Searching for gravitational waves, ultra-light and “5th” forces with levitated optomechanics

A. Geraci, Northwestern University WorkshopW on Gravity, Information, andan Fundamental Symmetries, MPQ Nov 4-6, 2019 Center for Fundamental Physics (CFP)

Jerry Gabrielse group Brian Odom group

• g-2 of electron • Single molecule spectroscopy of trapped molecular ions • electron EDM

• Test of CPT with antihydrogen Tim Kovachy joined CFP September 2018! Our lab: fundamental physics with AMO sensors Techniques New Physics Sensing with Gravity at micron scales Optically levitated nanospheres

AG., S. Papp, and J. Kitching, Phys. Rev. Lett. 105, 101101 (2010).

Gravitational Waves G. Ranjit et.al., Phys. Rev. A 91, 051805(R) (2015). G. Ranjit, M. Cunningham, K. Casey, and AG, Phys. Rev. A, A. Arvanitaki and AG., Phys. Rev. Lett. 110, 071105 (2013). 93, 053801 (2016). ARIADNE

Spin Resonance: Spin-dependent forces NMR –Laser polarized • QCD

gases or liquids A. Arvanitaki and AG., Phys. Rev. Lett. 113, 161801 (2014). Provides an adequate description of the The Standard Model electromagnetic, weak, and strong interactions. The Interactions: Strong: Holds nucleons together Electromagnetic: Acts between charged particles Weak: Causes certain decays Gravity: Attraction between masses For two protons in nucleus: P P

Strong : Electromagnetic : Weak : Gravity= 20 : 1 : 10-7: 10-36

The Hierarchy Problem: Why is Gravity so small? Testing gravity at short range m m V  G 1 2 1D er / O N r Exotic particles (new physics) may solve Hierarchy problem r O < 1 mm • Supersymmetry/string theory (moduli, radion, dilaton) • Particles in large extra dimensions (Gravitons, scalars, vectors?)

m1 m2

Can we test this in the lab? Yes, but needs ultra-sensitive force detectors! Landscape for non-Newtonian corrections

Adapted from Ann. Rev. Nucl. Part. Sci. 53 77 (2003), PRL 98, 021101 (2007), PRD 78, 022002 (2008), arXiv:1410.7267 (2014) m m V  G 1 2 1D er / O N r

Laboratory Terrestrial and satellites Lunar laser Planetary ranging

E.G. Adelberger, B.R. Heckel, A.E. Nelson, Ann. Rev. Nucl. Part. Sci. 53 77, (2003) Experimental challenge: scaling of gravitational force

m1Um2 VN  G S r 2r 2(4 r 3/ 3) 2 F G ~ G U 2r 4 N N 4r 2 N 4 U ~20gr / cm 3 m m FN # 0.1r for 1 2 In the range of experimental interest:

21 r~10 μm ; FN ~ 10 N Small forces • Bathroom scales measure 10-1 N Dust mite 10-7 N E. coli 10-15 N 70 kg ~ 700 N

Virus 10-19 N Carbon atom 10-25 N

• AFM measures 10-11 N Experimental challenge: electromagnetic background forces

Casimir effect (1948): Electrostatic Patch Potentials:

z

A

S 2 =c FC (z) 4 A 240 z J. L. Garrett, D. Somers, J. N. Munday J. Phys.: Condens. Matter 27 (2015) 214012 Force-distance parameter space m m V  G 1 2 1D er / O N r Casimir measurements (Indiana)

Cantilevers (Stanford)

Torsion balance experiments (U Washington) Fundamental limitation: thermal noise Brownian motion – random “kicks” given to particle due to thermal bath fluid molecule

dust particle

• Random “kicks” are given to cantilever due to finite T of oscillator § ·1/2 1 2 1 4kkBTb k x kBT F 2 2 min ¨ ¸ © QZ0 ¹ Improving sensitivity

Levitate the force sensor!

