SAFETY DATA SHEET Methylamine

Total Page:16

File Type:pdf, Size:1020Kb

SAFETY DATA SHEET Methylamine SAFETY DATA SHEET Methylamine Section 1. Identification GHS product identifier : Methylamine Chemical name : mono-Methylamine, gas Other means of : Methanamine (methylamine) identification Product type : Liquefied gas Product use : Synthetic/Analytical chemistry. Synonym : Methanamine (methylamine) SDS # : 001034 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE GASES - Category 1 substance or mixture GASES UNDER PRESSURE - Liquefied gas ACUTE TOXICITY (inhalation) - Category 4 SKIN IRRITATION - Category 2 SERIOUS EYE DAMAGE - Category 1 SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) (Narcotic effects) - Category 3 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : Extremely flammable gas. May form explosive mixtures with air. Contains gas under pressure; may explode if heated. May cause frostbite. May displace oxygen and cause rapid suffocation. Harmful if inhaled. Causes serious eye damage. Causes skin irritation. May cause drowsiness or dizziness. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Always keep container in upright position. Approach suspected leak area with caution. Date of issue/Date of revision : 11/18/2019 Date of previous issue : 2/20/2018 Version : 1.02 1/12 Methylamine Section 2. Hazards identification Prevention : Wear protective gloves. Wear eye or face protection. Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use only outdoors or in a well-ventilated area. Avoid breathing gas. Wash hands thoroughly after handling. Response : IF INHALED: Remove person to fresh air and keep comfortable for breathing. Call a POISON CENTER or physician if you feel unwell. IF ON SKIN: Wash with plenty of soap and water. Take off contaminated clothing and wash it before reuse. If skin irritation occurs: Get medical attention. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTER or physician. Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so. Storage : Store locked up. Protect from sunlight. Store in a well-ventilated place. Disposal : Dispose of contents and container in accordance with all local, regional, national and international regulations. Hazards not otherwise : Liquid can cause burns similar to frostbite. classified Section 3. Composition/information on ingredients Substance/mixture : Substance Chemical name : mono-Methylamine, gas Other means of : Methanamine (methylamine) identification Product code : 001034 CAS number/other identifiers CAS number : 74-89-5 Ingredient name % CAS number mono-methylamine 100 74-89-5 Any concentration shown as a range is to protect confidentiality or is due to batch variation. There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section. Occupational exposure limits, if available, are listed in Section 8. Section 4. First aid measures Description of necessary first aid measures Eye contact : Get medical attention immediately. Call a poison center or physician. Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Chemical burns must be treated promptly by a physician. Inhalation : Get medical attention immediately. Call a poison center or physician. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours. Date of issue/Date of revision : 11/18/2019 Date of previous issue : 2/20/2018 Version : 1.02 2/12 Methylamine Section 4. First aid measures Skin contact : Get medical attention immediately. Call a poison center or physician. Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. To avoid the risk of static discharges and gas ignition, soak contaminated clothing thoroughly with water before removing it. Continue to rinse for at least 10 minutes. In case of contact with liquid, warm frozen tissues slowly with lukewarm water and get medical attention. Do not rub affected area. Chemical burns must be treated promptly by a physician. Wash clothing before reuse. Clean shoes thoroughly before reuse. Ingestion : Get medical attention immediately. Call a poison center or physician. Remove victim to fresh air and keep at rest in a position comfortable for breathing. Chemical burns must be treated promptly by a physician. Ingestion of liquid can cause burns similar to frostbite. If frostbite occurs, get medical attention. