Fungal Keratitis Caused by Macrophomina Phaseolina – a Case Report

Total Page:16

File Type:pdf, Size:1020Kb

Fungal Keratitis Caused by Macrophomina Phaseolina – a Case Report Medical Mycology Case Reports 1 (2012) 123–126 Contents lists available at SciVerse ScienceDirect Medical Mycology Case Reports journal homepage: www.elsevier.com/locate/mmcr Fungal keratitis caused by Macrophomina phaseolina – A case report T. Premamalini a,n, B.T. Ambujavalli a, R. Vijayakumar a, S.V. Rajyoganandh a, S. Kalpana b, Anupma J Kindo a a Department of Microbiology, Sri Ramachandra Medical College & Research Institute, SRU, Chennai 600116, India b Department of Ophthalmology, Sri Ramachandra Medical College & Research Institute, SRU, Chennai 600116, India article info abstract Article history: A 70 year old female patient presented with complaints of pain, watering and swelling in the right eye. Received 3 September 2012 She gave a history of fall, as she was walking in the paddy field of her farm. Ophthalmological and Received in revised form Microbiological investigation revealed a fungal keratitis with an unusual fungus Macrophomina 11 October 2012 phaseolina which is primarily a plant pathogen, with a potential to cause human infections especially Accepted 15 October 2012 in immuno-compromised patients. The patient responded well to the antifungal treatment with Oral Voriconazole with absence of recurrence and dissemination. Keywords: & 2012 International Society for Human and Animal Mycology. Published by Elsevier B.V. All rights Fungal keratitis reserved. Macrophomina phaseolina DNA sequencing 1. Introduction watering and swelling in the right eye. She gave a history of fall when suddenly a cow came on her way as she was walking in the Macrophomina phaseolina is a soil borne fungus. This fungus is paddy field of her farm (day 14). primarily a plant pathogen infecting the root and lower stem of Following the injury she went to a local doctor in her area over 500 plant species [1]. M. phaseolina commonly causes disease where she is living. She was prescribed hourly dose of Ciproflox- on soybean (charcoal rot), peanut, and corn. It survives as acin eye drops with steroid combination (day 3). Then she microsclerotia in the soil and on infected plant debris [2]. The developed severe pain and swelling in the injured eye (day 1). microsclerotia forms the main source of infection and can survive On examination of the right eye, the visual acquity was reduced to in soil for up to three years [3]. The microsclerotia are black, hand movements. Patient had periorbital edema along with edema of multi-celled structures that are produced in the plant which is the the eyelid (Fig. 1a). There was matting of the eye lashes, discharge host for this fungus, and gets passed on from the decayed plant to and conjunctival congestion with blepharitis. The cornea showed the soil. These multi-celled structures like the bacterial spores can central epithelial defect with corneal infiltrates measuring around survive under adverse conditions even at temperature above 8 Â 5mm2 with satellite lesions (Fig. 1a). There was stromal edema 30 1C. Their survival is greatly reduced in wet soil where, micro- and descemet membrane folding. Anterior chamber was irregular sclerotia survives not more than 7–8 weeks and mycelium with a 2 mm hypopyon. The pupil was 3 mm reacting to light. The survives not more than 7 days. This fungus rarely causes disease duct showed clear regurgitation. The left eye had a visual acquity of in humans. There have been only two reports of this fungus 3/60 with no clinical features of injury. causing infection in humans one from a renal transplant recipient Her investigation parameters were within normal limits. and one in a child with acute myeloid leukemia [4,5].To the best Hemoglobin 80 g/L, Total White Blood cell count 7.8 Â 109 cells/L, of our knowledge there has been no report of this plant pathogen Liver function test showed SGOT – 13 U/L, SGPT – 21 U/L, Alkaline causing keratitis in humans. phosphatase 102 U/L, Total protein 65 g/L, Albumin 30 g/L and Globulin 35 g/L. Among the renal parameters, Creatinine was raised to 282.88 umol/L. She was not a known case of diabetes or 2. Case hypertension. In lieu of the high Creatinine level medicine opinion was sought, and a diagnosis of anemia with secondary chronic A 70 year old female patient came to the outpatient depart- kidney disease was made. Patient wasadvisedforECG,2Dechoand ment of Ophthalmology (day 0) with the complaints of pain, Ultra sonogram abdomen (for kidney size). Due to monetary reasons these investigations were not done. n Corresponding author. Tel.: þ91 44 24768403x139; fax: þ91 44 24765993. A corneal scraping was done by the ophthalmologist and E-mail address: [email protected] (T. Premamalini). specimen was subjected to 10% KOH mount and inoculated 2211-7539/$ - see front matter & 2012 International Society for Human and Animal Mycology. