Life Cycle of Capillaria Caudinflata, a Nematode Parasite of the Common Fowl Neal Francis Morehouse Iowa State College

Total Page:16

File Type:pdf, Size:1020Kb

Life Cycle of Capillaria Caudinflata, a Nematode Parasite of the Common Fowl Neal Francis Morehouse Iowa State College Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1942 Life cycle of Capillaria caudinflata, a nematode parasite of the common fowl Neal Francis Morehouse Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Zoology Commons Recommended Citation Morehouse, Neal Francis, "Life cycle of Capillaria caudinflata, a nematode parasite of the common fowl " (1942). Retrospective Theses and Dissertations. 13732. https://lib.dr.iastate.edu/rtd/13732 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI Llfl CYCLE Of G1PILLA.RIA OAUDIMfLATA, A mfilTODE PAMSITI Of THS OOiildON FOWL by M@al franols Morehouse A Thesis Submitted to the Graduate Faculty for the Degree of DOCTOR Of PHILOSOPffif Major Siibjeot: Zoology Approved: Signature was redacted for privacy. la Charge of Major Work Signature was redacted for privacy. •• " -jor Department Signature was redacted for privacy. aa of CSraduate Colle Iowa State College 194g UMI Number: DP12866 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform DP12866 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 TABLE OF GOKTIfiNTS Page I. IWf RODUGTION. 1 A. Purpose of the Study 4 II. miW 01 LITERaTURS.. 5 III. IXPKHIMJiaiTAL 23 Material and Methods 23 B. The Geographioal Distribution of Capillarida of the Lower Digestive Tract 25 C. Life-Cyole 28 1. The exogenous development of uapillaria P 7 oaudinflata. 28 a, The ^bryooation of the ova......... 32 3^ (1) The effect of environmental factors on eggs of G. oaudin* flata T 36 (aj The effect of high teiaper- ^3 ature on unembryonated eggs 35 (b) The effect of low temper­ ature on unembryonated eggs 38 (c) The effect of low temper­ ature on ej^ryonated eggs of £. oaudinflata......... 41 (d) The"effeot of out-door winter temperature upon embryonated and unembry­ onated Capillaria oaudin­ flata eggs 43 (e) The eifect of fonaaldehyde on unembryonated eggs..... 45 2. iSzperiments on the transmission of Capillaria oaudinflata to chickens....«• 46 a. Experiments on the direct truns- nission of C. oaudinflata to chickens 46 b. Experiments on the transmission of £• os^u<ii^iflata by various inter­ mediate hosts.... 57 (1) Grasshoppers.• 57 ii -f 7 ^ ^ Page (2) Beetles 60 (3) other Arthropods.. 62 (4) Natural transuiisslon experi­ ment. 63 (5) ©ie transmission of C. oaiMin­ flate to chickens by~earth- vorms.......... 65 3, ^e endogenous development of £. oaudinflata. 7......... 74 a. Lengthof developmental periods 74 (1) A method for detenaining maturity in C. caudinflata embryos 74 (2) Period of embryonation. 76 (3) Developmental period in the earthworm 77 (4) Developmental period in the ohioicen........................ 80 b« Description of developmental stages. 81 (1) The embryo 81 iZ) Larva found in the earthworm.«. 84 {3} Larvae found in the chicken...* 86 (4) Adults fr(»a chickens.95 0. The location of £. caudinflata in the digestive tract of chickens and turkeys. 99 D. Observations Concerning Host'^Specificity in 0. caudinflata. 102 1."General considerations 102 2. Transmission to turkeys.104 3. Tranaiaission to the English sparrow...•• 105 £. Observations on the Longevity of C* caudln-' flata. 7.. 109 J, kjqperiments on the Transiixission of C. caudin­ flata by Species of Sarthworms Other Than (A.) caliglnosus. Ill G. Observations Goacerning Capillaria retusa... 112 IV. DISCUSSION OF RESULTS 114 y. GOMCLUSIONS. 125 TI. LITSHATURS CITED 128 VII. ACKNOWLSDGMSiras. 133 iii -1- INTRODUCTION Post-mortem examination of the digestive tracts of several speoimens of the oommon fovl, Gallus doaestious. received at Charles City, Iowa, revealed the presence of aifflierous nematodes of the genus Oapillaria. A few of the worms, sent to the Bureau of Animal Industry, Department of Agriculture, Washington, D. C., in 193@ were identified by Dr. B, K. Wehr as Oapillaria caudlnflata. On subsequent examination of other chickens received tTom various parts of the country, it was observed that infesta" tion with oapillaria worms was commonly associated with severe enteritis, diarrhea and emaciation. Since these worms appeared to be of considerable economic importanoe, an inyestigatioQ of oapillaria viorms in chickens was de­ sirable. Preliminary geographical distribution studies indicated that Oapillaria caudinflata was by far the most prevalent species in the middle west and that