Dortmund 2018

Total Page:16

File Type:pdf, Size:1020Kb

Dortmund 2018 Evaluation of C-prenylating enzymes for the heterologous biosynthesis of cannabigerolic acid Zur Erlangung des akademischen Grades eines Dr. rer. nat. von der Fakultät Bio- und Chemieingenieurwesen der Technischen Universität Dortmund genehmigte Dissertation vorgelegt von M.Sc. Sara Friederike Degenhardt aus Mainz Tag der mündlichen Prüfung: 09.10.2018 1. Gutachter: Prof. Dr. Dr. h.c. Oliver Kayser 2. Gutachter: Prof. Dr. Heribert Warzecha Dortmund 2018 i Acknowledgements Acknowledgements I would like to express my appreciation and gratitude to all the people who supported, encouraged and motivated me over the last years. Firstly, I would like to express my gratitude to my supervisor Prof. Dr. Dr. h.c. Oliver Kayser (Chair of Technical Biochemistry, TU Dortmund, Germany) for his support and guidance over the last years. He kept me going when times were though and offered me the opportunity of a Short-Term Scientific Mission in the group of Prof. Poul Nissen (Aarhus University, Denmark). Thanks to Dr. Felix Stehle (Chair of Technical Biochemistry, TU Dortmund, Germany) for helpful suggestions as well as his constant support and advice. I am also thankful for the prediction of NphB mutants. I thank PD Dr. Wolfgang Brandt (Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany) for generating the structural model of NphB complexed with GSPP and OA. Furthermore, I would like to thank the Ministry of Innovation, Science and Research of the German Federal State of North Rhine-Westphalia and TU Dortmund for awarding me with a scholarship from the CLIB-Graduate Cluster Industrial Biotechnology (CLIB2021). I am thankful to the European Cooperation in Science and Technology (COST) for financing my Short-Term Scientific Mission (STSM) in the Nissen group at the University of Aarhus (Denmark) (PlantEngine, COST Action FA1006). My sincere thank goes to Prof. Poul Nissen for offering me the opportunity to work in his lab at the University of Aarhus (DANDRITE, University of Aarhus, Denmark) and to learn a lot from him in the field of membrane-bound enzymes. Further, I am thankful to Sigrid Thirup Larsen and Joseph Lyons for guidance and support. I thank the Koch group (Medicinal Chemistry, CCB, TU Dortmund, Germany), especially Jette Pretzel and Christiane Ehrt, for proposing NphB variants. The CEN.PK-1C strain was a kind gift from Dr. Peter Kötter (Goethe University Frankfurt, Germany) and the strain S. cerevisiae Δpep4 Δgal4 was kindly provided by Prof. Poul Nissen (DANDRITE, University of Aarhus, Denmark). Thank you to Prof. David Drew (Imperial College London, United Kingdom) for making the expression vector pDDGFP-2 available for us. I am thankful to the Bachelor and Master Students for their excellent help during the laboratory work: Juliana Estrela, Christine Finger, Julia Grühn, Ramona Hansmeyer, Martin Kares, Dirk Münker, Martin Obholzer, Daniel Stalinski, Christian Staubach and Marlon Wach. A special thanks goes to Chantale Zammarelli for GPP synthesis, fun times in the lab and after work as well as for her friendship. ii Acknowledgements Thank you to Jan Schonert (CCB, TU Dortmund, Germany) for performing NMR measurements and Nico Zammarelli for help with GPP synthesis. I am grateful to my colleagues from the Biozentrum. I enjoyed fruitful discussions, mental support and the great time we spent together in the lab and after work, especially with Bastian Zirpel, Laura Kohnen, Evamaria Gruchattka, Nouman Almofti, Angela Sester, Jenny Schwarz, Anna Tippelt, Friederike Ullrich, Julia Schachtsiek, Kathleen Pamplanyil and Torsten Arndt. Last but not least I want to especially thank my family, friends and ”Sniffles“ for motivation, encouragement and the best support I could wish for. Studies were conducted with the permission of No. 458 64 16 issued by the Federal Institute for Drugs and Medical Devices (BfArM), Germany. iii Table of contents Table of contents 1. INTRODUCTION ............................................................................................................ 1 1.1. PREFACE .................................................................................................................. 2 1.2. THE BIOSYNTHESIS OF CANNABINOIDS ........................................................................ 3 1.2.1. Polyketide pathway towards olivetolic acid ..................................................................... 