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.mmcr.2012.10.007 124 T. Premamalini et al. / Medical Mycology Case Reports 1 (2012) 123–126 Fig. 3. Black color colony seen on water culture. Fig. 1. Periorbital edema along with edema of the eyelid with corneal infilterate. 15 min, inoculated with the culture and incubated at room temperature for one week. Conidiation and formation of pycnidia was observed in banana peel culture which made the identification little complicated (Fig. 4aandb). The identification of the isolate based only on morphological criteria did not give a confirmed identification due to variations in the phenotype. Hence, the confirmation had to be made by molecular techniques [7]. The culture grown on Sabouraud’s Dextrose Agar was used for DNA extraction using the Qiagen kit as per manufacturer instruc- tions. The internal Transcribed Spacer (ITS) regions (ITS1-5.8S- ITS2) were amplified using ITS1 (50-TCCGTAGGTGAACCTGCGG-3) and ITS4 (50-TCCTCCGCTTATTGATATGC-30) as described pre- viously [5]. The thermocycler used was Eppendorf Mastercycler gradient (Germany). The program was as follows; 30 cycles of denaturation at 95 1C for 30 s, annealing at 52 1C for 30 s and extension at 72 1C for 45 s. The amplicon was electrophoresed on 1.5% agarose gel, stained with Ethidium bromide and visualized on Biorad XR (California, USA) gel documentation unit. The cleanup was done using a Qiaquick PCR purification kit (Qiagen, Fig. 2. The KOH mount showed plenty of septate hyphae (40 Â magnification). Inc., Valencia, CA). The amplicon was sent for DNA sequencing, to the Department of Genetics (a unit of Sankara Nethralaya), Chennai, India. The PCR (C shape inoculation) on Sabouraud’s dextrose agar with and amplified products were sequenced by the dideoxynucleotide without cycloheximide and incubated at 37 1Cinthemycology chain termination method using an ABI PRISM 3100 Genetic laboratory. Analyzer (Applied Biosystems, USA). The sequence was then used The KOH mount showed plenty of septate hyphae (Fig. 2). The for a nucleotide - nucleotide search using the BLAST algorithm at ophthalmology consultant was informed about it, and patient was the NCBI website (http://www.ncbi.nlm.nih.gov/BLAST/). BLAST started on 1% Atropine eye drops thrice daily, 5% Natamycin eye hits more than 98% were considered. The identity was with drops hourly, Oral ketoconazole 200 mg twice daily, Oral Haema- M. phaseolina. Hence, the isolate was genotypically confirmed to tinics, Oral Ibuprofen and Oral Ranitidine for 10 days. be M. phaseolina. The culture of the corneal scraping grew a black color colony The clinician was informed and Oral Voriconazle 200 mg twice on Sabouraud’s dextrose agar which was floccose. The reverse daily was added along with 5% Natamycin eye drops two hourly was also black. There was no growth on plate containing cyclo- for 10 days (day 14). Patient’s vision improved within two days. heximide. The culture grew at 37 1C as well as 40 1C. Slide culture The patient was asked to continue Oral Voriconazole 200 mg was done on potato flakes agar to enhance the production of twice daily for 6 weeks (day 24). The patient came back for follow morphological structures required for identification [6]. Micro- up and the lesion had subsided and she was relieved of the scopically it showed smooth, subhyaline, septate hyphae and clinical symptoms. some clumps of multicelled structures later maturing to sclerotia. Since there was no specific sporulation seen on Sabouraud’s dextrose agar and potato flakes agar, water culture (Fig. 3) was 3. Discussion done to induce sporulation. In addition, Banana peel culture was also done as an indigenous method, to simulate the natural The fungus M. phaseolina belongs to the phylum Ascomycota and habitat of this fungus and to induce sporulation. About class Dothideomycetes of the Botryosphaeriaceae family [5].Syno- 1 Â 1cm2 sized Banana peels were sterilized by autoclaving in nyms historically are: M. phaseolina Tassi (1901), M. phaseoli Maubl. glass petri dishes with 5 ml of distilled water at 121 1C, 15 lbs for (1905), Sclerotium bataticola Taub (1913), Rhizoctonia bataticola (Taub) T. Premamalini et al. / Medical Mycology Case Reports 1 (2012) 123–126 125 Fig. 4. (a and b) Pycnidia and conidiation in sterilized banana peel culture.(40 Â magnification). M. phaseolina is primarily a soil borne plant pathogen. The accidental cause of human infection could be due to traumatic implantation as would have happened in this patient. The first case reported in humans, was a disseminated infec- tion in an immunocompromised adult male following renal transplantation [4]. The patient subsequently succumbed to invasive infection with Scytalidium dimidiatum, which is a related species within the ascomycete family Botryosphaeriaceae. The patient responded well to treatment with Voriconazole alone [4]. Another case of cutaneous infection caused by M. phaseolina was reported in a child with acute myeloid leukemia. The child responded well to treatment with Posaconazole without recur- rence, after Haematopoietic Stem Cell Transplantation, and also the patient had no signs of systemic fungal involvement [5].
