Exome Sequencing Identified a Missense Mutation of EPS8L3 In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PARSANA-DISSERTATION-2020.Pdf
DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks. -
Replace This with the Actual Title Using All Caps
UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Asha Marie Miles December 2019 © 2019 Asha Marie Miles UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH Asha Marie Miles, Ph. D. Cornell University 2019 This dissertation addresses deficiencies in the existing genetic characterization of mastitis due to granddaughter study designs and selection strategies based primarily on lactation average somatic cell score (SCS). Composite milk samples were collected across 6 sampling periods representing key lactation stages: 0-1 day in milk (DIM), 3- 5 DIM, 10-14 DIM, 50-60 DIM, 90-110 DIM, and 210-230 DIM. Cows were scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Independent multivariable logistic regression models were used to generate odds ratios for elevated SCC (≥ 200,000 cells/ml) and farm-diagnosed clinical mastitis. Within our study cohort, loose fore udder attachment, flat teat ends, low rear udder height, and wide rear teats were associated with increased odds of mastitis. Principal component analysis was performed on these traits to create a single new phenotype describing mastitis susceptibility based on these high-risk phenotypes. Cows (N = 471) were genotyped on the Illumina BovineHD 777K SNP chip and considering all 14 traits of interest, a total of 56 genome-wide associations (GWA) were performed and 28 significantly associated quantitative trait loci (QTL) were identified. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
S1 Supplemental Materials Supplemental Methods Supplemental Figure 1. Immune Phenotype of Mcd19 Targeted CAR T and Dose Titratio
Supplemental Materials Supplemental Methods Supplemental Figure 1. Immune phenotype of mCD19 targeted CAR T and dose titration of in vivo efficacy. Supplemental Figure 2. Gene expression of fluorescent-protein tagged CAR T cells. Supplemental Figure 3. Fluorescent protein tagged CAR T cells function similarly to non-tagged counterparts. Supplemental Figure 4. Transduction efficiency and immune phenotype of mCD19 targeted CAR T cells for survival study (Figure 2D). Supplemental Figure 5. Transduction efficiency and immune phenotype of CAR T cells used in irradiated CAR T study (Fig. 3B-C). Supplemental Figure 6. Differential gene expression of CD4+ m19-humBBz CAR T cells. Supplemental Figure 7. CAR expression and CD4/CD8 subsets of human CD19 targeted CAR T cells for Figure 5E-G. Supplemental Figure 8. Transduction efficiency and immune phenotype of mCD19 targeted wild type (WT) and TRAF1-/- CAR T cells used for in vivo study (Figure 6D). Supplemental Figure 9. Mutated m19-musBBz CAR T cells have increased NF-κB signaling, improved cytokine production, anti-apoptosis, and in vivo function. Supplemental Figure 10. TRAF and CAR co-expression in human CD19-targeted CAR T cells. Supplemental Figure 11. TRAF2 over-expressed h19BBz CAR T cells show similar in vivo efficacy to h19BBz CAR T cells in an aggressive leukemia model. S1 Supplemental Table 1. Probesets increased in m19z and m1928z vs m19-musBBz CAR T cells. Supplemental Table 2. Probesets increased in m19-musBBz vs m19z and m1928z CAR T cells. Supplemental Table 3. Probesets differentially expressed in m19z vs m19-musBBz CAR T cells. Supplemental Table 4. Probesets differentially expressed in m1928z vs m19-musBBz CAR T cells. -
Effects and Mechanisms of Eps8 on the Biological Behaviour of Malignant Tumours (Review)
824 ONCOLOGY REPORTS 45: 824-834, 2021 Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review) KAILI LUO1, LEI ZHANG2, YUAN LIAO1, HONGYU ZHOU1, HONGYING YANG2, MIN LUO1 and CHEN QING1 1School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500; 2Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China Received August 29, 2020; Accepted December 9, 2020 DOI: 10.3892/or.2021.7927 Abstract. Epidermal growth factor receptor pathway substrate 8 1. Introduction (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which Malignant tumours are uncontrolled cell proliferation diseases is involved in cell mitosis, differentiation and other physiological caused by oncogenes and ultimately lead to organ and body functions. Numerous studies over the last decade