Chloramine Fact Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Chloramine Fact Sheet International Headquarters & Laboratory Phone 630 505 0160 WWW.WQA.ORG A not-for-profit organization CHLORAMINE FACT SHEET Contaminant In Water As Maximum Residual Disinfectant Level Monochloramine NH2Cl US EPA: Dichloramine NHCl2 MRDL* = 4.0 mg/L or ppm (measured as Cl2) Nitrogen trichloride NCl3 MRDLG** = 4.0 mg/L or ppm (measured as Cl2) Sources of Contaminant Municipal Treatment Potential Health Effects Can cause hemolytic anemia when present in dialysis process water Treatment Methods Activated Carbon Point-of-Entry Point-of-Use Catalytic Activated Carbon *Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. **Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.) Aqueous chlorine reacts with certain organic materials present in water sources to form trihalomethanes (THMs). Long-term exposure to these harmful byproducts of disinfection has been linked to an increased risk of cancer and infant birth delivery problems. It is estimated that THMs in drinking water are responsible for as many as 2-17 percent of the bladder cancers diagnosed each year in the United States. To protect the public, the U.S. Environmental Protection Agency has established a maximum contaminant level of 0.08 milligrams per liter (mg/L) for THMs. To conform to these regulations, many municipal water supplies have switched to an alternative method of disinfection using chloramination; more than 1 in 5 Americans uses drinking water treated with chloramines. Chloramination involves the addition of anhydrous or aqueous ammonia (NH3) before or after the addition of chlorine (HOCl) to produce monochloramine (NH2Cl). This reaction is as follows: NH3 + HOCl = NH2Cl + H2O Chloramines also form to a lesser extent during conventional chlorine treatment when aqueous chlorine reacts with natural organic nitrogen. Monochloramine is 200 times less effective as a disinfectant than chlorine, but is an attractive alternative since it does not react as readily with organic WQA Technical Fact Sheet: Chloramine materials to form THMs. Many water utilities overcome the decreased efficiency of monochloramine by dosing first with chlorine, then adding ammonia at a later stage of treatment. Since the initial application is of chlorine, this increases the initial biocidal efficiency of the disinfection but also increases the risk of THM formation during this initial treatment. The ammonia addition results in the residual chemical in the plumbing being monochloramine, with longer lasting residual and reduced risk of THM formation in the distribution system. The process of chloramination is both pH and concentration dependent. Water pH levels below 7.5 or chlorine to ammonia weight ratios exceeding 5:1 increase the formation of dichloramine (NHCl2) and nitrogen trichloride (NCl3). Dichloramine and nitrogen trichloride are undesirable byproducts in that while they are more effective disinfectants, they are less stable and cause greater “swimming pool”- type taste and odor problems when they exceed concentrations of 0.80 mg/L and 0.02 mg/L (respectively). Excessive chlorine levels produce THMs, while excess ammonia increases the potential for nitrification in the distribution system. The US EPA recognizes three analytical methods as acceptable for measuring residual chloramines. These methods are: • Amperometric Titration (Standard Method 4500-C1 D and ASTM Method D 1253-86) • DPD Ferrous Titrimetric (Standard Method 4500-C1 F) • DPD Colorimetric (Standard Method 4500-C1 G) The average municipal water system maintains residual monochloramine concentrations around 2 mg/L (range: 1.5 mg/L to 2.5 mg/L). Chloramination also has the added benefit of decreasing the formation of biofilms in water supply systems since the residual levels of monochloramine remain relatively constant throughout the system HEALTH EFFECTS Although the use of chloramination has recently increased, it has a long history of safe and effective use in the United States. The City of Denver, Colorado has utilized chloramination since 1918. An extensive risk assessment by the EPA’s National Center for Environmental Assessment (NCEA) utilized existing human and animal studies to conclude that human health effect do not appear to be associated with levels of residual chloramines typically