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. As this product rapidly becomes a gas when released, refer to the inhalation section. Most important symptoms/effects, acute and delayed Potential acute health effects Eye contact : Causes serious eye damage. Liquid can cause burns similar to frostbite. Inhalation : Harmful if inhaled. Can cause central nervous system (CNS) depression. May cause drowsiness or dizziness. Skin contact : Causes skin irritation. Dermal contact with rapidly evaporating liquid could result in freezing of the tissues or frostbite. Frostbite : Try to warm up the frozen tissues and seek medical attention. Ingestion : Can cause central nervous system (CNS) depression. Ingestion of liquid can cause burns similar to frostbite. Over-exposure signs/symptoms Eye contact : Adverse symptoms may include the following:, pain, watering, redness, frostbite Inhalation : Adverse symptoms may include the following:, nausea or vomiting, headache, drowsiness/fatigue, dizziness/vertigo, unconsciousness Skin contact : Adverse symptoms may include the following:, pain or irritation, redness, blistering may occur, frostbite Ingestion : Adverse symptoms may include the following:, frostbite, stomach pains Indication of immediate medical attention and special treatment needed, if necessary Notes to physician : In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours. Specific treatments : No specific treatment. Protection of first-aiders : No action shall be taken involving any personal risk or without suitable training. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Wash contaminated clothing thoroughly with water before removing it, or wear gloves. See toxicological information (Section 11) Section 5. Fire-fighting measures Extinguishing media Suitable extinguishing : Use an extinguishing agent suitable for the surrounding fire. media Unsuitable extinguishing : None known. media Date of issue/Date of revision : 11/18/2019 Date of previous issue : 2/20/2018 Version : 1.02 3/12 Methylamine Section 5. Fire-fighting measures Specific hazards arising : Contains gas under pressure. Extremely flammable gas. In a fire or if heated, a from the chemical pressure increase will occur and the container may burst, with the risk of a subsequent explosion. The vapor/gas is heavier than air and will spread along the ground. Gas may accumulate in low or confined areas or travel a considerable distance to a source of ignition and flash back, causing fire or explosion. Hazardous thermal : Decomposition products may include the following materials: decomposition products carbon dioxide carbon monoxide nitrogen oxides Special protective actions : Promptly isolate the scene by removing all persons from the vicinity of the incident if for fire-fighters there is a fire. No action shall be taken involving any personal risk or without suitable training. Contact supplier immediately for specialist advice. Move containers from fire area if
Recommended publications
  • Ephedrine by Pseudomonas Putida Detection of (—)-Ephedrine: NAD+-Oxidoreductase from Arthrobacter Globiformis
    Degradation of (—)-Ephedrine by Pseudomonas putida Detection of (—)-Ephedrine: NAD+-oxidoreductase from Arthrobacter globiformis E. Klamann and F. Lingens Institut für Mikrobiologie, Universität Hohenheim, Garbenstraße 30, D-7000 Stuttgart 70 Z. Naturforsch. 