Recommended publications
  • 1 Principles of Plant Pathology Path
    PRINCIPLES OF PLANT PATHOLOGY PATH 271 (1+1) Prepared By DR. P. KISHORE VARMA, ASSISTANT PROFESSOR, DEPARTMENT OF PLANT PATHOLOGY AGRICULTURAL COLLEGE, ASWARAOPET 507 301 1 LECTURE 1 INTRODUCTION TO PLANT PATHOLOGY Why Plant Pathology? Plants are essential for maintenance of life. Plants not only sustain the man and animals, they are also the source of food for multitudes of micro-organisms living in the ecosystem. Thus, while man has been able to subjugate plants and animals for his own use, the competing micro-organisms still defy his efforts and claim a major share of resources which man would like to use for himself. It is in this context that the need for fighting the competing micro-organisms and other agencies that lack loss of productivity has been felt. The attack on plants by these micro-organisms changed the appearance and productivity of the crop and this observed change was called a disease. Plant diseases have been considered as stubborn barriers to the rapid progress of food production. We call a plant healthy only so long as it continues to perform all its normal physiological activities and give the expected yield according to its genetic potentiality. Physiological activities of a healthy plant 1. Normal cell division, differentiation and development. 2. Uptake of water and nutrients from the soil. 3. Synthesis of food from sunlight by photosynthesis. 4. Translocation of water and food to the sites of necessity through xylem and phloem. 5. Metabolism of synthesized material 6. Reproduction A diseased plant fails to perform one or more of these functions.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Ambara Groundnut, Vigna Subterranea (L.) Verdc., Which Flourished Before the Introduction of the Peanut, Arachis Hypogaea (Goli Et Al
    CONTENTS i Vigna subterranea (L.) Verdc. Proceedings of the workshop on Conservation and Improvement of Bambara Groundnut (Vigna subterranea (L.) Verdc.) 14–16 November 1995 Harare, Zimbabwe J. Heller, F. Begemann and J. Mushonga, editors ii &%1&%6% GROUNDNUT The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization operating under the aegis of the Consultative Group on International Agricultural Research (CGIAR). The international status of IPGRI is conferred under an Establishment Agreement which, by January 1997, had been signed by the Governments of Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovak Republic, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine. IPGRI's mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRI works in partnership with other organizations, undertaking research, training and the provision of scientific and technical advice and information, and has a particularly strong programme link with the Food and Agriculture Organization of the United Nations. Financial support for the research agenda of IPGRI is provided by the Governments of Australia, Austria, Belgium, Canada, China, Denmark, Finland, France, Germany, India, Italy, Japan, the Republic of Korea, Luxembourg, Mexico, the Netherlands, Norway, the Philippines, Spain, Sweden, Switzerland, the UK and the USA, and by the Asian Development Bank, CTA, European Union, IDRC, IFAD, Interamerican Development Bank, UNDP and the World Bank.