found in drinking water. However, a Maximum Residual Disinfectant Level Goal (MRDLG) and Maximum Residual Disinfectant Level (MRDL) of 4.0 mg/L was established by US EPA as the enforceable maximum safety level for chloramines (measured as chlorine, Cl2) for public water systems under the Safe Drinking Water Act, and the level below which there is no known or expected risk to health. Chloramines do pose a risk for hemodialysis patients and fish. Chloramines easily enter the bloodstream through dialysis membranes and the gills of fish. Once in the blood stream, chloramines denature hemoglobin and cause hemolytic anemia. Accidental use of chloramine treated water for dialysis has been responsible for a number of patients requiring transfusion to treat resultant hemolytic anemia, and was a possible factor in an increased mortality (death) rate among the dialysis center WQA Technical Fact Sheet: Chloramine patients during the 5 months after the chloramine exposure when compared to the 12 months before the chloramine exposure. Nitrosamines can be generated as byproducts from use of chloramines. They are strongly suspected of being human carcinogens. Nitrosamines can come in contact with most of organs in the body in addition to crossing the placenta. Effects such as cell damage and DNA mutations may occur and lead to cancer even at low levels of exposure. TREATMENT METHODS Residential Point-of-Use Activated Carbon Point-of-Entry Catalytic Activated Carbon Municipal N/A Visit WQA.org to search for products certified to NSF 42 for chloramine reduction. While chloramines are not a drinking water health concern to humans generally, their removal improves the taste and odor of drinking water. Chloramines are small, stable molecules with no net charge making them difficult to remove by distillation, reverse osmosis, and ion exchange resins. Due to the reaction of aqueous chlorine with organic nitrogen, chloramines also present a concern for municipal water systems utilizing chlorine as a method of disinfection. This reaction is of concern because there is potential for harmful disinfection byproducts to be produced from it. The most effective nonchemical method for removing chloramines is by activated carbon (C*). Activated carbon does not adsorb chloramines but rather removes them through its ability to act as a catalyst for the chemical breakdown of chloramines to innocuous chlorides in water. This catalytic reaction involves the formation of an oxide of carbon intermediate (CO*). This reaction is as follows: - + NH2Cl + H2O + C* = NH3 + Cl + H + CO* - + 2NH2Cl + CO*= N2 + 2Cl + 2H + H2O + C* Fine mesh sizes of activated carbon remove chloramines more efficiently since they have greater surface areas and allow faster access to catalytic sites. Also, activated carbon that has been “acclimated” to achieve increased sites for oxide of carbon intermediate (CO*) formation improves chloramine removal. For new activated carbon, initial dosing with chlorine to preoxidize the carbon may result in more effective chloramine removal, as shown in the second reaction above. A bed contact time of 10 minutes or greater can be required for complete catalysis of chloramines with traditional activated carbons. New types of activated carbons have been developed with increased catalytic activity that is especially effective at the removal of chloramines. These catalytic carbons may be marketed with a peroxide number (rate of hydrogen peroxide decomposition) in addition to the traditional iodine adsorption number. The chloramine removal capacity of activated carbon is dependent upon pH. Catalytic carbons have demonstrated increased chloramine removal efficiency at higher pHs. - Ammonia (NH3), chloride (Cl ), and nitrogen gas (N2) are produced by the catalysis of monochloramine. The removal of these catalytic byproducts can be achieved by additional treatment with ion exchange resins or by reverse osmosis. The treatment methods listed herein are generally recognized as techniques that can effectively reduce the listed contaminants sufficiently to meet or exceed the relevant MCL. However, this list does not reflect the fact that point-of-use/point-of-entry (POU/POE) devices and systems currently on the market may differ widely in their effectiveness in treating specific contaminants, and performance may vary from application to application. Therefore, selection of a particular device or system for health contaminant reduction should be made only after careful investigation of its’ performance capabilities based on results from competent equipment validation testing for the specific contaminant to be reduced. As part of point-of-entry treatment system installation procedures, system performance characteristics should be verified by tests conducted under established test procedures and water analysis. Thereafter, the resulting water should be monitored periodically to verify continued performance. The