35 c, 80-87 (1980); received October 24, 1979 (—)-Ephedrine, (—)-Ephedrine: NAD+-oxidoreductase, Pseudomonas putida, Arthrobacter globiformis A bacterium utilizing the alkaloid (-)-ephedrine as its sole source of carbon was isolated by an enrichment-culture technique from soil supplemented with 4-benzoyl-l,3-oxazolidinon-(2). The bacterium was identified as Pseudomonas putida by morphological and physiological studies. The following metabolites were isolated from the culture fluid: methylamine, formaldehyde, methyl- benzoylcarbinol (2-hydroxy-1-oxo-l-phenylpropane), benzoid acid, pyrocatechol and cis, cis- muconic acid. A pathway for the degradation of (-)-ephedrine by Pseudomonas putida is proposed and compared with the degradative pathway in Arthrobacter globiformis. The enzyme, which is responsible for the first step in the catabolism of (-)-ephedrine could be demonstrated in extracts from Arthrobacter globiformis. This enzyme catalyses the dehydrogena­ tion of (—)-ephedrine yielding phenylacetylcarbinol/methylbenzoylcarbinol and methylamine. It requires NAD+ as cofactor and exhibits optimal activity at pH 11 in 0.1 M glycine/NaOH buffer. The K m value for (—)-ephedrine is 0.02 mM and for N A D + 0.11 mM , respectively. No remarkable loss of activity is observed following treatment
    [Show full text]
  • Paper 1 CIE Chemistry A-Level
    PMT Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level CHEMISTRY 9701/12 Paper 1 Multiple Choice February/March 2017 1 hour Additional Materials: Multiple Choice Answer Sheet *7298237059* Soft clean eraser Soft pencil (type B or HB is recommended) Data Booklet READ THESE INSTRUCTIONS FIRST Write in soft pencil. Do not use staples, paper clips, glue or correction fluid. Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you. DO NOT WRITE IN ANY BARCODES. There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet. Read the instructions on the Answer Sheet very carefully. Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. Electronic calculators may be used. This document consists of 14 printed pages and 2 blank pages. IB17 03_9701_12/4RP © UCLES 2017 [Turn over PMT 2 Section A For each question there are four possible answers, A, B, C and D. Choose the one you consider to be correct. Use of the Data Booklet may be appropriate for some questions. – 1 Which ion has the same electronic configuration as Cl ? A F– B P+ C Sc3+ D Si4+ 2 Compounds J and K each contain 40% carbon by mass. What could J and K be? J K A a hexose, C6H12O6 starch, (C6H10O5)n B a pentose, C5H10O5 a hexose, C6H12O6 C a pentose, C5H10O5 sucrose, C12H22O11 D starch, (C6H10O5)n sucrose, C12H22O11 3 Two moles of compound P were placed in a sealed container.
    [Show full text]
  • Pesticides and Intermediates, Supp. A
    PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California ABSTRACT 94025 l Process Economics Program Report No. 171A (August 1985) -0 This report describes and evaluates the processes for making carbo- furan and mancozeb, as well as the intermediates for these two pesti- cides. Carbofuran is made from either catechol or o-nitrochlorobenzene. The economics of each route, including the manufacture of the inter- mediates methyl isocyanate and methallyl chloride, are evaluated. The catechol route is found to be economically superior. For methyl iso- cyanate, which is common to both routes, two nonphosgenation processes are evaluated and compared with two phosgenation processes. The non- phosgenation route is not only competitive with the phosgenation route, but also avoids the transport of both methyl isocyanate and Phosgene when integrated with carbofuran production. Mancoxeb is evaluated in detail, with a brief evaluation of two similar pesticides, maneb, and zineb. The intermediates are carbon disulfide and ethylenediamine. The process for making carbon disulfide from methane and sulfur is evaluated, with a discussion of the use of alternative carbon sources. For ethylenediamine, two processes start- ing from ethylene dichloride, one process from monoethanolamine, and 0 another from ethylene oxide are evaluated and compared. PEP'84 YCY, DJL, CSL - Report No.171A 0 PESTICIDES AND INTERMEDIATES SUPPLEMENT A by YEN-CHEN YEN with contributions by DIN-JIN LIN 0 and CHUN-SAN LIU August 1985 A private report by the PROCESS ECONOMICS PROGRAM Menlo Park, California 94025 For detailed marketing data and information, the reader is referred to one of the SRI programs specializing in marketing research.