    [Show full text]
  • Macrophomina Phaseolina (Tassi.) Goid
    Microbioz Journals, Journal of Microbiology and Biomedical Research ISSN 2395-5678, Volume: 3 Issue: 1st Access online: www.microbiozjournals.com Effect of plant age upon development of necrosis and occurrence of sclerotia, pycnidiospores in moth been infected with Macrophomina phaseolina (Tassi.) Goid. Dr.Deepali Chaturvedi Department of Botany,, Lucknow University, Lucknow(U.P.)India. E mail:[email protected] Abstract Root rot of moth bean (Vigna aconitifolia (Jacq.) Marechal, caused by Macrophomina phaseolina is quite prevalent in the moth growing areas of Rajasthan and Uttar Pradesh state. The pathogen infects the moth plant at all ages and it results in a huge loss. The present study was undertaken to study the development of necrosis and occurrence of sclerotia and pycnidiospores in order to study the pathogenic variability of M. phaseolina.and to determine the morphological and pathogenic variability and their Date of Submission : 19/08/2016 correlation with the age of vigna plant. The isolates showed Date of Acceptance : 19/04/2017 variation in mycelia growth and sporulation. Variability is the very basis of survival of the pathogen and It was observed Date of Publication : 29/05/2017 that the sclerotia were produced in collar regions of 15,30,45 Type of article : Research article and 60 day old plants but symptoms were found to be more ©Copyright 2016 : Deepali Chaturvedi prevalent at maturity stage as compared to initial,seedling Corresponding address: Department of Microbiology, and flowering stages. Data reported here indicates that the sclerotia contribute to death of infected plants..It was Barkatullah University, Bhopal, India, observed that maximum disease incidence in plants occurs Email ID: [email protected] at maturity stage and susceptibility of plants to Macrophomina increased with age.
    [Show full text]
  • Thesis Submitted to the Rajasthan Agricultural University, Bikaner in Partial Fulfilment of the Requirements for the Degree Of
    EPIDEMIOLOGY AND MANAGEMENT OF LEAF BLIGHT OF MUNGBEAN [Vigna radiata (L.) Wilczek.] CAUSED BY Macrophomina phaseolina (Tassi) Goid. THESIS SUBMITTED TO THE RAJASTHAN AGRICULTURAL UNIVERSITY, BIKANER IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN AGRICULTURE (PLANT PATHOLOGY) BY SURAJ MAL MEHTA 2004 RAJASTHAN AGRICULTURAL UNIVERSITY, BIKANER S.K.N. COLLEGE OF AGRICULTURE, JOBNER CERTIFICATE-I Dated :----------- 2004 This is to certify that Mr. SURAJ MAL MEHTA successfully completed the comprehensive examination held on 12th. May. 2001 as required under the regulation for Doctor of Philosophy degree. (O.P. VERMA) Head & Professor Department of Plant Pathology S.K.N. College of Agriculture, Jobner RAJASTHAN AGRICULTURAL UNIVERSITY, BIKANER S.K.N. COLLEGE OF AGRICULTURE, JOBNER CERTIFICATE-II Dated :----------- 2004 This is to certify that this thesis entitled “Epidemiology and management of leaf blight of mungbean [Vigna radiata (L.) Wilczek.] caused by Macrophomina phaseolina (Tassi) Goid” submitted for the degree of Doctor of Philosophy in the subject of Plant Pathology embodies bonafied research work carried out by Mr. Suraj Mal Mehta under my guidance and supervision and that no part of this thesis has been submitted for any other degree. The assistance and help received during the course of investigation have been fully acknowledged. The draft of the thesis was also approved by the advisory committee on --------------2004. (O.P. VERMA) (J.P. GOYAL) Head & Professor Major Advisor Department of Plant Pathology S.K.N. College of Agriculture, Jobner DEAN S.K.N. College of Agriculture, Jobner RAJASTHAN AGRICULTURAL UNIVERSITY, BIKANER S.K.N. COLLEGE OF AGRICULTURE, JOBNER CERTIFICATE-III Dated :----------- 2004 This is to certify that this thesis entitled “Epidemiology and management of leaf blight of mungbean [Vigna radiata (L.) Wilczek.] caused by Macrophomina phaseolina (Tassi) Goid” submitted by Mr.