an investi­ gation of capillariasis in this region would be chiefly an investigation of Oapillaria caudinflata. A survey of the literature ooncaruiug this capillarid showed that nothing had been reported on its occurrence iu the United States; that much of the existing literature reported in other countries was inaccurate or confusing; and that nothing «as known of the method whereby the parasite is transmitted froa one fowl to another or of the envlronisental factors whioh might Influence such transmission. Furthermore, inquiry sent to the Chief of the ^ologioal Division of the Bureau of Animal Industry revealed that research workers of that division had done no work on the life-history of £• osLUdinflata. Thus the life-history of this nematode appeared to be an important heIminthological p^roblem remaior ing untouched by other parasitologists* Early in November, 192^, the writer began an investigation of the life-history together with other related factors. Having obtained considerable evidence of the transmission of 0. caudinflata by earthworms of the species Helodrilus oallgii«>sus. the writer sent specimens of these earthworms to the Zoological Division, Bureau of Animal Industry, on March S7, 1942 requesting confirmation of the earthworm species and confiding the information that data had been obtained showing triat earthworms in the vicinity of Charles City, Iowa serve as intermediate hosts for one of the important parasites of poultry. Beceipt of these earthworms was promptly acknowl­ edged by Dr. Price and later by a letter from Dr. Wehr. Just as the discussion and conclusions of this paper were being written, preparatory to its submission to the graduate faculty as a doctoral thesis, a note by H. W. Allen and 1. £. Wehr (194S} entitled, '^Earthworms as possible Intermediate 3— hosts of Capillarla oaudlnflata of the ohioken aad turkey" appeared in the Proceedings of the Helminthologioal Society of Washington. These authors a^jparently shoired that C. oaud- infXata aay be transmitted through earthworms to chickens and turkeys, aithough their experiments were not controlled and therefore failed to prove that the earthiioniis served as true Intermediate hosts. According to the note by Allen and Wehr, all results of their experiments were obtained subsequent to March 27, 1942. It appears that ti^uise investigators had no evidence of trana~ mission until April 18, 1942, whereas experiments reported in this paper show that the writer had obtained evidence of transmission to chickens some 5 months before these investi­ gators began their experiments. It should be further noted that the writer had transmitted G. caudinflate to turkeys about 2 weeks earlier than the date recorded by Allen and Wehr. Prior to 1936, no capillarids were known to require in­ termediate hosts. Capillaria columbae (Hudolphi,. 1819), probably the most wiaely a?eoognized species found in chickens, was known to have a direct life-cycle. This is also true of Qapillaria contorta (Creplin, ia39), a parasite of the u^jper digestive tract of many species of birds and of C?apillaria hepatica (ifell, 1916), a parasite of rats, rabbits and man. Fiirthermore, a direct life-cycle was known for the human whip- worm, Trichuris trichiura (Linnaeus, 1771), a parasite closely «4-> related to the oaplllarids. Consequently It «as generally supposed that the various oapillarld speoles have direct life" eyoles. Howefer, Wehr (1936) showed that the orop-wom of chickens, Gaplllaria annulate (llolin, 1856)» may be transmitted by certain speoles of earthworms, thus suggesting the possibil­ ity that other capillarida may also require intenaedlate hosts. A. Piirpose of the Study It Is the purpose of this study to review the work of previous investigators who have dealt with Gaplllaria caudln- flata (Molin, 1856); to study its geographical distribution in the United States; and to determine its life-cycle. Consid­ erable emphasis is placed on the reaction of the ova, during their exogenous development, to environmental conditions, since a better knowledge of these factors may lead
Recommended publications
  • Gastrointestinal Helminthic Parasites of Habituated Wild Chimpanzees