Fiber

Lens U  1 ƒe[ ] E 2 D opt 4 D H 1 sphere 3H 0V ( H 2 ) Cantilever CM motion decoupled from environment – Limitations on Q: Clamping, surface no clamping, materials imperfections, internal materials losses losses Levitated optomechanics

• Ashkin, Bell Labs, 1970s Optical tweezers Æ biology, biophysics • Ashkin (76) Levitation in high vacuum

Arthur Ashkin, Nobel prize 2018

• Recently Æ proposals/experiments for ground state cooling

D.E. Chang et. al., PNAS (2009) O. Romero-Isart et.al. New J. Phys. (2010) Levitated bead experiments

J. Gieseler, B. Deutsch, R. Quidant et. al., B. Rodenburg et. al, Optica 3, 318-323 (2016) PRL 109, 103603 (2012).

N. Kiesel, F. Blaser, U. Delic, D. Grass, R. Kaltenbaek, M. Aspelmeyer, doi: J. Millen, T. Deesuwan, P. Barker, J. Anders. Nature 10.1073/pnas.1309167110 Nanotechnology, 2014; DOI: 10.1038/nnano.2014.82 Also: Slezak, B. R., Lewandowski, C. W., Hsu, J., D'Urso, B. R. (2018) NEW JOURNAL OF PHYSICS: v. 20 Projected force sensitivity

1/ 2 F 4k T J m (1) Photon recoil heating min B Seen recently by Cantilevers Novotny group V. Jain et. al., PRL 116, 243601 (2016)

20 zN/Hz1/2 Gieseler, Novotny, Quidant (Nature Phys. 2013) Z. Yin, A. Geraci, T. Li, Int. J. Mod. Phys. B 27,1330018 (2013). Projected sensitivity

nanosphere, d < O/2 Drive mass device (Au/Si)

gold coated SiN membrane (stationary)

AG, S.B. Papp, and J. Kitching, Phys. Rev. Lett. 105, 101101 (2010) Experimental Setup

Drive mass actuator

300300 nnm3003m0 0silicas innmlimca silicasbeadbielicaad beadbead

Cavity beams Dipole beams feedback beams

AG, S.B. Papp, and J. Kitching, Phys. Rev. Lett. 105, 101101 (2010) G. Ranjit et.al., PRA 91, 051805(R) (2015). G. Ranjit et.al. , Phys. Rev. A, 93, 053801 (2016). Trap loading

Vdriver • Acceleration required to release a nanometer-sized sphere from a substrate 1 a v R 2

~107 g for R=150nm! Loading optical trap

Optical dipole trap lasers Trapping instabilities

• Radiometric forces

Trap instabilities arise from uneven heating of the sphere surface

Important when mean free path ~ object size

Crooke’s Radiometer Radiometric forces

1% temp gradient across surface R=1.5 Pm, I=2 x 109 W/m2 Heating rate > gas damping rate Ranjit et.al., PRA 91, 051805(R) (2015). Æ Particle loss Æ Need feedback! 3D feedback cooling of a nanosphere Needed to stabilize the particle, damp and cool it Mitigate photon recoil heating

Q * Q 0 0 (4kK BTB eff ݔ(ݐ F *0  *cool AOM min Z Q 0 T * T 0 0 780 nm ݒ ݐ eff *  * ௫ Ranjit et.al., PRA 91, 051805(R) (2015). 0 cool Zeptonewton force sensing

6zN

S 1.63r .37 aN / Hz G. Ranjit, et.al. , Phys. Rev. A, 93, 053801 (2016). Sensitivity F, x Zeptonewton force sensing Electrostatic Calibration 90% of beads are neutral Neutral beads stay neutral Charge stays constant over days 6zN

Calibration electrodes S 1.63r .37 aN / Hz G. Ranjit, et.al. , Phys. Rev. A, 93, 053801 (2016). Sensitivity F, x Gravitational waves

Ripples in space-time

• Discovered by LIGO Sep 2015 !! • Sources: • Inspirals of astrophysical objects • , Phase transitions, etc.