    [Show full text]
  • First Report of the Production of Mycotoxins and Other Secondary Metabolites by Macrophomina Phaseolina (Tassi) Goid. Isolates F
    Journal of Fungi Brief Report First Report of the Production of Mycotoxins and Other Secondary Metabolites by Macrophomina phaseolina (Tassi) Goid. Isolates from Soybeans (Glycine max L.) Symptomatic with Charcoal Rot Disease Vivek H. Khambhati 1, Hamed K. Abbas 2,* , Michael Sulyok 3 , Maria Tomaso-Peterson 1 and W. Thomas Shier 4 1 Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; [email protected] (V.H.K.); [email protected] (M.T.-P.) 2 Biological Control of Pests Research Unit, US Department of Agriculture, Agricultural Research Service, Stoneville, MS 38776, USA 3 Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, Tulln 3430, Austria; [email protected] 4 Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-662-686-5313 Received: 15 October 2020; Accepted: 1 December 2020; Published: 3 December 2020 Abstract: Macrophomina phaseolina (Tassi) Goid., the causal agent of charcoal rot disease of soybean, is capable of causing disease in more than 500 other commercially important plants. This fungus produces several secondary metabolites in culture, including (-)-botryodiplodin, phaseolinone and mellein. Given that independent fungal isolates may differ in mycotoxin and secondary metabolite production, we examined a collection of 89 independent M. phaseolina isolates from soybean plants with charcoal rot disease using LC-MS/MS analysis of culture filtrates. In addition to (-)-botryodiplodin and mellein, four previously unreported metabolites were observed in >19% of cultures, including kojic acid (84.3% of cultures at 0.57–79.9 µg/L), moniliformin (61.8% of cultures at 0.011–12.9 µg/L), orsellinic acid (49.4% of cultures at 5.71–1960 µg/L) and cyclo[L-proline-L-tyrosine] (19.1% of cultures at 0.012–0.082 µg/L).
    [Show full text]
  • Relatedness of Macrophomina Phaseolina Isolates from Tallgrass Prairie, Maize, Soybean, and Sorghum
    Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean, and sorghum A. A. Saleh, H. U. Ahmed, T. C. Todd, S. E. Travers, K. A. Zeller, J. F. Leslie, K. A. Garrett Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, 5 Manhattan, Kansas 66506-5502 Current address of H. U. Ahmed: Crop Diversification Center North, Alberta Agriculture and Rural Development, Edmonton, Alberta T5Y6H3, Canada. email: [email protected] Current address of S. E. Travers: Department of Biological Sciences, 218 Stevens Hall, North 10 Dakota State University, Fargo, ND 58105. email: [email protected] Current address of K. A. Zeller: CPHST Laboratory Beltsville NPGBL, USDA APHIS PPQ CPHST, BARC-East, Bldg-580, Beltsville, MD 20705. email [email protected] Keywords: AFLP, agriculture-wildlands interface, belowground ecology, generalist pathogen, 15 Macrophomina phaseolina, rDNA, soilborne pathogen Corresponding author: Karen A. Garrett, address above, 785-532-1370, [email protected] Running title: Relatedness of Macrophomina isolates 20 ABSTRACT Agricultural and wild ecosystems may interact through shared pathogens such as Macrophomina phaseolina, a generalist clonal fungus with more than 284 plant hosts that is likely to become more important under climate change scenarios of increased heat and drought stress. To evaluate the degree of subdivision in populations of M. phaseolina in Kansas agriculture and wildlands, 25 we compared 143 isolates from maize fields adjacent to tallgrass prairie, nearby sorghum fields, widely dispersed soybean fields, and isolates from eight plant species in tallgrass prairie. Isolate growth phenotypes were evaluated on a medium containing chlorate. Genetic characteristics were analyzed based on amplified fragment length polymorphisms (AFLPs) and the sequence of the rDNA-ITS region.
    [Show full text]
  • Redalyc.In Vitro Growth and Cell Wall Degrading Enzyme Production by Argentinean Isolates of Macrophomina Phaseolina, the Causat
    Revista Argentina de Microbiología ISSN: 0325-7541 [email protected] Asociación Argentina de Microbiología Argentina Ramos, Araceli M.; Gally, Marcela; Szapiro, Gala; Itzcovich, Tatiana; Carabajal, Maira; Levin, Laura In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina, the causative agent of charcoal rot in corn Revista Argentina de Microbiología, vol. 48, núm. 4, octubre-diciembre, 2016, pp. 267-273 Asociación Argentina de Microbiología Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=213049175002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Rev Argent Microbiol. 2016;48(4):267---273 R E V I S T A A R G E N T I N A D E MICROBIOLOGÍA www.elsevier.es/ram ORIGINAL ARTICLE In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina , the causative agent of charcoal rot in corn a,∗ b a a Araceli M. Ramos , Marcela Gally , Gala Szapiro , Tatiana Itzcovich , a a Maira Carabajal , Laura Levin a Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, INMIBO-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina b Cátedra de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina Received 20 May 2015; accepted 20 June 2016 Available online 5 November 2016 KEYWORDS Abstract Macrophomina phaseolina is a polyphagous phytopathogen, causing stalk rot on Macrophomina many commercially important species.