    Aus dem Institut für Parasitologie und Tropenveterinärmedizin des Fachbereichs Veterinärmedizin der Freien Universität Berlin Gastrointestinal helminthic parasites of habituated wild chimpanzees (Pan troglodytes verus) in the Taï NP, Côte d’Ivoire − including characterization of cultured helminth developmental stages using genetic markers Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Sonja Metzger Tierärztin aus München Berlin 2014 Journal-Nr.: 3727 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Georg von Samson-Himmelstjerna Zweiter Gutachter: Univ.-Prof. Dr. Heribert Hofer Dritter Gutachter: Univ.-Prof. Dr. Achim Gruber Deskriptoren (nach CAB-Thesaurus): chimpanzees, helminths, host parasite relationships, fecal examination, characterization, developmental stages, ribosomal RNA, mitochondrial DNA Tag der Promotion: 10.06.2015 Contents I INTRODUCTION ---------------------------------------------------- 1- 4 I.1 Background 1- 3 I.2 Study objectives 4 II LITERATURE OVERVIEW --------------------------------------- 5- 37 II.1 Taï National Park 5- 7 II.1.1 Location and climate 5- 6 II.1.2 Vegetation and fauna 6 II.1.3 Human pressure and impact on the park 7 II.2 Chimpanzees 7- 12 II.2.1 Status 7 II.2.2 Group sizes and composition 7- 9 II.2.3 Territories and ranging behavior 9 II.2.4 Diet and hunting behavior 9- 10 II.2.5 Contact with humans 10 II.2.6
    [Show full text]
  • Syn. Capillaria Plica) Infections in Dogs from Western Slovakia
    ©2020 Institute of Parasitology, SAS, Košice DOI 10.2478/helm­2020­0021 HELMINTHOLOGIA, 57, 2: 158 – 162, 2020 Case Report First documented cases of Pearsonema plica (syn. Capillaria plica) infections in dogs from Western Slovakia P. KOMOROVÁ1,*, Z. KASIČOVÁ1, K. ZBOJANOVÁ2, A. KOČIŠOVÁ1 1University of Veterinary Medicine and Pharmacy in Košice, Institute of Parasitology, Komenského 73, 041 81 Košice, Slovakia, *E-mail: [email protected]; 2Lapvet - Veterinary Clinic, Osuského 1630/44, 851 03 Bratislava, Slovakia Article info Summary Received November 12, 2019 Three clinical cases of dogs with Pearsonema plica infection were detected in the western part of Accepted February 20, 2020 Slovakia. All cases were detected within fi ve months. Infections were confi rmed after positive fi ndings of capillarid eggs in the urine sediment in following breeds. The eight years old Jack Russell Terrier, one year old Italian Greyhound, and eleven years old Yorkshire terrier were examined and treated. In one case, the infection was found accidentally in clinically healthy dog. Two other patients had nonspecifi c clinical signs such as apathy, inappetence, vomiting, polydipsia and frequent urination. This paper describes three individual cases, including the case history, clinical signs, examinations, and therapies. All data were obtained by attending veterinarian as well as by dog owners. Keywords: Urinary capillariasis; urine bladder; bladder worms; dogs Introduction prevalence in domestic dog population is unknown. The occur- rence of P. plica in domestic dogs was observed and described Urinary capillariasis caused by Pearsonema plica nematode of in quite a few case reports from Poland (Studzinska et al., 2015), family Capillariidae is often detected in wild canids.
    [Show full text]
  • Classification of Parasites BLY 459 First Lab Test (October 10, 2010)
    Classification of Parasites BLY 459 First Lab Test (October 10, 2010) If a taxonomic name is not in bold type, you will not be held responsible for it on the lab exam. Terms and common names that may be asked are also listed. I have attempted to be consistent with the taxonomic schemes in your text as well as to list all slides and live specimens that were displayed. In addition to highlighted taxa, be familiar with, material in lab handouts (especially proper nomenclature), lab display sheets, as well as material presented in lecture. Questions about vectors and locations within hosts will be asked. Be able to recognize healthy from infected tissue. Phylum Platyhelminthes (Flatworms) Class Turbellaria Dugesia (=Planaria ) Free-living, anatomy, X-section Bdelloura horseshoe crab gills Class Monogenea Gyrodactylus , Neobenedenis, Ergocotyle gills of freshwater fish Neopolystoma urinary bladder of turtles Class Trematoda ( Flukes ) Subclass Digenea Life-cycle stages: Recognize miracidia, sporocyst, redia, cercaria , metacercaria, adults & anatomy, model Order ?? Hirudinella ventricosa wahoo stomach Nasitrema nasal cavity of bottlenose dolphin Order Strigeiformes Family Schistosomatidae Schistosoma japonicum adults, male & female, liver granuloma & healthy liver, ova, cercariae, no metacercariae, adults in mesenteric intestinal veins Order Echinostomatiformes Family Fasciolidae Fasciola hepatica sheep & human liver, liver fluke Order Plagiorchiformes Family Dicrocoeliidae Dicrocoelium & Eurytrema Cure for All Diseases by Hulda Clark, Paragonimus
    [Show full text]
  • A Study of the Nematode Capillaria Boehm!