͘രW͘ďďŽƚƚ et al. (LIGO Scientific Collaboration and Virgo Collaboration) 25 Phys. Rev. Lett. 116, 061102 (2016). Frequency landscape for gravitational waves

Unexplored to date A novel high-frequency GW detector

1-100m GW Strain h = 'L/L 1.6kHz

• Laser intensity changed to match trap frequency to GW frequency

• For a 10m cavity, h ~ 10-22 Hz -1/2 at high frequency (100kHz)

• Limited by thermal noise in sensor (not laser shot noise) Æ much J. Weber (1969) better at high frequency!! 27 A. Arvanitaki and AG, Phys. Rev. Lett. 110, 071105 (2013) 1-m prototype detector layout

Laser

N. Aggarwal, G. Winstone, M. Baryakhtar, M.H. Teo, S. Larson, V. Kalogera, AG, in preparation (2019) Fiber based FP Cavity

Trapped microdisk High reflectivity mirror 60 mW 1550 nm or distributed bragg reflector

Target finesse ~10

Lfree L

~ 4 mm ~ 100 m ݖܪ߱ = ʹߨ ×100݇ N = 2S x 51 kHz

A. Pontin, L.S. Mourounas, AG, and P.F. Barker, arXiv:1706.10227New. J. Phys (2018) Dark Matter

Particle physicists use energy units (eV) for particle masses (E = mc2)

Field-like 1eV/c2 Particle-like

Neutrinos Standard Hubble Darkk EnerEnergy Modelodel LHCL

-21 1028 10-33 10 1010-3-3 105 1011

Axions PBHs WIMPs -2 -11 ~10 eV to 10 eV ~10-1000 GeV

10-22 Possible Dark Matter Mass Range 30 Dark Matter search – and PBHs

PBHs: Distance to source: 100 pc (within our galaxy)

Axions:

black hole

axion cloud

Distance to source: 10 kpc (within our galaxy) Integration time: 106 sec

Axion at the Grand-Unified Theory (GUT) scale 31 Axions • Light pseudoscalar particles in many theories Beyond Standard model • Peccei-Quinn Axion (QCD) solves strong CP

problem 10 TQCD 10 • Dark matter candidate

Experiments: e.g. ADMX, CAST, LC circuit, Casper • Also mediates spin-dependent “fifth-forces” at short range (down to 30 μm) • R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977); • S. Weinberg, Phys. Rev. Lett. 40, 223 (1978); Æ Can be sourced locally • F. Wilczek, Phys. Rev. Lett. 40, 279 (1978). • J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130 (1984). Axion Resonant InterAction DetectioNExperiment

Collaborators: Andrew Geraci (Northwestern), Asimina Arvanitaki (Perimeter), Aharon Kapitulnik (Stanford), Alan Fang (Stanford), Sam Mumford (Stanford), Josh Long (IU), Chen-Yu Liu (IU), Mike Snow (IU), Inbum Lee (IU), Justin Shortino (IU), Yannis Semertzidis (CAPP), Yun Shin (CAPP), Yong-Ho Lee (KRISS), Lutz Trahms (PTB), Allard Schnabel (PTB), Jens Voigt (PTB)

Center for Fundamental Physics (CFP) QCD Axion Parameter Space

Astrophysical Bounds

Hints

Experimental Bounds

Current Experiments

DM Radio LC Circuit ABRACADABRA ARIADNE 34 Adapted from http://pdg.lbl.gov/2015/reviews/rpp2015-rev-axions.pdf Axion and ALP Searches

Source Coupling

Photons Nucleons Electrons

ADMX, HAYSTACK, Dark Matter DM Radio, CASPEr QUAX (Cosmic) axions MADMAX, ABRACADABRA

CAST Solar axions IAXO

Light-shining-thru- Lab-produced walls (ALPS, ARIADNE axions ALPS-II) Spin-dependent “5th force”

r mf V

S Monopole-Dipole axion exchange 2 N N O = gs g p § 1 1 · U (r) ¨  ¸er / Oa (Vˆ ˜rˆ) ¨ 2 ¸ { P ˜ Beff 8 m f © r a r ¹

ma < 6 meV Oa > 30 Pm • Different than ordinary B field Fictitious magnetic field • Does not couple to angular momentum • Unaffected by magnetic shielding NMR for detection

Spin ½ 3He Nucleus

Oscillate the mass at Larmor frequency Bext B Beff BA cos(Zt) eff U P ˜ Bext

Bloch Equations |n² G Z 2P ˜ B dM G G N ext JM u B = dt |p²

Time varying Axion Beff drives spin precession Amplitude is resonantly enhanced Æ produces transverse magnetization by Q factor ~ ZT2.