5 1.2.2. Biosynthesis of geranyl diphosphate ............................................................................... 7 1.2.3. Biosynthesis of cannabinoids from GPP and OA ............................................................ 8 1.3. AROMATIC PRENYLTRANSFERASES ...........................................................................14 1.3.1. Membrane-bound aromatic prenyltransferases ............................................................. 15 1.3.2. Soluble, aromatic prenyltransferases ............................................................................ 18 1.4. SCOPE OF THIS THESIS .............................................................................................23 2. MATERIAL AND METHODS ........................................................................................24 2.1. MATERIALS ..............................................................................................................25 2.2. METHODS ................................................................................................................25 2.2.1. Expression of membrane-bound prenyltransferases in S. cerevisiae ........................... 25 2.2.2. Expression of nphB in Escherichia coli ......................................................................... 33 2.2.3. Expression of nphB and thcas in Saccharomyces cerevisiae ....................................... 40 3. RESULTS AND DISCUSSION ......................................................................................48 3.1. EXPRESSION OF MEMBRANE-BOUND PRENYLTRANSFERASES IN S. CEREVISIAE ............48 3.1.1. Comparison of CsPT1, CsPT2, CsPT3 and CsPT1P .................................................... 49 3.1.2. Sequence analysis ........................................................................................................ 49 3.1.3. Expression strategy ....................................................................................................... 55 3.1.4. Expression of CsPT1, CsPT2 and CsPT3 ..................................................................... 58 3.1.5. Discussion ..................................................................................................................... 67 3.2. EXPRESSION OF NPHB IN ESCHERICHIA COLI .............................................................74 3.2.1. Screening for an E. coli strain with the highest nphB expression level ......................... 74 3.2.2. NphB activity in the presence of 1,6-DHN ..................................................................... 76 3.2.3. NphB activity in the presence of olivetol and olivetolic acid .......................................... 78 3.2.4. Influence of the N-terminal TrxA tag .............................................................................. 81 iv Table of contents 3.2.5. Protein engineering of NphB ......................................................................................... 83 3.2.6. Screening of different NphB mutants for high CBGA formation .................................... 85 3.2.7. Discussion ..................................................................................................................... 87 3.3. EXPRESSION OF NPHB AND THCAS IN SACCHAROMYCES CEREVISIAE ..........................95 3.3.1. Test of different NphB coding sequences ..................................................................... 95 3.3.2. Whole cell assay ............................................................................................................ 98 3.3.3. Fusion of nphB and thcas .............................................................................................. 99 3.3.4. Discussion ................................................................................................................... 105 4. CONCLUSION AND OUTLOOK ................................................................................. 113 4.1. EXPRESSION OF MEMBRANE-BOUND PRENYLTRANSFERASES IN S. CEREVISIAE .......... 113 4.2. EXPRESSION OF NPHB IN E. COLI ............................................................................ 114 4.3. EXPRESSION OF NPHB AND THCAS IN S. CEREVISIAE ................................................ 