    A STUDY OF THE NEMATODE CAPILLARIA BOEHM! (SUPPERER, 1953): A PARASITE IN THE NASAL PASSAGES OF THE DOG By CAROLEE. MUCHMORE Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1982 Master of Science Oklahoma State University Stillwater, Oklahoma 1986 Submitted to the Faculty of the Graduate College of the Oklahoma State University, in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1998 1ht>I~ l qq ~ 1) t-11 q lf). $ COPYRIGHT By Carole E. Muchmore May, 1998 A STUDY OF THE NEMATODE CAPILLARIA BOEHM!. (SUPPERER, 1953): APARASITE IN THE NASAL PASSAGES OF THE DOG Thesis Appro~ed: - cl ~v .L-. ii ACKNOWLEDGMENTS My first and most grateful thanks go to Dr. Helen Jordan, my major adviser, without whose encouragement and vision this study would never have been completed. Dr. Jordan is an exceptional individual, a dedicated parasitologist, indefatigable and with limitless integrity. Additional committee members to whom I owe many thanks are Dr. Carl Fox, Dr. John Homer, Dr. Ulrich Melcher, Dr. Charlie Russell. - Dr. Fox for assistance in photographing specimens. - Dr. Homer for his realistic outlook and down-to-earth common sense approach. - Dr. Melcher for his willingness to help in the intricate world of DNA technology. - Dr. Charlie Russell, recruited from plant nematology, for fresh perspectives. Thanks go to Dr. Robert Fulton, department head, for his gracious support; Dr. Sidney Ewing who was always able to provide the final word on scientific correctness; Dr. Alan Kocan for his help in locating and obtaining specimens. Special appreciation is in order for Dr. Roger Panciera for his help with pathology examinations, slide preparation and camera operation and to Sandi Mullins for egg counts and helping collect capillarids from the greyhounds following necropsy.
    [Show full text]
  • Trichinella Nativa in a Black Bear from Plymouth, New Hampshire
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2005 Trichinella nativa in a black bear from Plymouth, New Hampshire D.E. Hill Animal Parasitic Diseases Laboratory, [email protected] H.R. Gamble National Academy of Sciences, Washington D.S. Zarlenga Animal Parasitic Diseases Laboratory & Bovine Functions and Genomics Laboratory C. Cross Animal Parasitic Diseases Laboratory J. Finnigan New Hampshire Public Health Laboratories, Concord Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Hill, D.E.; Gamble, H.R.; Zarlenga, D.S.; Cross, C.; and Finnigan, J., "Trichinella nativa in a black bear from Plymouth, New Hampshire" (2005). Publications from USDA-ARS / UNL Faculty. 2244. https://digitalcommons.unl.edu/usdaarsfacpub/2244 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Veterinary Parasitology 132 (2005) 143–146 www.elsevier.com/locate/vetpar Trichinella nativa in a black bear from Plymouth, New Hampshire D.E. Hill a,*, H.R. Gamble c, D.S. Zarlenga a,b, C. Coss a, J. Finnigan d a United States Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Parasitic Diseases Laboratory, Building 1044, BARC-East, Beltsville, MD 20705, USA b Bovine Functions and Genomics Laboratory, Building 1044, BARC-East, Beltsville, MD 20705, USA c National Academy of Sciences, Washington, DC, USA d The Food Safety Microbiology Unit, New Hampshire Public Health Laboratories, Concord, NH, USA Abstract A suspected case of trichinellosis was identified in a single patient by the New Hampshire Public Health Laboratories in Concord, NH.