Recommended publications
  • OWASA WATER EMERGENCY FEB 2017 WHY THIS MATTERS to DURHAM MARCH 9Th, 2017 / J
    OWASA WATER EMERGENCY FEB 2017 WHY THIS MATTERS to DURHAM MARCH 9th, 2017 / J. CHRISTOPHER SALTER Durham WTP Source Water Lake Michie Elevation: 341.20 feet mean sea level Little River Reservoir Elevation: 354.70 feet, msl Lake Michie & LR Reservoir are full at 341.00 & 355 msl respectively Terminal Reservoirs & Treatment Plants Raw (untreated) water from Durham’s 2 reservoirs/lakes is pumped into terminal reservoirs located at the city’s 2 water treatment plants. The Brown Water Treatment Plant (WTP) terminal reservoir holds approximately 90 million gallons and the Williams WTP terminal reservoir holds approximately 45 million gallons. These volumes represent a 2 to 3 day supply of water for the 2 treatment plants Brown WTP City Government Office Williams WTP 1615 Infinity Rd 1405 Hillandale Rd Williams WTP Under construction, 1917 Beatrice & Graham Maynard, "Romance Nuts," boating on the Durham reservoir with the clubhouse in the background. (Courtesy Durham County Library) Construction of the west wing, 1926. (Courtesy Durham County Library) William Piatt atop the completed structure, 1927. (Courtesy Durham County Library) Construction of the 1949-50 addition (Courtesy Barry Norman) Completed 1949-50 addition (Courtesy The Herald-Sun Newspaper Aerial of the water treatment plant and reservoir, 1950s (Courtesy Durham County Library / North Carolina Collection) 1917, 1927, and 1950 portions of the treatment plant, 04.04.09 (thanks to K. Johnson for climbing on top of the sign to take this picture for me.) Coagulation, Flocculation, Sedimentation Currently, both treatment plants use a chemical called ferric sulfate (Fe3+) as a coagulant Filtration After water has gone through the flocculation and sedimentation process to remove the sediment/particulate matter, it flows through filters composed of layers of crushed anthracite coal, sand and gravel.
    [Show full text]
  • Portland's Water Sources
    Mailed June, 2006 u From Commissioner Leonard “From forest to faucet, Portland delivers the best drinking water in the world.” u The Bull Run Watershed “... 80-170 inches of rainfall a year.” u Portland’s Drinking Water Quality “... continues to meet all state and federal regulations.” Letter From the Commissioner From forest to faucet, Portland delivers the best drinking water in the world. I am pleased to share the annual monitoring results for Portland’s drinking water system. It is important that the city’s drinking water customers know that they, their Portland’s Water Sources families and businesses receive high quality drinking water. Portland protects this water supply through monitoring, treatment, investment and long-term planning. Working with citizens, the city implements programs and projects that maintain the Portland drinking water system and strengthen it. The Bull Run water source and backup groundwater facilities are some of Portland’s most valuable resources. Protecting these essential resources and maintaining the water system are vital public services – and top priorities for the Water Bureau. The City of Portland is committed to continuing to provide the best drinking water in the world. Randy leonard Commissioner-In-Charge Annual Water THE BULL RUN WatERSHED all freshwater ecosystems and are present in the Bull Run supply at very low levels. The Bull Quality Report The Bull Run Watershed is a surface water Run supply complies with all applicable state and supply located in the Mt. Hood National Forest. federal regulations for source water, including If this information looks familiar, A geological ridge separates the watershed the 1989 Surface Water Treatment Rule filtration- it should.