    [Show full text]
  • A Sustainable Route from Biogenic Levulinic Acid to 1,5-Dimethyl-2-Pyrrolidone
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021 Supplementary Information Reviving electrocatalytic reductive amination: A sustainable route from biogenic levulinic acid to 1,5-dimethyl-2-pyrrolidone Sonja D. Mürtza, Nils Kuriga, F. Joschka Holzhäusera, Regina Palkovits∗a a Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany. ∗ author of correspondence: [email protected] Contents Contents 1 Additional results2 1.1 Influence of the amine structure . .2 2 Experimental4 2.1 Electrolysis batch experiments . .4 2.2 Microwave experiments . .5 2.3 Purification of the product solution . .6 2.4 Nuclear magnetic resonance spectroscopy . .6 2.5 Chemicals: Origin and purity . .7 3 NMR spectroscopy8 3.1 Basic equation for calculations . .8 3.2 N-Methylisopropylamine . .9 3.3 N-Methylbutan-2-amine . 10 3.4 N-Methylpentan-2-amine . 11 3.5 N-Methylpentan-3-amine . 12 3.6 N-Methylcyclopentanamine . 13 3.7 4-(Methylamino)-pentanoic acid . 14 3.8 1,5-Dimethyl-2-pyrrolidone . 15 1 1 Additional results 1 Additional results 1.1 Influence of the amine structure Due to the differing results for sterically different ketonic substrates, an impact of the steric hindrance of the amine was expected as well. The reductive amination of acetone with methylamine and ethylamine was already investigated by Smirnov et al.[1] In this work, very similar results were obtained (Figure S1). 1.0 0.8 Conversion Y (Amine) 0.6 Y (Amine)[47] 0.4 Y (Alcohol) Y (Alcohol)[47] 0.2 Conversion, Yield (-) 0.0 Ammonia Methylamine Ethylamine Ethanolamine Figure S1: Conversion and yields Y of the electrocatalytic reductive amination of acetone with different amines compared to the results of Smirnov et al.[1] Conditions: Pb elec- −2 −1 trodes, 0.04 A cm , 2.4 mol L ketone in 0.5 M KH2PO4, acetone to amine ratio: 1:1.2, pH = 12, one faraday equivalent, 283 K.
    [Show full text]
  • KDC-6 – for Optimal Methylamine Productivity During Your Catalyst Life Cycle
    POLYOLEFIN AND CHEMICAL catalYSTS KDC-6 – For optimal methylamine productivity during your catalyst life cycle Albemarle KDC-6 catalyst is the state-of-the-art commercial choice MMA:DMA:TMA is 1:3:1, whereas in Asia the ratio can be 1:8:1. This used in many methylamine production units around the world. ratio is subject to change owing to the increasing number of outlets for Compared with its predecessors, KDC-6 offers superior activity, MMA, for example, n-methyl-2-pyrrolidone, a solvent. stability, strength and overall productivity. Low carbon formation on the catalyst prevents particle swelling, which, combined with Methylamines are synthesized from methanol and excess ammonia the catalyst’s high initial strength, means that slow pressure drop in a gas-phase reaction at 300–500ºC and at elevated pressure in build-up over time during the catalyst cycle is not seen. This gives the presence of a solid acid catalyst to form an equilibrium mixture KDC-6 its long cycle time and high productivity over the run. of roughly 25:30:45 MMA:DMA:TMA. With the market favoring DMA production, large quantities of MMA and TMA have to be recycled to maximize the production of DMA. This is the basis for the well-known Methylamine production Leonard process, a schematic for which is shown in Figure 1. The reaction of ammonia and methanol in the presence of a solid acid catalyst forms a mixture of mono-, di- and trimethylamine (MMA, In the Leonard process, fresh methanol and ammonia feed are DMA and TMA, respectively). They are important intermediates in the combined with recycled ammonia and methylamines (mainly MMA manufacture of various industrial chemicals.