115 ERKLÄRUNG ZUR REPRODUKTION VORAB VERÖFFENTLICHTER INHALTE ........... VIII REFERENCES ..................................................................................................................... IX SUPPLEMENTARY INFORMATION .............................................................................. XXIX LIST OF ABBREVIATIONS .................................................................................................... XXX EXPRESSION OF MEMBRANE-BOUND PRENYLTRANSFERASES IN S. CEREVISIAE ................... XXXV EXPRESSION OF NPHB IN ESCHERICHIA COLI ......................................................................XLIII EXPRESSION OF NPHB AND THCAS IN S. CEREVISIAE .............................................................. LI v Abstract Abstract Aromatic prenyltransferases catalyze the prenylation of an electron-rich aromatic compound by a prenyl diphosphate
Recommended publications
  • Designing Microorganisms for Heterologous Biosynthesis of Cannabinoids Angelaˆ Carvalho1, Esben Halkjær Hansen1, Oliver Kayser2, Simon Carlsen1,∗ and Felix Stehle2
    FEMS Yeast Research, 17, 2017, fox037 doi: 10.1093/femsyr/fox037 Advance Access Publication Date: 4 June 2017 Minireview MINIREVIEW Designing microorganisms for heterologous biosynthesis of cannabinoids Angelaˆ Carvalho1, Esben Halkjær Hansen1, Oliver Kayser2, Simon Carlsen1,∗ and Felix Stehle2 1Evolva Biotech A/S, Lersø Parkalle´ 42-44, 2100, Copenhagen, Denmark and 2Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany ∗Corresponding author: Evolva Biotech A/S, Lersø Parkalle´ 42-44, 2100, Copenhagen, Denmark. Tel: +45-35-200-243; E-mail: [email protected] One sentence summary: In this review, the authors explore the use of synthetic biology as an alternative approach for the synthesis of pharmaceutical cannabinoids in a heterologous host organism. Editor: John Morrissey ABSTRACT During the last decade, the use of medical Cannabis has expanded globally and legislation is getting more liberal in many countries, facilitating the research on cannabinoids. The unique interaction of cannabinoids with the human endocannabinoid system makes these compounds an interesting target to be studied as therapeutic agents for the treatment of several medical conditions. However, currently there are important limitations in the study, production and use of cannabinoids as pharmaceutical drugs. Besides the main constituent tetrahydrocannabinolic acid, the structurally related compound cannabidiol is of high interest as drug candidate. From the more than 100 known cannabinoids reported, most can only be extracted in very low amounts and their pharmacological profile has not been determined. Today, cannabinoids are isolated from the strictly regulated Cannabis plant, and the supply of compounds with sufficient quality is a major problem.
    [Show full text]
  • Recent Developments in Cannabis Chemistry
    Recent Developments in Cannabis Chemistry BY ALEXANDER T. SHULGIN, Ph.D. The marijuana plant Cannabis sativa contains a bewildering Introduction array of organic chemicals. As is true with other botanic species, there are representatives of almost all chemical classes present, including mono- and sesquiterpenes, carbohy- drates, aromatics, and a variety of nitrogenous compounds. Interest in the study of this plant has centered primarily on the resinous fraction, as it is this material that is invested with the pharmacological activity that is peculiar to the plant. This resin is secreted by the female plant as a protective agent during seed ripening, although it can be found as a microscopic exudate through the aerial portions of plants of either sex. The pure resin, hashish or charas, is the most potent fraction of the plant, and has served as the source material for most of the chemical studies. The family of chemicals that has been isolated from this source has been referred to as the cannabinoid group. It is unique amongst psychotropic materials from plants in that there are no alkaloids present. The fraction is totally nitro- gen-free. Rather, the set of compounds can be considered as analogs of the parent compound cannabinol (I), a fusion product of terpene and a substituted resorcinol. Beyond the scope of this present review are such questions as the distribution of these compounds within the plant, the bo- tanic variability resulting from geographic distribution, the diversity of pharmacological action assignable to the several Reprinted from Journal of Psychedelic Drugs, vol. II, no. 1, 197 1. 397 398 Marijuana: Medical Papers distinct compounds present, and the various preparations and customs of administration.