    [Show full text]
  • 11B CONVERTING to CHLORAMINES
    CONVERTING TO CHLORAMINES IMPORTANCE OF DISINFECTION GIARDIA DISINFECTION KILLS OR POSSIBLE PATHOGENS INACTIVATES ANY INCLUDE ENTERIC PATHOGENS THAT PASS VIRUSES AND BACTERIA, THROUGH THE WATER E. COLI, PROTOZOA, TREATMENT AND GIARDIA AND FILTERING PROCESS CRYPTOSPORIDIUM DISINFECTION • PUBLIC WATER SUPPLIES ARE REQUIRED TO MAINTAIN A RESIDUAL DISINFECTING AGENT THROUGHOUT THE DISTRIBUTION SYSTEM, IN WHICH WATER MAY REMAIN FOR DAYS BEFORE REACHING THE CONSUMER • THERE ARE TWO KINDS OF DISINFECTIONS • PRIMARY DISINFECTION ACHIEVES THE DESIRED LEVEL OF MICROORGANISM KILL OR INACTIVATION • SECONDARY DISINFECTION MAINTAINS A DISINFECTANT RESIDUAL IN THE FINISHED WATER THAT PREVENTS THE REGROWTH OF MICROORGANISMS INSIDE THE WATER MAINS. WHY SWITCH DISINFECTION METHODS • DISINFECTION BYPRODUCTS (DBP’S) • SAFE DRINKING WATER ACT (SDWA) • TRIHALOMETHANES (THMS) AND • LOWERED DBP LIMITS FROM 100 HALOACETIC ACIDS (HAAS) MICROGRAM PER LITER FOR THMS • FORMED WHEN CHLORINE REACTS WITH • NEW LIMITS ORGANIC AND INORGANIC COMPOUNDS • 80 MICROGRAMS PER LITER FOR THMS IN THE WATER • 60 MICROGRAMS PER LITER FOR HAAS • SUSPECTED CARCINOGENS Our system must comply with the new rule by the fall of 2015 Chloramines historically are a cost effective solution HISTORY OF CHLORAMINATION • Was common in the 1920’s – 1940’s • Used in Ottawa, Ontario in 1916 • Used in Denver, CO in 1917 • Used in Greenville, TN in 1926 • Growth in popularity 1929 – 1939 • Free Residual Breakpoint Concept discovered in 1939 • Use of Chloramination decreased during WWII – demand increases
    [Show full text]
  • Online Monitoring Chloramination Process
    Online Monitoring Chloramination Process Presented at OAWWA NE District Meetings May 3, 2018 Wei Zhang and Scott Kahle ASA Analytics Waukesha, WI 53186 Technical Sources Optimizing Chloramine Treatment AWWA Research Foundation 1993 and 2004 Laboratory Experiments and Experiences at Hundreds Chloramination Facilities using ChemScan chloramination Analyzers Chlorination Pathogens Safe Water Chlorine Hypochlorous Acid + + Hypochlorite Chlorine has prevent the spread of waterborne diseases such as cholera, dysentery, typhoid etc …. Chlorination First use for Water Disinfection in late 1800’s Benefits: Strong oxidizer for disinfection Persistent residual to the tap Disadvantages: Strong oxidizer that reacts with many inorganics and organics Potential taste and odor issues Under some conditions, decays rapidly Disinfection Byproducts - DPBs Hypochlorous Natural Organic THM and HAA Acid (HOCl) Matter (NOM) (Carcinogens) + + Strong Oxidizer DBP Reduction Remove Organic Precursors that are reactive with chlorine (filters, membranes, ion exchange, etc… remove TOC ) Decrease the amount of hypochlorous acid available in the reaction (this can be accomplished via chloramination) Decrease the time of contact between the organic material and hypochlorous acid (also accomplished via chloramination) Chloramine Formation NH3 + HOCl NH2Cl + H20 Monochloramine Monochloramine + HOCl NH2Cl + H20 Dichloramine (Strong Odor Weak Disinfectant) Dichloramine + HOCl NCl3 + H20 Trichloramine (Strong Odor and Taste Weak Disinfectant) Organo-chloramines are can also be formed in the presences of organics Chloramines vs. Chlorine More Stable - Longer Lived Residuals Less Reactive (reduced DBP formation) Minimizes Objective Taste and Odor (As long as Di-chloramine and Tri-chloramine are not produced) Disinfection Byproducts Natural Organic Minimal DBPs Monochloramine Matter (NOM) + + Weaker Oxidizer History of Chloramines Initially used in the early 1900s when it was found that chlorine-ammonia addition could save cost by reducing chlorine used.