    [Show full text]
  • Trichinella Britovi
    Pozio et al. Parasites Vectors (2020) 13:520 https://doi.org/10.1186/s13071-020-04394-7 Parasites & Vectors RESEARCH Open Access Diferences in larval survival and IgG response patterns in long-lasting infections by Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis in pigs Edoardo Pozio1, Giuseppe Merialdi2, Elio Licata3, Giacinto Della Casa4, Massimo Fabiani1, Marco Amati1, Simona Cherchi1, Mattia Ramini2, Valerio Faeti4, Maria Interisano1, Alessandra Ludovisi1, Gianluca Rugna2, Gianluca Marucci1, Daniele Tonanzi1 and Maria Angeles Gómez‑Morales1* Abstract Background: Domesticated and wild swine play an important role as reservoir hosts of Trichinella spp. and a source of infection for humans. Little is known about the survival of Trichinella larvae in muscles and the duration of anti‑ Trichinella antibodies in pigs with long‑lasting infections. Methods: Sixty pigs were divided into three groups of 20 animals and infected with 10,000 larvae of Trichinella spiralis, Trichinella britovi or Trichinella pseudospiralis. Four pigs from each group were sacrifced at 2, 6, 12, 18 and 24 months post‑infection (p.i.) and the number of larvae per gram (LPG) of muscles was calculated. Serum samples were tested by ELISA and western blot using excretory/secretory (ES) and crude antigens. Results: Trichinella spiralis showed the highest infectivity and immunogenicity in pigs and larvae survived in pig mus‑ cles for up to 2 years p.i. In these pigs, the IgG level signifcantly increased at 30 days p.i. and reached a peak at about 60 days p.i., remaining stable until the end of the experiment. In T. britovi-infected pigs, LPG was about 70 times lower than for T.
    [Show full text]
  • Morphology, Life Cycle, Pathogenicity and Prophylaxis of Trichinella Spiralis
    Paper No. : 08 Biology of Parasitism Module : 26 Morphology, Life Cycle, Pathogenicity and Prophylaxis of Trichinella Development Team Principal Investigator: Prof. Neeta Sehgal Head, Department of Zoology, University of Delhi Paper Coordinator: Dr. Pawan Malhotra ICGEB, New Delhi Content Writer: Dr. Rita Rath Dyal Singh College, University of Delhi Content Reviewer: Prof. Virender Kumar Bhasin Department of Zoology, University of Delhi 1 Biology of Parasitism ZOOLOGY Morphology, Life Cycle and Pathogenicity and Prophylaxis of Trichinella Description of Module Subject Name ZOOLOGY Paper Name Biology of Parasitism- ZOOL OO8 Module Name/Title Morphology, Life Cycle, Pathogenicity and Prophylaxis of Trichinella Module Id 26; Morphology, Life Cycle, Pathogenicity and Prophylaxis Keywords Trichinosis, pork worm, encysted larva, striated muscle , intestinal parasite Contents 1. Learning Outcomes 2. History 3. Geographical Distribution 4. Habit and Habitat 5. Morphology 5.1. Adult 5.2. Larva 6. Life Cycle 7. Pathogenicity 7.1. Diagnosis 7.2. Treatment 7.3. Prophylaxis 8. Phylogenetic Position 9. Genomics 10. Proteomics 11. Summary 2 Biology of Parasitism ZOOLOGY Morphology, Life Cycle and Pathogenicity and Prophylaxis of Trichinella 1. Learning Outcomes This unit will help to: Understand the medical importance of Trichinella spiralis. Identify the male and female worm from its morphological characteristics. Explain the importance of hosts in the life cycle of Trichinella spiralis. Diagnose the symptoms of the disease caused by the parasite. Understand the genomics and proteomics of the parasite to be able to design more accurate diagnostic, preventive, curative measures. Suggest various methods for the prevention and control of the parasite. Trichinella spiralis (Pork worm) Classification Kingdom: Animalia Phylum: Nematoda Class: Adenophorea Order: Trichocephalida Superfamily: Trichinelloidea Genus: Trichinella Species: spiralis 2.
