large cardinals studied have been suggested by the considerations of inner model theory. The core model K, a kind of analogue of L of interest in many models of large cardinals, has been developed by Jensen and Dodd.
Recommended publications
  • O&ONSTRUCTIBLE UNIVERSE and MEASURABLE CARDINALS 0
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Annals of Pure and Applied Logic 30 (1986) 293-320 293 North-Holland o&ONSTRUCTIBLE UNIVERSE AND MEASURABLE CARDINALS Claude SURESON Dkpartement de Mathkmatiques, Universitk de Caen, 1403.2 Caen, France Communicated by A. Nerode Received 23 September 1984 In analogy with K. Godel’s model L, C. Chang [l] formulated the wr- constructible universe C”‘, using the infinitary language L,,,, instead of the language of Set Theory L,,. The cumulative hierarchy of sets obtained in this way has many similarities with the hierarchy of the constructible universe (except for a major point: the axiom of choice [l], [9]). C”’ can also be characterized as the least inner model closed under arbitrary countable sequences. This paper is inspired by results of R. Jensen and J. Silver concerning the existence of O# and the covering property for L. We consider here a stronger notion of indiscernibles for the model C”’ and we say that C”’ satisfies the ‘covering property’ if any set of ordinals X in the universe can be covered by a set in C”’ of cardinality ]X]‘O. The existence of ‘indiscernibles’ for C”’ is also linked to large cardinal assumptions, and our main result (in ZFC) can be summarized as shown in Diagram 1: Diagram 1. The first part is devoted to the study of indiscernibles for PI. We prove the implications (1) and (2). In the second section, we deal with the covering property and show (3).
    [Show full text]
  • Are Large Cardinal Axioms Restrictive?
    Are Large Cardinal Axioms Restrictive? Neil Barton∗ 24 June 2020y Abstract The independence phenomenon in set theory, while perva- sive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality prin- ciples depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large cardinal axioms are restrictive. I argue, however, that large cardi- nals are still important axioms of set theory and can play many of their usual foundational roles. Introduction Large cardinal axioms are widely viewed as some of the best candi- dates for new axioms of set theory. They are (apparently) linearly ordered by consistency strength, have substantial mathematical con- sequences for questions independent from ZFC (such as consistency statements and Projective Determinacy1), and appear natural to the ∗Fachbereich Philosophie, University of Konstanz. E-mail: neil.barton@uni- konstanz.de. yI would like to thank David Aspero,´ David Fernandez-Bret´ on,´ Monroe Eskew, Sy-David Friedman, Victoria Gitman, Luca Incurvati, Michael Potter, Chris Scam- bler, Giorgio Venturi, Matteo Viale, Kameryn Williams and audiences in Cambridge, New York, Konstanz, and Sao˜ Paulo for helpful discussion. Two anonymous ref- erees also provided helpful comments, and I am grateful for their input. I am also very grateful for the generous support of the FWF (Austrian Science Fund) through Project P 28420 (The Hyperuniverse Programme) and the VolkswagenStiftung through the project Forcing: Conceptual Change in the Foundations of Mathematics.
    [Show full text]
  • Generalized Solovay Measures, the HOD Analysis, and the Core Model Induction
    Generalized Solovay Measures, the HOD Analysis, and the Core Model Induction by Nam Duc Trang A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor John Steel, Chair Professor W. Hugh Woodin Professor Sherrilyn Roush Fall 2013 Generalized Solovay Measures, the HOD Analysis, and the Core Model Induction Copyright 2013 by Nam Duc Trang 1 Abstract Generalized Solovay Measures, the HOD Analysis, and the Core Model Induction by Nam Duc Trang Doctor of Philosophy in Mathematics University of California, Berkeley Professor John Steel, Chair This thesis belongs to the field of descriptive inner model theory. Chapter 1 provides a proper context for this thesis and gives a brief introduction to the theory of AD+, the theory of hod mice, and a definition of KJ (R). In Chapter 2, we explore the theory of generalized Solovay measures. We prove structure theorems concerning canonical models of the theory \AD+ + there is a generalized Solovay measure" and compute the exact consistency strength of this theory. We also give some applications relating generalized Solovay measures to the determinacy of a class of long games. In Chapter 3, we give a HOD analysis of AD+ + V = L(P(R)) models below \ADR + Θ is regular." This is an application of the theory of hod mice developed in [23]. We also analyze HOD of AD+-models of the form V = L(R; µ) where µ is a generalized Solovay measure. In Chapter 4, we develop techniques for the core model induction.