    [Show full text]
  • Theoretical Study on the Molecular and Crystal Structures of Nitrogen Trifluoride and It’S Adduct with BF3
    J. Chem. Sci. Vol. 127, No. 8, August 2015, pp. 1491–1496. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0857-3 Theoretical study on the molecular and crystal structures of nitrogen trifluoride and it’s adduct with BF3 HONGCHEN DUa,b,c aSchool of Science, Zhejiang A & F University, Linan, 311300, China bZhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin’an, 311300, China cPresent address: Weifang University of Science and Technology, Jinguang Street 1299, Shouguang, 262700, China e-mail: [email protected]; [email protected] MS received 30 April 2014; revised 30 October 2014; accepted 27 January 2015 Abstract. The molecular and crystal structure of the adduct NF3·BF3 was studied computationally using density functional theory. It shows that the adduct exists in the form of a complex but is not ionic. The heats of formation in the gas and the condensed phase of the adduct are −1266.09 and −1276.37 kJ·mol−1, respectively, which indicates that it is stable under atmospheric conditions. The crystal form belongs to P 21/c space group. The calculated large band gap (Eg) of the crystal proves that it is stable. The conduction band (LUCO) is mainly contributed by the p orbital of N atom and the valence band (HOCO) from the p orbital of F atom. Keywords. Molecular; crystal; structure; property; theoretical study. 1. Introduction investigation even though there is limited information on the structure–property relationship, especially on the Molecular complexes containing boron trifluoride as a crystal structure of NF3 with BF3.
    [Show full text]
  • 1. Hydrogen Forms Compounds with Most Non-Metallic Elements and with Some Metals
    PMT 1. Hydrogen forms compounds with most non-metallic elements and with some metals. (a) Calculate the empirical formula of the compound used in the manufacture of artificial rubber which has the following composition by mass. Hydrogen 11.1% Carbon 88.9% (3) (b) The boiling temperatures of hydrogen chloride and hydrogen iodide are: Hydrogen chloride ±85ºC Hydrogen iodide ±35ºC Explain why hydrogen iodide has a higher boiling temperature than hydrogen chloride. ............................................................................................................................. ... ............................................................................................................................. ... ............................................................................................................................. ... (2) (c) Draw and explain the shapes of: (i) the PH3 molecule; .......................................................... ............................................................ ...................................................................................................................... (2) 1 PMT ± (ii) the AlH4 ion. ...................................................................................................................... ...................................................................................................................... (2) 3 (d) Calculate the number of molecules in 8.0 cm of gaseous phosphine, PH3, at room temperature and pressure. (The molar volume of
    [Show full text]
  • Methods to Assess Anthropogenic Bromide Loads from Coal-Fired Power Plants and Their Potential Effect on Downstream Drinking Water Utilities
    Methods to Assess Anthropogenic Bromide Loads from Coal-fired Power Plants and Their Potential Effect on Downstream Drinking Water Utilities Prepared by: Jeanne M. VanBriesen, Ph.D., P.E. December 2019 Project Funding: This project was funded by the American Water Works Association, utilizing the Water Industry Technical Action Fund (WITAF), project #024 and managed by Adam T. Carpenter. Ideal crop marks Dedicated to the World’s Most Important Resource ® Disclaimer: The authors, contributors, editors, and publisher do not assume responsibility for the validity of the content or any consequences of its use. In no event will AWWA or its contractors be liable for direct, indirect, special, incidental or consequential damages arising out of the use of information presented herein. In particular, AWWA and its contractors will not be responsible for any costs, including, but not limited to, those incurred as a result of lost revenue. AWWA does not claim copyright on any material used in this report which is owned by others and used with permission (e.g., figures with the notation “courtesy of…”) or used with attribution through a Creative Commons license. 2 | © Copyright 2019 American Water Works Association Executive Summary Anthropogenic bromide loads discharged to surface waters increase the concentration of bromide in rivers and lakes that are used as source waters for drinking water treatment plants. Elevated bromide in these source waters increases the formation of disinfection by products (DBPs), including trihalomethanes (THMs), which pose health risks to consumers of drinking water. Coal naturally contains bromide, and bromide can be added to coal to increase control of mercury and other air pollutants.