    [Show full text]
  • Helminths of Mustelids (Mustelidae) in Lithuania
    BIOLOGIJA. 2014. Vol. 60. No. 3. P. 117–125 © Lietuvos mokslų akademija, 2014 Helminths of mustelids (Mustelidae) in Lithuania Dovilė Nugaraitė, This study provides new faunistic data for helminths of muste­ lids in Lithuania. Twenty­five mustelids were examined for hel­ Vytautas Mažeika*, minths: 2 pine martens (Martes martes), 4 stone martens (Mar­ tes foina), 9 American minks (Neovison vison) and 10 European Algimantas Paulauskas polecats (Mustela putorius). Nine taxa of the parasitic worms were found: trematodes Isthmiophora melis (Schrank, 1788) and Stri­ Faculty of Natural Sciences, gea strigis (Schrank, 1788) mesocercaria, cestodes Mesocestoides Vytautas Magnus University, lineatus Goeze, 1782 and Cestoda g. sp. and nematodes Eucoleus Vileikos str. 8, aerophilus (Creplin, 1839), Aonchotheca putorii (Rudolphi, 1819), LT-44404 Kaunas, Lithuania Crenosoma schachmatovae Kontrimavičius, 1969, Molineus pa­ tens (Rudolphi, 1845) and Nematoda g. sp. The biggest infection parameters were detected for flukes Isthmiophora melis and Stri­ gea strigis mesocercaria in American mink and European pole­ cat. In most cases the distribution of helminths in populations of mustelids was aggregated (s2/A > 1). Key words: mustelids, helminths, Lithuania INTRODUCTION melis (recorded under name Euparyphium me­ lis) were found. Both pine marten and Eurasian In Lithuania pine marten (Martes martes), stone badger were infected by nematodes Aonchotheca marten (Martes foina), stoat (Mustela erminea), putorii (recorded under name Capillaria putorii) least weasel (Mustela nivalis), European pole­ and Filaroides martis. Only Eurasian badger cat (Mustela putorius), American mink (Neovi­ was parasitized by cestode Mesocestoides linea­ son vison), Eurasian badger (Meles meles) and tus and nematodes Trichinella spiralis and Unci­ European otter (Lutra lutra) are found.
    [Show full text]
  • Urinary Capillariosis in Six Dogs from Italy
    Open Veterinary Journal, (2016), Vol. 6(2): 84-88 ISSN: 2226-4485 (Print) Case Report ISSN: 2218-6050 (Online) DOI: http://dx.doi.org/10.4314/ovj.v6i2.3 Submitted: 26/01/2016 Accepted: 19/05/2016 Published: 13/06/2016 Urinary capillariosis in six dogs from Italy A. Mariacher1,2,*, F. Millanta2, G. Guidi2 and S. Perrucci2 1Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, Viale Europa 30, 58100 Grosseto, Italy 2Dipartimento di Scienze Veterinarie, Viale delle Piagge 2, 56124 Pisa, Italy Abstract Canine urinary capillariosis is caused by the nematode Pearsonema plica. P. plica infection is seldomly detected in clinical practice mainly due to diagnostic limitations. This report describes six cases of urinary capillariosis in dogs from Italy. Recurrent cystitis was observed in one dog, whereas another patient was affected by glomerular amyloidosis. In the remaining animals, the infection was considered an incidental finding. Immature eggs of the parasite were observed with urine sediment examination in 3/6 patients. Increased awareness of the potential pathogenic role of P. plica. and clinical disease presentation could help identify infected animals. Keywords: Cystitis, Dog, Glomerular amyloidosis, Urinary capillariosis. Introduction Urinary capillariosis in dogs is caused by Pearsonema lower urinary tract maladies, both in domestic (Rossi plica (Trichurida, Capillariidae), a nematode that et al., 2011; Basso et al., 2014) and wild carnivores infects domestic and wild carnivores worldwide. (Fernández-Aguilar et al., 2010;
    [Show full text]
  • 1Hfo Lichtarge Lab 2006
    Pages 1–7 1hfo Evolutionary trace report by report maker July 28, 2010 4.3.1 Alistat 6 4.3.2 CE 6 4.3.3 DSSP 6 4.3.4 HSSP 7 4.3.5 LaTex 7 4.3.6 Muscle 7 4.3.7 Pymol 7 4.4 Note about ET Viewer 7 4.5 Citing this work 7 4.6 About report maker 7 4.7 Attachments 7 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 1hfo): Title: The structure of the macrophage migration inhibitory factor from trichinella spiralis. CONTENTS Compound: Mol id: 1; molecule: migration inhibitory factor; chain: a, b, c, d, e, f; engineered: yes 1 Introduction 1 Organism, scientific name: Trichinella Spiralis; 1hfo contains a single unique chain 1hfoA (113 residues long) and 2 Chain 1hfoA 1 its homologues 1hfoF, 1hfoD, 1hfoC, 1hfoE, and 1hfoB. 2.1 Q9Y063 overview 1 2.2 Multiple sequence alignment for 1hfoA 1 2.3 Residue ranking in 1hfoA 1 2.4 Top ranking residues in 1hfoA and their position on the structure 1 2.4.1 Clustering of residues at 25% coverage. 1 2 CHAIN 1HFOA 2.4.2 Overlap with known functional surfaces at 2.1 Q9Y063 overview 25% coverage. 2 2.4.3 Possible novel functional surfaces at 25% From SwissProt, id Q9Y063, 98% identical to 1hfoA: coverage. 4 Description: Macrophage migration inhibitory factor like protein. Organism, scientific name: Trichinella spiralis (Trichina worm). 3 Notes on using trace results 5 Taxonomy: Eukaryota; Metazoa; Nematoda; Enoplea; Trichocepha- 3.1 Coverage 5 lida; Trichinellidae; Trichinella.