    [Show full text]
  • SAFETY DATA SHEET Methylamine 33 Wt. % in Ethanol According to Regulation (EC) No 1907/2006, Annex II, As Amended
    Revision date: 28/05/2021 Revision: 2 Supersedes date: 11/05/2021 SAFETY DATA SHEET Methylamine 33 wt. % in Ethanol According to Regulation (EC) No 1907/2006, Annex II, as amended. Commission Regulation (EU) No 2015/830 of 28 May 2015. SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product name Methylamine 33 wt. % in Ethanol Product number 90005593 CAS number 74-89-5 EC number 200-820-0 1.2. Relevant identified uses of the substance or mixture and uses advised against Identified uses For research purposes only. Uses advised against No specific uses advised against are identified. 1.3. Details of the supplier of the safety data sheet Supplier Molekula Ltd. Lingfield Way, Darlington, DL1 4XX, United Kingdom +44 (0) 3302000333 [email protected] 1.4. Emergency telephone number +44 (0) 7769276927 SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (EC 1272/2008) Physical hazards Flam. Liq. 2 - H225 Health hazards Acute Tox. 4 - H302 Acute Tox. 3 - H331 Skin Corr. 1 - H314 Eye Dam. 1 - H318 STOT SE 3 - H335 Environmental hazards Not Classified 2.2. Label elements EC number 200-820-0 Hazard pictograms Signal word Danger 1/12 Revision date: 28/05/2021 Revision: 2 Supersedes date: 11/05/2021 Methylamine 33 wt. % in Ethanol Hazard statements H225 Highly flammable liquid and vapour. H302 Harmful if swallowed. H314 Causes severe skin burns and eye damage. H318 Causes serious eye damage. H331 Toxic if inhaled. H335 May cause respiratory irritation. Precautionary statements P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources.
    [Show full text]
  • Concurrent Generation of Methylamine and Nitrite During Denitrosation of Jv-Nitrosodimethylamine by Rat Liver Microsomes1
    [CANCER RESEARCH 47, 447-452, January 15, 1987] Concurrent Generation of Methylamine and Nitrite during Denitrosation of jV-Nitrosodimethylamine by Rat Liver Microsomes1 Larry K. Keefer,2 Takako Anjo, David Wade, Tianyuan Wang, and Chung S. Yang Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute, Frederick Cancer Research Facility, Frederick, Maryland 21701 ¡L.K. K., T. A.]; and Department of Biochemistry, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103 ID. W., T. W., C. S. YJ ABSTRACT basic organic products. Two limiting cases, one reductive and one oxidative, served as working hypotheses; these are illus With the goal of identifying the organic amine produces) of enzymatic trated in Fig. \. paths b ande, respectively. The reductive route /V-nitrosodinifth> lamine (NOMA) denitrosation, 4 HIMNDMA was in was considered because it is well established that some A- cubated with liver microsomes from ethanol-treated rats. The concentra tions of dimethylamine and methylamine were determined by derivatiza- nitroso compounds [for example, the carcinostatic nitrosoureas tion with 2,4-dinitrufluorobenzcncfollowed by gas chromatography-mass (41)] are metabolized in this way. The resulting N—Nbond cleavage initially produces nitric oxide (NO-), which is easily spectrometry. There was no net increase in the concentration of dimeth ylamine during incubation, but the yield of methylamine was equimolar converted to nitrite by ambient oxidizing agents. If this is the with that of nitrite. Additional incubations of NDMA using acetone- mechanism of NDMA denitrosation, dimethylamine would be induced microsomes, 1 imi and 0.1 HIMsubstrate, gave methylamine/ the by-product of nitrite generation, as shown in Fig.
    [Show full text]
  • Methylamine As a Nitrogen Source for Microorganisms from a Coastal Marine Environment
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of East Anglia digital repository Methylamine as a Nitrogen Source for Microorganisms from a Coastal Marine Environment Martin Tauberta,b, Carolina Grobb, Alexandra M. Howatb, Oliver J. Burnsc, Jennifer Pratscherb, Nico Jehmlichd, Martin von Bergend,e,f, Hans H. Richnowg, Yin Chenh,1, J. Colin Murrellb,1 aAquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany bSchool of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK cSchool of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany eInstitute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 32, 04103 Leipzig, Germany fDepartment of Chemistry and Bioscience, University of Aalborg, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark. gDepartment of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany hSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK 1To whom correspondence should be addressed. J. Colin Murrell, Phone: +44 (0)1603 59 2959, Email: [email protected], and Yin Chen, Phone: +44 (0)24 76528976, Email: [email protected] Keywords: marine methylotrophs, 15N stable isotope probing, methylamine, metagenomics, metaproteomics Classification: BIOLOGICAL SCIENCES/Microbiology Short title: Methylamine as a Nitrogen Source for Marine Microbes This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record.