    [Show full text]
  • What Is Delta-8 THC?? Cannabinoid Chemistry 101
    What is Delta-8 THC?? Cannabinoid Chemistry 101 National Conference on Weights and Measures Annual Meeting - Rochester, NY Matthew D. Curran, Ph.D. July 21, 2021 Disclaimer Just to be clear… • I am a chemist and not a lawyer so: • This presentation will not discuss the legal aspects of Δ8-THC or DEA’s current position. • This presentation will not discuss whether Δ8-THC is considered “synthetic” or “naturally occurring.” • This is not a position statement on any issues before the NCWM. • Lastly, this should only be considered a scientific sharing exercise. Florida Department of Agriculture and Consumer Services 2 Cannabis in Florida Cannabis Syllabus • What is Cannabis? • “Mother” Cannabinoid • Decarboxylation • Relationship between CBD and THC • What does “Total” mean? • Dry Weight vs. Wet Weight • What does “Delta-9” mean? • Relationship between “Delta-8” and “Delta-9” • CBD to Delta-8 THC • Cannabinoid Chemistry 202… Florida Department of Agriculture and Consumer Services 3 Cannabis Cannabis • Cannabis sativa is the taxonomic name for the plant. • The concentration of Total Δ9-Tetrahydrocannabinol (Total Δ9-THC) is critical when considering the varieties of Cannabis sativa. • Hemp – (Total Δ9-THC) 0.3% or less • Not really a controversial term, “hemp” • Marijuana/cannabis – (Total Δ9-THC) Greater than 0.3% • Controversial term, “marijuana” • Some states prohibit the use of this term whereas some states have it in their laws. • Some states use the term “cannabis.” • Not italicized • Lower case “c” Florida Department of Agriculture and
    [Show full text]
  • Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action
    molecules Review Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action Matthew E. Bergman 1 , Benjamin Davis 1 and Michael A. Phillips 1,2,* 1 Department of Cellular and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; [email protected] (M.E.B.); [email protected] (B.D.) 2 Department of Biology, University of Toronto–Mississauga, Mississauga, ON L5L 1C6, Canada * Correspondence: [email protected]; Tel.: +1-905-569-4848 Academic Editors: Ewa Swiezewska, Liliana Surmacz and Bernhard Loll Received: 3 October 2019; Accepted: 30 October 2019; Published: 1 November 2019 Abstract: Specialized plant terpenoids have found fortuitous uses in medicine due to their evolutionary and biochemical selection for biological activity in animals. However, these highly functionalized natural products are produced through complex biosynthetic pathways for which we have a complete understanding in only a few cases. Here we review some of the most effective and promising plant terpenoids that are currently used in medicine and medical research and provide updates on their biosynthesis, natural occurrence, and mechanism of action in the body. This includes pharmacologically useful plastidic terpenoids such as p-menthane monoterpenoids, cannabinoids, paclitaxel (taxol®), and ingenol mebutate which are derived from the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, as well as cytosolic terpenoids such as thapsigargin and artemisinin produced through the mevalonate (MVA) pathway. We further provide a review of the MEP and MVA precursor pathways which supply the carbon skeletons for the downstream transformations yielding these medically significant natural products. Keywords: isoprenoids; plant natural products; terpenoid biosynthesis; medicinal plants; terpene synthases; cytochrome P450s 1.
    [Show full text]
  • Using Dictyostelium Discoideum to Investigate the Mechanism of Action of Cannabigerol
    Therapeutic cannabinoids: Using Dictyostelium discoideum to investigate the mechanism of action of cannabigerol Joseph Oddy Research thesis submitted for the degree of Doctor of Philosophy at the Royal Holloway University of London in May 2020 1 Declaration of Authorship I, Joseph Laurence Damstra-Oddy, hereby declare that the work presented in this thesis is my own unless otherwise stated, and that all published work has been acknowledged. Furthermore, I affirm that I have neither fabricated nor falsified the results reported herein. Signed: Date: 22/05/2020 2 Abstract Cannabis has been used to treat many diseases for centuries. Recent medical interest has focused on the potential of cannabinoids to treat diseases such as multiple sclerosis, epilepsy, and cancer where research has focused on investigating cannabidiol (CBD). However, other cannabinoids, such as cannabigerol (CBG), remain poorly characterised and are being explored as potential treatments. The molecular mechanisms by which cannabinoids treat diseases remain unclear, despite suggested targets including adenosine, mTOR, transient receptor potential transporters and cannabinoid receptors. This study aimed to identify molecular mechanisms of CBG, using Dictyostelium discoideum as a model system and translating results to a clinical setting. Initially, a targeted approach was undertaken where the effects of CBG on adenosine transport (and DNA methylation) was investigated. From this approach, CBG elevated DNA methylation in D. discoideum dependent upon adenosine transport via the equilibrative nucleoside transporter 1 (ENT1). In addition, an unbiased approach was taken in which screening of a mutant library for CBG resistance identified inositol polyphosphate multikinase (IPMK), a known regulator of mTOR activity, as a potential target.