    [Show full text]
  • The Strange Case of Dr. Petit and Mr. Dulong
    The strange case of Dr. Petit and Mr. Dulong Roberto Piazza Dipartimento di Chimica, Materiali ed Ingegneria Chimica Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133 Milano Abstract Petit (DP) limiting law for the (vibrational) specific heat was one of Boltzmann’s great achievements. The Dulong-Petit limiting law for the specific heats On the other hand, evidence of the crushing failure of solids, one of the first general results in thermo- of the DP law at low temperatures, besides giving dynamics, has provided Mendeleev with a powerful support to Nernst’s Third Law of thermodynamics, tool for devising the periodic table and gave an im- motivated Einstein to introduce quantum concepts portant support to Boltzmann’s statistical mechan- in condensed matter physics and Debye to develop a ics. Even its failure at low temperature, accounted consistent vibrational theory of the heat capacity of for by Einstein, paved the way to the the quantum solids [2]. Even today, the study of the anomalous mechanical theory of solids. These impressive con- behavior of the specific heat close to a quantum sequences are even more surprising if we bear in critical point has granted the DP law a “second mind that, when this law was announced, thermal wind” [3]. phenomena were still explained using Lavoisier’s The accomplishment of Dulong and Petit is even concept of caloric and Dalton’s atomic theory was more remarkable when framed within the histori- in its infancy. Recently, however, bitter criticisms cal and geographical context in which it was ob- charging Dulong and Petit of ‘data fabrication’ and tained.
    [Show full text]
  • Chloramination, Lewiston & Auburn's First Year
    Chloramination, Lewiston & Auburn’s First Year June 8 & 15, 2010 Mary Jane Dillingham Water Quality Manager Auburn Water District & Lewiston Water Division Background • Auburn Water District • Lewiston Water Division 1st 1st DBP violation DBP violation HAA5 1st Qtr HAA5 4th Qtr 2002 2006 RAA = 62 ppb, already RAA = 65 ppb, 3 chloraminating more quarters over • March 1, 2006 switched to 60 ppb for RAA chloramines as primary • Notified customers disinfectant 11/17/03 – Switching to chloramines December 10, 2003 Preparing for Chloramines • Violation notices - included information about what was being planned to remediate the high HAA5 • Trustees and Councilors informed at regular meetings • Gave the office staff, who were in contact with the public, information to be able to help the public understand • Gave the crews information including operator training and handouts for reference • Got the Media involved • Critical Customers - Contacted (phone and letters) the Kidney Centers, Aquarium Supply Stores, Hospitals, Veterinarians, Industrial Users, Restaurants, Home Dialysis patients Media Headlines • Water Problem ‘Not Acute’ – February 16, 2003 • Editorial – Define Actual Threat – Sunday, February 16, 2003. “The average customer doesn’t know what haloacetic acids are, what maximum contaminant levels are or how the district controls disinfections by-products. However, they know what cancer is.” • Drinking water system considered – March 20, 2003 • District discusses clearing water contamination – April 16, 2003 • Water District gives contract
    [Show full text]
  • Qualitative and Quantitative Tier 3 Assessment
    Consider It Done www.ehs-support.com.au Qualitative and Quantitative Tier 3 Assessment Sodium Hypochlorite In accordance with the Chemical Risk Assessment Framework (CRAF), the assessment for this Tier 3 chemical includes the following components: completing the screening; developing a risk assessment dossier and Predicted No-Effects Concentrations (PNECs) for water and soil; and, completing a qualitative and quantitative assessment of risk. Each of these components is detailed within this attachment. Background Sodium hypochlorite is a component in a Water Management Facility (WMF) product (Sodium Hypochlorite Solution 12.5%) used as an oxidising agent/disinfectant during oily water treatment. A safety data sheet (SDS) for the WMF product is included as Attachment 1. Process and usage information for this chemical is included in Attachment 2 and summarised in Table 1. Table 1 Water Management Facility Chemicals – Tier 3 Chemicals Approximate Quantity Stored On- Proprietary Name Chemical Name CAS No. Use Site (plant available storage) Sodium Sodium Hypochlorite 7681-52-9 Oxidising 15000 L Hypochlorite Sodium Hydroxide 1310-73-2 agent/disinfectant Solution 12.5% CAS No = Chemical Abstracts Service Number L = litre The assessment of toxicity of this chemical was used to evaluate human health exposure scenarios and is presented in Attachment 3. Since an Australian Drinking Water Guideline (ADWG) Value is available (see Table 2), toxicological reference values (TRVs) were not derived for the chemical. A detailed discussion of the drinking