    [Show full text]
  • Application Guide
    Application Guide Procedure for the synthesis, deprotection and isolation of RNA using TOM-protected monomers NHAc NHAc N N HN HN AcHN 2’-O O DMTO DMTO DMTO DMTO Si O O O O TOM-Protecting-Group™ OTOM OTOM OTOM OTOM i O-P-N( Pr)2 i i i O-P-N( Pr)2 O-P-N( Pr)2 O-P-N( Pr)2 O-CNEt O-CNEt O-CNEt O-CNEt (1) A-TOM (2) C-TOM (3) G-TOM (4) U-TOM A. INTRODUCTION RNA synthesis using monomers containing the Protecting-Group is that during basic steps it cannot undergo 2’-O-TriisopropylsilylOxyMethyl (TOM) group (TOM-Protecting- 2’ to 3’ migration. This migration under basic conditions leads Group™) is characterized by very high coupling efficiency to non-biologically active 2’-5’ linkages when using the tBDMS along with fast, simple deprotection. High coupling efficiency group. These features allow the TOM-Protected monomers to is achieved because the TOM-Protecting-Group exhibits lower produce longer oligonucleotides and, for this reason, we offer steric hindrance than the 2’-O-t-butyldimethylsilyl (tBDMS) only 1000Å supports. TOM-Protected RNA monomers are also group used in our previous RNA monomers. Indeed the TOM- fully compatible with minor bases with 2’-O-tBDMS protection. Protecting-Group is similar sterically to the 2’-OMe group and The synthesis cycle used with TOM-Protected RNA monomers exhibits high efficiency similar to 2’-OMe-RNA monomers. is identical to previous DNA and RNA cycles, with coupling Fast and reliable deprotection is achieved using ammonium times as shown below.
    [Show full text]
  • And Conformatilnal Analysis (Electrons and Nuclei/Alkanes/Amines/Alcohols/Carbohydrates) ANTONY W
    Proc. Nat. Acad. Sci. USA Vol. 72, No. 3, pp. 854-858, March 1975 A New Approach to Empirical Intermolecular and Conformational Potential Energy Functions. II. Applications to Crystal Packing, Rotational Barriers, and Conformatilnal Analysis (electrons and nuclei/alkanes/amines/alcohols/carbohydrates) ANTONY W. BURG(ESS*t, LESTER L. SHIPMAN*, AND HAROLD A. SCHERAGA*t * Department of Chemistry, Cornell University, Ithaca, New York 14853; and t Department of Biophysics, Weisrnann Institute of Science, Rehovoth, Israel Contribued by Harqld A. Scheraga, November 7, 1974 ABSTRACT An empirical potential energy function have fixed bond lengths and bond angles; thus, alterations in based on the interactions of electrons and nuclei (EPEN) only from rotations around the single has been tested on molecules other than those used for its conformations arise parameterization. The results indicate that this 'energy bonds. The conformational and intermolecular energies were function is able to predict reliably the lowest energy con- evaluated by considering the coulombic, overlap, and attrac- formations, the potential energy differences between pon- tive terms of the EPEN algorithm (1). formations, rotational barrier heights, and dipole mo- The procedure for generating the positions of molecules in a ments for a series of alkanes, anines, alcohols, and carbo- hydrates. Crystal packing studies on n-hexane, n-octane, crystal has been described previously (2, 3). During the mini- methylamine, methanol, and a-D-glucose, using this same mization of the crystal lattice energy, the space group re- potential, indicate that it is also reliable for calculating mained invariant while the size and shape of the unit cell were intermolecular interaction energies and low-energy oriex4- changed until minimum crystal lattice energy was obtained.