Can be detected with a SQUID A. Arvanitaki and A. Geraci, Phys. Rev. Lett. 113, 161801 (2014) Concept for ARIADNE

Unpolarized (tungsten) segmented cylinder sources Beff

Z 2P ˜ B N ext Applied Bias field Bext =

3 Laser Polarized He gas senses Beff (Indiana U)

squid pickup Loop (CAPP)

Limit: Transverse spin projection noise

Superconducting shielding (Stanford)

A. Arvanitaki and A. Geraci, Phys. Rev. Lett. 113, 161801 (2014). Experimental parameters

Rotational stage

3 sample chambers

source mass 4 mm

3.8 cm diameter Tungsten source mass (high nucleon density) 11 segments 100 Hz nuclear spin precession frequency 2 x 1021 / cc 3He density 10 mm x 3 mm x 150 μm volume Separation ~200 μm Constraints and Sensitivity

[4],[5],[6],[7]

[3]

A. Arvanitaki and AG., Phys. Rev. Lett. 113,161801 (2014). [3] G. Raffelt, Phys. Rev. D 86, 015001 (2012)] [4] G. Vasilakis, et. al, Phys. Rev. Lett. 103, 261801 (2009). [5] K. Tullney,et. al. Phys. Rev. Lett. 111, 100801 (2013) [6] P.-H. Chu,et. al., Phys. Rev. D 87, 011105(R) (2013). [7] M. Bulatowicz, et. al., Phys. Rev. Lett. 111, 102001 (2013). Ultra-light scalar Dark Matter • Dark Matter mass scales: >10-22 eV (size of dwarf galaxies) ¾ Ultralight DM looks like coherent field rather than particle

• Atomic clocks ¾Techniques for detecting oscillating scalar DM: • Bar detectors Asimina Arvanitaki, Savas Dimopoulos, and Ken Van Tilburg, Phys. Rev. Lett. 116, 031102 (2016) • Torsion Balances Asimina Arvanitaki, Junwu Huang, and Ken Van Tilburg, Phys. Rev. D 91, 015015 (2015) Asimina Arvanitaki, Peter W. Graham, Jason M. Hogan, Surjeet Rajendran, and Ken Van Tilburg • Atom Phys. Rev. D 97, 075020 (2018) Interferometers Peter W. Graham, David E. Kaplan, Jeremy Mardon, Surjeet Rajendran, William A. Terrano Phys. Rev. D 93, 075029 (2016) Detecting ultra-light Dark Matter with optical cavities

AG, C. Bradley, W. Gao, J. Weinstein, A. Derevianko, PRL (2019) Conclusions Fifth-force seaches with AMO-based methods

• Calibrated zeptonewton force sensing with optically levitated nanospheres Æ Micron-distance gravity tests Æ High frequency gravitational waves S. Bose,et.al., Phys. Rev. Lett. 119, Æ Tests of role of gravity in quantum entanglement 240401 (2017) • ARIADNE Æ New resonant NMR method

Æ Gap in experimental QCD axion searches 0.1 meV < ma < 10 meV Æ No need to scan mass, indep. of local DM density Æ Covers entire QCD axion parameter space when combined with haloscope and helioscope experiments (ADMX, HAYSTAC, DM Radio, LC Circuit, CASPEr, ABRACADABRA, MADMAX, IAXO)! • Optical cavity search for ultra-light bosonic DM Acknowledgements

Center for Fundamental Physics (CFP) Geraci Lab 2017

Geraci Lab Summer 2018 Collaborators (GW): Peter Barker (UCL)

Astro Theory: Asimina Arvanitaki (Perimeter) Masha Baryakhtar (Perimeter) Mae Hwee Teo (Stanford) Shane Larson (NU) Vicky Kalogera (NU)

Group Members (left to right): Chloe Lohmeyer (G), Evan Weisman (PD), George Winstone (PD), Nancy Aggarwal (PD), Cris Montoya (PD), Daniel Grass (UG), Chethn Galla (G), Eduardo Allejandro (G), William Eom (G), Andy Geraci (PI)