    [Show full text]
  • The Core Model Induction
    The core model induction Ralf Schindler and John Steel September 11, 2014 i This is a set of notes on the proceedings of the joint Muenster-Irvine- Berlin-Gainesville-Oxford seminar in core model theory, held in cyberspace April{June 2006. The plan now is to eventually turn this set of notes into a reasonable paper. The authors thank Dominik Adolf, Trevor Wilson, and many others for helpful comments on earlier versions. Ralf Schindler and John Steel, September, 11, 2014 ii Contents 1 The successor case 1 1.1 Iteration strategies for V ..................... 5 1.2 Counterexamples to uncountable iterability . 10 1.3 F -mice and Kc;F .......................... 11 1.4 Capturing, correctness, and genericity iterations . 24 F 1.5 Projective correctness and Mn . 32 1.6 CMIP theory . 36 1.7 Universally Baire iteration strategies . 43 2 The projective case 47 2.1 Mouse reflection and strategy reflection. 48 2.2 From J to J #. .......................... 57 # J 2.3 From J to M1 .......................... 58 2.4 PFA and the failure of . .................... 59 2.5 Successive cardinals with the tree property . 60 2.6 Pcf theory . 61 2.7 All uncountable cardinals are singular. 62 2.8 L(R) absoluteness . 64 2.9 The unique branches hypothesis . 65 2.10 A homogeneous presaturated ideal on !1, with CH. 66 2.11 An !1-dense ideal on !1 ..................... 69 2.12 Open problems. 72 3 The witness dichotomy in L(R) 75 3.1 Core model theory for one J-Woodin . 75 ∗ 3.2 The coarse mouse witness condition Wα . 80 3.3 Scales in L(R)..........................
    [Show full text]
  • The Real Core Model and Its Scales
    ANNALS OF PURE AND APPLIED LOGIC EISWIER Annals of Pure and Applied Logic 72 (1995) 213-289 The real core model and its scales Daniel W. Cunningham*, ’ MathematicsDepartment, State Universilyof New York, College at Bufsaalo.Buffalo, NY 14222, USA Received I8 March 1993; communicated by T. Jech Abstract This paper introduces the real core model K(R) and determines the extent of scales in this inner model. K(R) is an analog of Dodd-Jensen’s core model K and contains L(R), the smallest inner model of ZF containing the reals R. We define iterable real premice & and show that C, (./Q+(R) has the scale property when AbAD. We then prove the following Main Theorem: ZF + AD + V = K(R) * DC. Thus, we obtain the Corolkzry: If ZF + AD + y(lR)$L(R) is consistent, then ZF + AD + DC + Vet< co* (cd:)-AD, is also consistent. 0. Introduction Let CObe the set of all natural numbers. R = “‘w is the set of all functions from o to CO.We call R the set of reals and regard R as a topological space by giving it the product topology, using the discrete topology on CO.In this paper we study the inner model K(R), the real core model. K(R) contains the set of reals and contains definable scales beyond those in L(R), as we shall show. For a set Y and each A E “Y we associate a two-person infinite game on Y, with payoff A, denoted by GA: I Y(0) Y(2) II Y(l) Y(3) “.
    [Show full text]
  • SQUARE PRINCIPLES in Pmax EXTENSIONS
    SQUARE PRINCIPLES IN Pmax EXTENSIONS ANDRES´ EDUARDO CAICEDO∗y, PAUL LARSON∗z, GRIGOR SARGSYAN∗?, RALF SCHINDLER∗, JOHN STEEL∗, AND MARTIN ZEMAN∗ Abstract. By forcing with Pmax over strong models of determinacy, we obtain models where different square principles at !2 and !3 fail. In @0 @1 particular, we obtain a model of 2 = 2 = @2 + :(!2) + :(!3). Contents 1. Introduction1 1.1. Acknowledgements5 2. From HOD to HODP(R) 6 3. Square in Pmax extensions of weak models of determinacy9 4. Choiceless extensions where square fails 15 5. Forcing the square inaccessibility of !3 17 6. Stronger hypotheses and the threadability of !3 21 References 23 1. Introduction The forcing notion Pmax was introduced by W. Hugh Woodin in the early 1990s, see Woodin [Woo10]. When applied to models of the Axiom of De- terminacy, it achieves a number of effects not known to be obtainable by forcing over models of ZFC. Recall that ADR asserts the determinacy of all length ! perfect infor- mation two player games where the players alternate playing real numbers, and Θ denotes the least ordinal that is not a surjective image of the reals. arXiv:1205.4275v2 [math.LO] 7 Dec 2015 2010 Mathematics Subject Classification. Primary 03E60; Secondary: 03E57, 03E55, 03E45, 03E35. + Key words and phrases. AD , Pmax, Square principles. ∗Supported in part by AIM through a SQuaREs project. yThe first author was also supported in part by NSF Grant DMS-0801189. zThe second author was also supported in part by NSF Grants DMS-0801009 and DMS-1201494. ?The third author was also supported in part by NSF Grants DMS-0902628, DMS- 1201348 and DMS-1352034.