    [Show full text]
  • WO 2017/139496 Al 17 August 2017 (17.08.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/139496 Al 17 August 2017 (17.08.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 1/15 (2006.01) C12N 15/52 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/29 (2006.01) C12P 7/40 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 15/31 (2006.01) C12P 7/22 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, PCT/US20 17/0 17246 KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, (22) International Filing Date: MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, ' February 2017 (09.02.2017) NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (25) Filing Language: English TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (26) Publication Language: English ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/293,050 February 2016 (09.02.2016) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: CEVOLVA BIOTECH, INC.
    [Show full text]
  • Uncovering the Psychoactivity of a Cannabinoid from Liverworts Associated with a Cyano Cannabinoids
    SCIENCE ADVANCES | RESEARCH ARTICLE NEUROPHYSIOLOGY Copyright © 2018 The Authors, some rights reserved; Uncovering the psychoactivity of a cannabinoid from exclusive licensee American Association liverworts associated with a legal high for the Advancement A. Chicca1, M. A. Schafroth2, I. Reynoso-Moreno1, R. Erni2, V. Petrucci1, of Science. No claim to 2 1 original U.S. Government E. M. Carreira *, J. Gertsch * Works. Distributed under a Creative Phytochemical studies on the liverwort Radula genus have previously identified the bibenzyl (−)-cis-perrottetinene Commons Attribution 9 9 (cis-PET), which structurally resembles (−)-D -trans-tetrahydrocannabinol (D -trans-THC) from Cannabis sativa NonCommercial L. Radula preparations are sold as cannabinoid-like legal high on the internet, even though pharmacological data License 4.0 (CC BY-NC). are lacking. Herein, we describe a versatile total synthesis of (−)-cis-PET and its (−)-trans diastereoisomer and demonstrate that both molecules readily penetrate the brain and induce hypothermia, catalepsy, hypolocomo- tion, and analgesia in a CB1 receptor–dependent manner in mice. The natural product (−)-cis-PET was profiled on major brain receptors, showing a selective cannabinoid pharmacology. This study also uncovers pharmacological 9 differences between D -THC and PET diastereoisomers. Most notably, (−)-cis-PET and (−)-trans-PET significantly 9 reduced basal brain prostaglandin levels associated with D -trans-THC side effects in a CB1 receptor–dependent manner, thus mimicking the action of the endocannabinoid 2-arachidonoyl glycerol. Therefore, the natural product (−)-cis-PET is a psychoactive cannabinoid from bryophytes, illustrating the existence of convergent evolution of bioactive cannabinoids in the plant kingdom. Our findings may have implications for bioprospecting and drug discovery and provide a molecular rationale for the reported effects upon consumption of certain Radula prepa- rations as moderately active legal highs.
    [Show full text]
  • Cannabis Sativa L.) Phenotypes
    plants Article Metabolomic Analysis of Cannabinoid and Essential Oil Profiles in Different Hemp (Cannabis sativa L.) Phenotypes Marjeta Eržen 1, Iztok J. Košir 1 , Miha Ocvirk 1 , Samo Kreft 2 and Andreja Cerenakˇ 1,* 1 Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, 3310 Žalec, Slovenia; [email protected] (M.E.); [email protected] (I.J.K.); [email protected] (M.O.) 2 Faculty of Pharmacy, University of Ljubljana, Aškerˇcevacesta 7, 1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-3-71-21-633 Abstract: Hemp (Cannabis sativa L.) cannabinoids and terpenoids have therapeutic effects on human and animal health. Cannabis plants can often have a relatively high heterogeneity, which leads to different phenotypes that have different chemical profiles despite being from the same variety. Little information exists about cannabinoid and terpenoid profiles in different hemp phenotypes within the same variety. For this study, 11 phenotypes from three different varieties (“Carmagnola” selected (CS), “Tiborszallasi” (TS), and “Finola” selection (FS)) were analyzed. The components of essential oil (29) were analyzed using gas chromatography with flame ionization detection (GC/FID), and 10 different cannabinoids of each phenotype were determined using high-performance liquid chromatography (HPLC). Principal component analysis (PCA) and analysis of variance (ANOVA) showed that according to the components of essential oil, FS and TS plants were more uniform than CS plants, where there were great differences between CI and CII phenotypes. The content of cannabinoid CBD-A was the highest in all four FS phenotypes. By comparing cannabinoid profiles, Citation: Eržen, M.; Košir, I.J.; Ocvirk, M.; Kreft, S.; Cerenak,ˇ A.