    [Show full text]
  • Reductive Alkylation of Ethanolamine and Methylamine
    Indian Journal of Chemistry Vol.32A, February 1993, pp. 165-167 Reductive alkylation of ethanolamine and ml of benzene and 2.1g of the reduced catalyst were methylamine by carbonyl compounds over taken in an autoclave. After flushing with nitrogen, copper chromite: Deactivation of the the autoclave was pressurized with hydrogen to 50 atm and heated at 140°C with stirring for 1 hr. catalyst Hydrogen was admitted as required during the reaction to maintain the pressure at 50± 10 atm. At R B C PiIlai, K K Bhattacharyya & C N PiIlai* Department of Chemistry, Indian Institute of Technology, the end of 1hr the autoclave was rapidly cooled and Madras 600 036 the catalyst separated by centrifugation. The product Received 20 July 1992; accepted 24 August 1992 was analyzed by gas chromatography and the N-benzylethanolamine recovered by vacuum Ethanolamine and methylamine have been reductively distillation. alkylated by carbonyl compounds over copper chromite in Experiments under different conditions were done the presence of hydrogen. The catalyst is rapidly similarly. Experiments with other carbonyl deactivated during these reactions. Regeneration of the catalyst does not restore the original activity. compounds and ethanolamine were done in a similar manner and working up procedures modified as N-substituted 2-aminoalcohols are of particular required. interest as organic intermediates. Reductive Reaction of acetone with methylamine alkylation of ethanolamine and analogues is a ready In a typical experiment methylamine (40% WfW in method for their preparation. water)'0.32 mol, acetone, 1.3mol and reduced copper H2N - CH2 - CH2 - OR + R'R"CO H2,catalyst• chromite 4.2g were taken in an autoclave and R'R" CH - NH - CH2 - CH2 - OH + H20 hydrogenated as in the ethanolamine reactions.
    [Show full text]
  • Formaldehyde and Methylamine Reactivity in Interstellar Ice Analogues As a Source of Molecular Complexity at Low Temperature V
    A&A 549, A40 (2013) Astronomy DOI: 10.1051/0004-6361/201219974 & c ESO 2012 Astrophysics Formaldehyde and methylamine reactivity in interstellar ice analogues as a source of molecular complexity at low temperature V. Vinogradoff, F. Duvernay, G. Danger, P. Theulé, F. Borget, and T. Chiavassa Université d’Aix-Marseille, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR CNRS 7345, Centre de St-Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France e-mail: [email protected] Received 9 July 2012 / Accepted 24 October 2012 ABSTRACT Context. Laboratory simulations on interstellar or cometary ice analogues are crucial to understand the formation of complex organic molecules that are detected in the interstellar medium (ISM). Results from this work give hints on physical and chemical processes occurring in space and can serve as a benchmark for dedicated space missions. Aims. The aim of this work is to consolidate the knowledge of ice evolution during the star formation process by investigating the influence of thermal reactions as a source of molecular complexity in the ISM. In this study, we are interested in the thermal reactivity between two interstellar molecules, formaldehyde (H2CO) and methylamine (CH3NH2) in water ice analogues. Methods. We used Fourier transform infrared spectroscopy, mass spectrometry, and B3LYP calculations to investigate the thermal reaction between formaldehyde and methylamine (14N and 15N) at low temperature in water ice analogues. Results. We demonstrate that methylamine and formaldehyde quickly react in water ice analogues for astronomically relevant tem- −1 peratures and form N-methylaminomethanol CH3NHCH2OH. The measured activation energy of this reaction, 1:1 ± 0:05 kJ mol (1:8 ± 0:08 kJ mol−1 with methylamine 15N), allows the reaction to proceed in interstellar ices, when the ices are gently warmed, as it occurs in young stellar objects, in photo-dissociation regions, or in comets.
    [Show full text]