    [Show full text]
  • Reducing Trihalomethane Concentrations by Using Chloramines As a Disinfectant
    REDUCING TRIHALOMETHANE CONCENTRATIONS BY USING CHLORAMINES AS A DISINFECTANT by Elizabeth Anne Farren A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Master of Science in Environmental Engineering by ___________________________________ April 2003 APPROVED: ___________________________________ Dr. Jeanine D. Plummer, Major Advisor ____________________________________ Dr. Frederick L. Hart, Head of Department Abstract Disinfectants such as chlorine are used in drinking water treatment to protect the public health from pathogenic microorganisms. However, disinfectants also react with humic material present in raw water sources and produce by-products, such as trihalomethanes. Total trihalomethanes (TTHMs) include four compounds: chloroform, bromodichloromethane, dibromochloromethane and bromoform. TTHMs are carcinogenic and have been found to cause adverse pregnancy outcomes. Therefore, the United States Environmental Protection Agency (U.S. EPA) has set the maximum contaminant limit for TTHMs at 80 µg/L. Additional regulations require reliable drinking water disinfection for resistant pathogens and treatment plants must simultaneously control TTHMs and achieve proper disinfection. Research has shown that THM formation depends on several factors. THM concentrations increase with increasing residence time, increased temperature and increased pH. The disinfectant type and concentration is also significant: THM concentrations can be minimized by using lower disinfectant doses or alternative disinfectants to chlorine such as chloramines. Chloramines are formed by the addition of both chlorine and ammonia. The Worcester Water Filtration Plant in Holden, MA currently uses both ozone and chlorine for primary disinfection. Chlorine is also used for secondary disinfection. This study analyzed the effect of using chloramines versus free chlorine on TTHM production at the plant.
    [Show full text]
  • CFNP TAP Report for Urea January 2004 SUMMARY of TAP
    CFNP TAP Report for Urea January 2004 SUMMARY OF TAP REVIEWERS’ ANALYSES1 Urea is being petitioned for use as an insect (fruit fly) attractant in sticky traps in order to prevent extensive damage to olive and fruit crops. Urea slowly and progressively breaks down to ammonia and carbon dioxide inside the sticky traps. Ammonia is a volatile compound that lures fruit flies into the sticky traps. The size and placement of the openings leading into the sticky traps are designed to favor the trapping of fruit flies with minimal trapping of other insects. Ammonium carbonate, a substance already approved for use as bait in insect traps, also breaks down to produce ammonia over an extended period of time. The petitioner is requesting that urea be permitted on the National List of synthetic substances allowed for use in organic crop production since its mode of action is similar to that of ammonium carbonate. All three reviewers concluded that urea, as petitioned, is a synthetic substance. Two of the reviewers recommended, without hesitation, that urea should be included on the National List. The other reviewer had concerns about allowing urea on the National List since it has not historically been allowed for use in organic crop production and since other acceptable substances are available for insect control. However, this reviewer also recommended that urea be allowed on the National List since it will only be used as an insect attractant in sticky traps. Synthetic or Non-synthetic? Allow without restrictions? Allow only with restrictions? (See reviewers’ comments for restrictions) Synthetic (3) Yes (3) Yes (0) Non-synthetic (0) No (0) No(0) IDENTIFICATION Common Name: Urea CAS Registry Number: 57-13-6 1 This Technical Advisory Panel (TAP) report was based upon the information available at the time this report was generated.
    [Show full text]