    [Show full text]
  • Cannabigerol Is a Potential Therapeutic Agent in a Novel Combined Therapy for Glioblastoma
    Supplemental material Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma Tamara T. Lah, Metka Novak, Milagros A. Pena Almidon, Oliviero Marinelli, Barbara Žvar Baškovič, Bernarda Majc, Mateja Mlinar, Roman Bošnjak, Barbara Breznik, Roby Zomer, and Massimo Nabissi Figure S1. Biosynthesis and metabolism of cannabigerol (CBG). The enzyme prenyltransferase catalyses the conversion of olivetolic acid into CBG in the cannabis plant. CBG is the intermediate biosynthetic precursor of delta‐9‐tetrahydrocannabinol (THC)‐acid and cannabidiol (CBD)‐acid and is converted to THC, CBD, and cannabichromene (CBC), which is then converted into THC, CBD, or CBG by specific synthases (adapted from [30]). Cells 2021, 10, 340. https://doi.org/10.3390/cells10020340 www.mdpi.com/journal/cells Cells 2021, 10, 340 2 of 3 Figure S2. Cell death determination by flow cytometry using Annexin V‐FITC and propidium iodide staining. Cells (U87 and NCH44) were treated with IC50 concentrations of compounds CBG, CBD, and THC for 48 h. Cells were labelled with Annexin V‐FITC and propidium iodide and analysed by flow cytometry. The dot blots represent the results from three biological repeats. Table S1: High‐performance liquid chromatography purity results for the CBG, CBD, and THC solutions used in this study. Cannabinoids Cannabinoids Cannabinoids Concentration Concentration Concentration in CBG in CBD in CBD (mg/ml) (mg/ml) (mg/ml) solution solution solution CBDVA BDL* CBDVA BDL* CBDVA BDL* CBDV BDL* CBDV BDL* CBDV BDL* CBDA BDL*
    [Show full text]
  • ( 12 ) United States Patent
    US010669248B2 (12 ) United States Patent ( 10 ) Patent No.: US 10,669,248 B2 Thomas et al. (45 ) Date of Patent : Jun . 2 , 2020 (54 ) METHODS TO CHEMICALLY MODIFY 10,195,159 B2 2/2019 Whittle et al. CANNABINOIDS 10,238,705 B2 3/2019 Speier 2004/0147767 Al 7/2004 Whittle et al . 2005/0042172 A1 2/2005 Whittle ( 71) Applicant: Natural Extraction Systems, LLC , 2009/0054711 A1 2/2009 Lawrence et al. Boulder , CO (US ) 2012/0157719 Al 6/2012 Teles et al . 2016/0038437 A1 2/2016 Whittle et al. (72 ) Inventors : C. Russell Thomas, Boulder , CO (US ) ; 2018/0078874 A1 3/2018 Thomas Matthew M.DePalo , Broomfield , CO 2018/0296617 Al 10/2018 Rivas (US ) 2019/0151171 Al 5/2019 Johnson et al. ( 73 ) Assignee : Natural Extraction Systems, LLC , FOREIGN PATENT DOCUMENTS Boulder, CO (US ) CA 2472561 A1 * 8/2002 C07D 311/80 EP 3453397 A1 3/2019 ( * ) Notice: Subject to any disclaimer , the term of this JP 4849578 B1 1/2012 patent is extended or adjusted under 35 WO WO - 2002 /089945 A2 11/2002 WO WO - 2015 /049585 A2 4/2015 U.S.C. 154 ( b ) by 0 days . WO WO - 2016153347 Al * 9/2016 C07C 37/004 WO WO - 2016 / 161420 Al 10/2016 ( 21) Appl. No .: 16 /271,782 WO WO - 2017 / 192527 A1 11/2017 WO WO - 2018009514 Al * 1/2018 BO1D 3/10 ( 22 ) Filed : Feb. 9 , 2019 WO WO - 2018 / 102711 A1 6/2018 (65 ) Prior Publication Data OTHER PUBLICATIONS US 2020/0048214 A1 Feb. 13 , 2020 U.S. Appl .