    [Show full text]
  • Inner Model Theoretic Geology∗
    Inner model theoretic geology∗ Gunter Fuchsy Ralf Schindler November 4, 2015 Abstract One of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M. The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case when the universe is constructible from a set and there is an inner model with a Woodin cardinal. The second situation like that arises if L[E] is an extender model that is iterable in V but not internally iterable, as guided by P -constructions, L[E] has no strong cardinal, and the extender sequence E is ordinal definable in L[E] and its forcing extensions by collapsing a cutpoint to ! (in an appropriate sense). The third main result concerns the Solid Core of a model of set theory. This is the union of all sets that are constructible from a set of ordinals that cannot be added by set-forcing to an inner model. The main result here is that if there is an inner model with a Woodin cardinal, then the solid core is a fine-structural extender model. 1 Introduction In [3], the authors introduced several types of inner models which are defined following the paradigm of \undoing" forcing. Thus, the mantle M of a model of set theory V is the intersection of all of its ground models (i.e., the intersection of all ∗AMS MSC 2010: 03E35, 03E40, 03E45, 03E47, 03E55.
    [Show full text]
  • Inner Models from Extended Logics: Part 1*
    Inner Models from Extended Logics: Part 1* Juliette Kennedy† Menachem Magidor‡ Helsinki Jerusalem Jouko Va¨an¨ anen¨ § Helsinki and Amsterdam December 15, 2020 Abstract If we replace first order logic by second order logic in the original def- inition of Godel’s¨ inner model L, we obtain HOD ([33]). In this paper we consider inner models that arise if we replace first order logic by a logic that has some, but not all, of the strength of second order logic. Typical examples are the extensions of first order logic by generalized quantifiers, such as the Magidor-Malitz quantifier ([24]), the cofinality quantifier ([35]), or station- ary logic ([6]). Our first set of results show that both L and HOD manifest some amount of formalism freeness in the sense that they are not very sen- sitive to the choice of the underlying logic. Our second set of results shows that the cofinality quantifier gives rise to a new robust inner model between L and HOD. We show, among other things, that assuming a proper class of Woodin cardinals the regular cardinals > @1 of V are weakly compact in the inner model arising from the cofinality quantifier and the theory of that model is (set) forcing absolute and independent of the cofinality in question. *The authors would like to thank the Isaac Newton Institute for Mathematical Sciences for its hospitality during the programme Mathematical, Foundational and Computational Aspects of the Higher Infinite supported by EPSRC Grant Number EP/K032208/1. The authors are grateful to John Steel, Philip Welch and Hugh Woodin for comments on the results presented here.
    [Show full text]
  • Normal Nonmetrizable Moore Space from Continuum Hypothesis Or
    Proc. Natt Acad. Sci. USA Vol. 79, pp. 1371-1372, February 1982 Mathematics Normal nonmetrizable Moore space from continuum hypothesis or nonexistence of inner models with measurable cardinals (general topology/large cardinals/relative consistency results) WILLIAM G. FLEISSNER Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 Communicated by R. H. Bing, October 5, 1981 ABSTRACT Assuming the continuum hypothesis, a normal than co that satisfy [1]; for example K = sup{w, 2w, 22 , . }. nonmetrizable Moore space is constructed. This answers a ques- If[2] or [3] fails for such a cardinal, then there is an inner model tion raised by F. B. Jones in 1931, using an axiom well known at with a measurable cardinal, because the covering lemma would that time. For the construction, a consequence of the continuum fail with respect to the core model; see ref. 6. hypothesis that also follows from the nonexistence of an inner We now construct the space. Let F be the set of functions model with a measurable cardinal is used. Hence, it is shown that from w to E. For n E w, set n = {fln:f E F} and set I = to prove the consistency of the statement that all normal Moore U on. For o-E E, set [C] = {fE F: aoCf. spaces are metrizable one must assume the consistency of the net statement that measurable cardinals exist. Let Z be the family of subsets, Z of z satisfying card Z ' K and for some n E w, Z C In- By [2], we can list Z as {Za: a In 1931, Jones (1) asked whether all normal Moore spaces were < K+}.