have demon- dysfunction (1). In recent decades, great progress has been strated that Eps8 is overexpressed in most ubiquitous malignant made in the study of genes and signalling pathways in tumours and subsequently binds with its receptor to activate tumorigenesis. Eps8 was identified by Fazioli et al in NIH-3T3 multiple signalling pathways. Eps8 not only participates in the murine fibroblasts via an approach that allows direct cloning regulation of malignant phenotypes, such as tumour proliferation, of intracellular substrates for receptor tyrosine kinases (RTKs) invasion, metastasis and drug resistance, but is also related to that was designed to study the EGFR signalling pathway. Eps8 the clinicopathological characteristics and prognosis of patients. -
Eps8l2 (F-8): Sc-514673
SAN TA C RUZ BI OTEC HNOL OG Y, INC . Eps8L2 (F-8): sc-514673 BACKGROUND APPLICATIONS Eps8L2 (epidermal growth factor receptor kinase substrate 8-like protein 2), Eps8L2 (F-8) is recommended for detection of Eps8L2 of human origin by also known as EPS8R2 or PP13181, is a 715 amino acid protein that localizes Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), to the cytoplasm and belongs to the Eps8 (epidermal growth factor receptor immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell pathway substrate 8) family. Expressed in placenta and fibroblasts, Eps8L2 lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- functions to stimulate the guanine exchange activity of Sos 1 (son of seven - 1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- less homolog 1), a protein that promotes the exchange of Ras-bound GDP 1:3000). for GTP. Additionally, Eps8L2 is thought to associate with Actin and, via this Suitable for use as control antibody for Eps8L2 siRNA (h): sc-96954, Eps8L2 association, may play a role in membrane ruffling and remodeling of the shRNA Plasmid (h): sc-96954-SH and Eps8L2 shRNA (h) Lentiviral Particles: Actin cytoskeleton. Through its ability to regulate protein activation and cyto- sc-96954-V. skeleton dynamics, Eps8L2 may participate in cell growth and differentiation events within the cell. Eps8L2, a protein that is expressed as two isoforms Molecular Weight of Eps8L2: 81 kDa. due to alternative splicing, contains one PID (phosphotyrosine interaction) Positive Controls: A-431 whole cell lysate: sc-2201, HeLa whole cell lysate: domain and one SH3 domain. -
A Comprehensive Network and Pathway Analysis of Human Deafness Genes
Otology & Neurotology 34:961Y970 Ó 2013, Otology & Neurotology, Inc. A Comprehensive Network and Pathway Analysis of Human Deafness Genes *Georgios A. Stamatiou and †Konstantina M. Stankovic *Department of Otolaryngology, Hippokration General Hospital, University of Athens, Athens, Greece; and ÞDepartment of Otology and Laryngology, Harvard Medical School and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, U.S.A. Objective: To perform comprehensive network and pathway factor beta1 (TGFB1) for Group 1, MAPK3/MAPK1 MAP kinase analyses of the genes known to cause genetic hearing loss. (ERK 1/2) and the G protein coupled receptors (GPCR) for Study Design: In silico analysis of deafness genes using inge- Group 2, and TGFB1 and hepatocyte nuclear factor 4 alpha (HNF4A) nuity pathway analysis (IPA). for Group 3. The nodal molecules included not only those known Methods: Genes relevant for hearing and deafness were iden- to be associated with deafness (GPCR), or with predisposition to tified through PubMed literature searches and the Hereditary otosclerosis (TGFB1), but also novel genes that have not been Hearing Loss Homepage. The genes were assembled into 3 groups: described in the cochlea (HNF4A) and signaling kinases (ERK 1/2). 63 genes that cause nonsyndromic deafness, 107 genes that cause Conclusion: A number of molecules that are likely to be key nonsyndromic or syndromic sensorineural deafness, and 112 genes mediators of genetic hearing loss were identified through three associated with otic capsule development and malformations. Each different network and pathway analyses. The molecules included group of genes was analyzed using IPA to discover the most new candidate genes for deafness. -
Développement D'une Signature Moléculaire Dans La Maladie