    [Show full text]
  • Identification, Isolation and Functional Characterization of Prenyltransferases in Cannabis Sativa L
    Identification, isolation and functional characterization of prenyltransferases in Cannabis sativa L. Zur Erlangung des akademischen Grades eines Dr. rer. nat. von der Fakultät Bio- und Chemieingenieurwesen der Technischen Universität Dortmund Dissertation vorgelegt von M. Sc. Kathleen Pamplaniyil aus Viersen Dortmund 2016 2 Acknowledgments I would like to thank all people who supported me throughout the years of my Ph.D. thesis. First of all, I would like to express my gratitude towards Prof. Dr. Oliver Kayser (Chair of Technical Biochemistry, TU Dortmund) for his support and supervision throughout the time of my thesis. The discussions with him broadened my scientific knowledge and the work in his chair was instructive. Furthermore, I want to thank Dr. Felix Stehle for guidance and support during the last two years of my thesis. The interesting discussions about the course of my experiments were inspirational. In addition my sincere thanks are given to Prof. Dr. Jörn Kalinowski (Research group Microbial genomics and biotechnology, Center for Biotechnology) and Oliver Rupp (Chair Bioinformatics and Systems Biology, University Giessen) for their generous support during the in silico analysis. Moreover, I want to express my appreciation to Prof. Dr. Heribert Warzecha (Department of Biology, TU Darmstadt) and Jascha Volk (Department of Biology, TU Darmstadt) who supported me with their knowledge and equipment during the transient expression in tobacco plants. I am very thankful for the financial support of the Ministry of Innovation, Science and Research of the German Federal State of North Rhine Westphalia (NRW) and TU Dortmund. Special thanks go to my colleagues especially Verena, Schütz, Evamaria Gruchattka, Friederike Ullrich, Friederike Degenhardt, Bastian Zirpel and Laura Kohnen for their contribution in scientific discussions and the good time we shared together besides the work in the lab.
    [Show full text]
  • Phytocannabinoids Origins and Biosynthesis Gülck, Thies; Møller, Birger Lindberg
    Phytocannabinoids Origins and Biosynthesis Gülck, Thies; Møller, Birger Lindberg Published in: Trends in Plant Science DOI: 10.1016/j.tplants.2020.05.005 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-ND Citation for published version (APA): Gülck, T., & Møller, B. L. (2020). Phytocannabinoids: Origins and Biosynthesis. Trends in Plant Science, 25(10), 985-1004. https://doi.org/10.1016/j.tplants.2020.05.005 Download date: 03. Dec. 2020 Trends in Plant Science Feature Review Phytocannabinoids: Origins and Biosynthesis Thies Gülck1,2,3,* and Birger Lindberg Møller1,2,3,* Phytocannabinoids are bioactive natural products found in some flowering Highlights plants, liverworts, and fungi that can be beneficial for the treatment of human Phytocannabinoids are bioactive terpe- ailments such as pain, anxiety, and cachexia. Targeted biosynthesis of cannabi- noids that were thought to be exclusive noids with desirable properties requires identification of the underlying genes to Cannabis sativa, but have now also been discovered in Rhododendron spe- and their expression in a suitable heterologous host. We provide an overview cies, some legumes, the liverwort genus of the structural classification of phytocannabinoids based on their decorated Radula,andsomefungi. resorcinol core and the bioactivities of naturally occurring cannabinoids, and we review current knowledge of phytocannabinoid biosynthesis in Cannabis, Many cannabinoids display promising non-hallucinogenic bioactivities that are Rhododendron,andRadula species. We also highlight the potential in planta determined by the variable nature of the roles of phytocannabinoids and the opportunity for synthetic biology approaches side chain and prenyl group defined by based on combinatorial biochemistry and protein engineering to produce canna- the enzymes involved in their synthesis.
    [Show full text]