    [Show full text]
  • Capillaria Capillaria Sp. in A
    M. Pagnoncelli, R.T... França, D.B... Martins,,, et al., 2011. Capillaria sp. in a cat. sssssssssssssssssssssssssssssssssss Acta Scientiae Veterinariae. 39(3): 987. Acta Scientiae Veterinariae, 2011. 39(3): 987. CASE REPORT ISSN 1679-9216 (Online) Pub. 987 Capillaria sp. in a cat Marciélen Pagnoncelli, Raqueli Teresinha França, Danieli Brolo Martins,,, Flávia Howes,,, Sonia Teresinha dos Anjos Lopes & Cinthia Melazzo Mazzanti ABSTRACT Background: The family Capillariidae includes several species that parasite a wide variety of domestic and wild animals. Species such as Capillaria plica and Capillaria feliscati are found in the bladder, kidneys and ureters of domestic and wild carnivores. These nematodes are not still well known in Brazil, but have a great importance for studies of urinary tract diseases in domestic animals, mainly cats. The parasite’s life cycle is still unclear, may be direct or involve a paratenic host, such as the earthworm. Eggs are laid in the bladder and thus are discarded to the environment, where the larvae develop and are ingested by hosts. It is believed that the ingestion of soil and material contaminated with infective larvae derived from the decomposition of dead earthworms may be an alternative pathway for infection of animals. It has been reported in dogs a pre-patent period between 61 and 88 days. In Germany, the prevalence of C. plica in domestic cats was about 6%, with higher incidence in males, whereas in wild cats the prevalence of C. plica and C. feliscati was 7%, also with higher incidence in males. In Brazil, the first report of Capillaria sp. in a domestic cat was only done in 2008.
    [Show full text]
  • Testing the Hypothesis of Recent Population Expansions in Nematode Parasites of Human-Associated Hosts
    Heredity (2005) 94, 426–434 & 2005 Nature Publishing Group All rights reserved 0018-067X/05 $30.00 www.nature.com/hdy Testing the hypothesis of recent population expansions in nematode parasites of human-associated hosts DA Morrison and J Ho¨glund Department of Parasitology (SWEPAR), National Veterinary Institute and Swedish University of Agricultural Sciences, 751 89 Uppsala, Sweden It has been predicted that parasites of human-associated prediction. However, it is likely that the situation is more organisms (eg humans, domestic pets, farm animals, complicated than the simple hypothesis test suggests, and agricultural and silvicultural plants) are more likely to show those species that do not fit the predicted general pattern rapid recent population expansions than are parasites of provide interesting insights into other evolutionary processes other hosts. Here, we directly test the generality of this that influence the historical population genetics of host– demographic prediction for species of parasitic nematodes parasite relationships. These processes include the effects of that currently have mitochondrial sequence data available in postglacial migrations, evolutionary relationships and possi- the literature or the public-access genetic databases. Of the bly life-history characteristics. Furthermore, the analysis 23 host/parasite combinations analysed, there are seven highlights the limitations of this form of bioinformatic data- human-associated parasite species with expanding popula- mining, in comparison to controlled experimental
    [Show full text]