    [Show full text]
  • Contributions to Descriptive Inner Model Theory by Trevor Miles Wilson Doctor of Philosophy in Mathematics University of California, Berkeley Professor John R
    Contributions to Descriptive Inner Model Theory by Trevor Miles Wilson A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor John R. Steel, Chair Professor W. Hugh Woodin Professor Sherrilyn Roush Fall 2012 Abstract Contributions to Descriptive Inner Model Theory by Trevor Miles Wilson Doctor of Philosophy in Mathematics University of California, Berkeley Professor John R. Steel, Chair Descriptive inner model theory is the study of connections between descript- ive set theory and inner model theory. Such connections form the basis of the core model induction, which we use to prove relative consistency results relating strong forms of the Axiom of Determinacy with the existence of a strong ideal on }!1 (R) having a certain property related to homogeneity. The main innovation is a unified approach to the \gap in scales" step of the core model induction. 1 Contents Introduction iii Acknowledgements v Chapter 1. Forcing strong ideals from determinacy 1 1.1. The theory \ADR + Θ is regular" 1 1.2. Col(!; R)-generic ultrapowers 2 1.3. A covering property for ideals in generic extensions 5 1.4. The covering property for NS!1;R 8 1.5. A c-dense ideal with the covering property 10 Chapter 2. The core model induction 13 2.1. Model operators 14 2.2. F -mice 18 2.3. The Kc;F construction and the KF existence dichotomy 22 F;] 2.4. M1 from a strong pseudo-homogeneous ideal 28 2.5.
    [Show full text]
  • Representing Sets of Ordinals As Countable Unions of Sets in the Core Model
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 317, Number I, January 1990 REPRESENTING SETS OF ORDINALS AS COUNTABLE UNIONS OF SETS IN THE CORE MODEL MENACHEM MAGIDOR ABSTRACT. We prove the following theorems. Theorem I (~O#). Every set of ordinals which is closed under primitive recursive set functions is a countable union of sets in L. Theorem 2. (No inner model with an Erdos cardinal, i.e. K -> (wtJ<w.) For every ordinal f1, there is in K an algebra on f1 with countably many opera- tions such that every subset of f1 closed under the operations of the algebra is a countable union of sets in K. O. INTRODUCTION (See [Je2] for basic notation and terminology.) Jensen's famous covering theroem for L [De-Jen] claims that if 0# does not exist then every set of ordinals X is included in a set of ordinals Y E L such that IYI :::; IXI + N) . In some sense the meaning of this theorem is that if 0# does not exist, then the universe of sets V is not too far from the constructible universe L. We can consider the set Y in the theorem to be an approximation for X from above. This paper deals with the problem of "approximating the set X by a set in L from below". For instance consider the following problem: Assume 0# does not exist (-,0#) and X is uncountable. Does X necessarily contain an uncountable subset which is in L? The answer to this problem as stated is obviously "No". Consider a subset of N) , introduced by forcing over L, using finite conditions.
    [Show full text]
  • ULTRAFILTERS and LARGE CARDINALS 3 Even Be the first Inaccessible Cardinal: Κ Is Inaccessible Both in V and in M
    Ultrafilters and Large Cardinals Itay Neeman Abstract. This paper is a survey of basic large cardinal notions, and applica- tions of large cardinal ultrafilters in forcing. The main application presented is the consistent failure of the singular cardinals hypothesis. Other applications are mentioned that involve variants of Prikry forcing, over models of choice and models of determinacy. My talk at the Ultramath conference was about ultrafilters and large cardinals. As we shall see shortly, many large cardinal axioms can be viewed as asserting the existence of ultrafilters with specific properties. In a sense then one can say that all theorems that use these large cardinals are theorems about ultrafilters. But the study of these large cardinal axioms is far too wide a subject for a single talk, or even for many. My talk concentrated on one aspect, the use of the large cardinal ultrafilters in forcing. This paper follows a similar path. The paper is intended for non-specialists, and the material is presented in a way that minimizes any prerequisites. Forcing is explained in Section 2, and the basic definitions of large cardinals in Section 1. Section 3 includes one of the most celebrated results combining these two topics, namely the consistent failure of the singular cardinals hypothesis. The proof illustrates most vividly how large cardinal ultrafilters are used in forcing constructions. Finally Section 4 gives some concluding remarks, on later uses of ultrafilters in forcing, both under the axiom of choice and under the axiom of determinacy. The paper is expository, and the results presented, with the exception of some theorems in the last section, are not due to the author.
    [Show full text]