Développement d’une signature moléculaire dans la maladie osseuse de Paget Thèse Sabrina Guay-Bélanger Doctorat en médecine moléculaire Philosophiæ doctor (Ph.D.) Québec, Canada © Sabrina Guay-Bélanger, 2015 Résumé La maladie osseuse de Paget (MOP) a changé de visage au cours des dernières années, augmentant le nombre d’individus atteints qui demeurent asymptomatiques. Étant donné le risque élevé de développer un ostéosarcome associé avec la MOP, cette maladie est une contre-indication à la prescription d’agents ostéoformateurs. Avec l’apparition prochaine de nouveaux agents ostéoformateurs pour le traitement de l’ostéoporose, il devient crucial de pouvoir dépister de façon fiable la présence de la MOP. Les objectifs de ce projet étaient (1) de mettre au point un test plus sensible permettant de détecter et d’évaluer la fréquence des mutations post-zygotiques SQSTM1/P392L chez les patients pagétiques, (2) de développer un test génétique de dépistage de la MOP incluant les mutations germinales et post-zygotiques dans SQSTM1, (3) et d’évaluer les performances diagnostiques de ce test intégré avec des marqueurs biochimiques dans une signature moléculaire spécifique à la maladie. Une technique de PCR sensible utilisant un acide nucléique bloqué (LNA) spécifique à la mutation SQSTM1/P392L a été développée, puis la présence de cette mutation a été recherchée dans les cohortes disponibles au laboratoire et dans différents tissus. Ensuite, le développement de la signature moléculaire a utilisé les données génotypiques et biochimiques disponibles dans les cohortes du laboratoire, puis des régressions logistiques ont été effectuées afin de déterminer la combinaison de marqueurs ayant la meilleure capacité à identifier correctement les patients avec la MOP. -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
The Transition from Primary Colorectal Cancer to Isolated Peritoneal Malignancy
medRxiv preprint doi: https://doi.org/10.1101/2020.02.24.20027318; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . The transition from primary colorectal cancer to isolated peritoneal malignancy is associated with a hypermutant, hypermethylated state Sally Hallam1, Joanne Stockton1, Claire Bryer1, Celina Whalley1, Valerie Pestinger1, Haney Youssef1, Andrew D Beggs1 1 = Surgical Research Laboratory, Institute of Cancer & Genomic Science, University of Birmingham, B15 2TT. Correspondence to: Andrew Beggs, [email protected] KEYWORDS: Colorectal cancer, peritoneal metastasis ABBREVIATIONS: Colorectal cancer (CRC), Colorectal peritoneal metastasis (CPM), Cytoreductive surgery and heated intraperitoneal chemotherapy (CRS & HIPEC), Disease free survival (DFS), Differentially methylated regions (DMR), Overall survival (OS), TableFormalin fixed paraffin embedded (FFPE), Hepatocellular carcinoma (HCC) ARTICLE CATEGORY: Research article NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.02.24.20027318; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . NOVELTY AND IMPACT: Colorectal peritoneal metastasis (CPM) are associated with limited and variable survival despite patient selection using known prognostic factors and optimal currently available treatments. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in -
EPS8L1 293T Cell Transient Overexpression Lysate(Denatured)
Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic EPS8L1 293T Cell Transient Overexpression Lysate(Denatured) Catalog # : H00054869-T01 規格 : [ 100 uL ] List All Specification Application Image Transfected 293T Western Blot Cell Line: Plasmid: pCMV-EPS8L1 full-length Host: Human Theoretical MW 60.72 (kDa): Quality Control Transient overexpression cell lysate was tested with Anti-EPS8L1 Testing: antibody (H00054869-B01) by Western Blots. SDS-PAGE Gel EPS8L1 transfected lysate. Western Blot Lane 1: EPS8L1 transfected lysate ( 60.72 KDa) Lane 2: Non-transfected lysate. Storage Buffer: 1X Sample Buffer (50 mM Tris-HCl, 2% SDS, 10% glycerol, 300 mM 2- mercaptoethanol, 0.01% Bromophenol blue) Storage Store at -80°C. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Applications Page 1 of 2 2016/5/23 Western Blot Gene Information Entrez GeneID: 54869 GeneBank NM_139204.1 Accession#: Protein NP_631943.1 Accession#: Gene Name: EPS8L1 Gene Alias: DRC3,EPS8R1,FLJ20258,MGC23164,MGC4642,PP10566 Gene EPS8-like 1 Description: Gene Ontology: Hyperlink Gene Summary: This gene encodes a protein that is related to epidermal growth factor receptor pathway substrate 8 (EPS8), a substrate for the epidermal growth factor receptor. The function of this protein is unknown.