    [Show full text]
  • Antagonism of Trichoderma Spp. Against Macrophomina Phaseolina
    atholog P y & nt a M l i P c f r o o b l Gajera et al., J Plant Pathol Microb 2012, 3:7 i Journal of a o l n o r DOI: 10.4172/2157-7471.1000149 g u y o J ISSN: 2157-7471 Plant Pathology & Microbiology Research Article Open Access Antagonism of Trichoderma spp. against Macrophomina phaseolina: Evaluation of Coiling and Cell Wall Degrading Enzymatic Activities Gajera HP*, Bambharolia RP, Patel SV, Khatrani TJ and Goalkiya BA Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh-362 001, Gujarat, India Abstract In vitro potentialities of seven species of Trichoderma were evaluated against phytopathogen Macrophomina phaseolina by dual culture techniques. The maximum growth inhibition of test pathogen was observed by antagonist T. koningi MTCC 796 (T4) (74.3%) followed by T. harzianum NABII Th 1 (T1) (61.4%) at 7 days after inoculation (DAI). Further, mycoparasitism of antagonists were observed upto 14 DAI. Pattern of growth inhibition of test fungus was continued with maximum 14.7% increases in T4 (85.2%) followed by 6.8% elevation in T1 (65.6%) antagonists during 7 to 14 DAI. Microscopic study showed that these two antagonists were capable of overgrowing and degrading M. phaseolina mycelia, coiling around the hyphae with apressoria and hook-like structures. At 14 DAI, T. koningi MTCC 796 completely destroyed the host and sporulated. The specific activities of cell wall degrading enzymes- chitinase, β-1, 3 glucanase, protease and cellulase were tested during different incubation period (24, 48, 72 and 96 h) when Trichoderma spp.
    [Show full text]
  • Identification and Characterization of Macrophomina Phaseolina Causing Leaf Blight on White Spider Lilies (Crinum Asiaticum and Hymenocallis Littoralis) in Malaysia
    MYCOBIOLOGY 2019, VOL. 47, NO. 4, 408–414 https://doi.org/10.1080/12298093.2019.1682448 RESEARCH ARTICLE Identification and Characterization of Macrophomina phaseolina Causing Leaf Blight on White Spider Lilies (Crinum asiaticum and Hymenocallis littoralis) in Malaysia Abd Rahim Huda-Shakirah , Yee Jia Kee , Abu Bakar Mohd Hafifi , Nurul Nadiah Mohamad Azni, Latiffah Zakaria and Masratul Hawa Mohd School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia ABSTRACT ARTICLE HISTORY Crinum asiaticum and Hymenocallis littoralis, commonly known as spider lilies are bulbous Received 11 March 2019 perennial and herbaceous plants that widely planted in Malaysia as ornamental. During Revised 3 August 2019 2015–2016, symptom of leaf blight was noticed on the hosts from several locations in Accepted 15 October 2019 Penang. The symptom appeared as irregular brown to reddish lesions surrounded by yellow KEYWORDS halos. As the disease progressed, the infected leaves became blighted, dried, and fell off Macrophomina phaseolina; with the presence of black microsclerotia and pycnidia on the lesions parts. The present leaf blight; Crinum study was conducted to investigate the causal pathogen of leaf blight on C. asiaticum and asiaticum; H. littoralis. Based on morphological characteristics and DNA sequences of internal tran- Hymenocallis littoralis scribed spacer (ITS) region and translation elongation factor 1-alpha (TEF1-a) gene, the causal pathogen was identified as Macrophomina phaseolina. Phylogenetic analysis of com- bined dataset of ITS and TEF1-a grouped the isolates studied with other isolates of M. pha- seolina from GenBank. The grouping of the isolates was supported by 96% bootstrap value. Pathogenicity test proved the role of the fungus in causing leaf blight on both hosts.
    [Show full text]
  • Bioefficacy of Antagonists Against Root-Rot Fungus Macrophomina Phaseolina of Safflower
    Bioefficacy of antagonists against root-rot fungus Macrophomina phaseolina of safflower Vrijendra Singh, A. M. Ranaware and Nandini Nimbkar Nimbkar Agricultural Research Institute, Lonand Road, Phaltan 415523, Maharashtra, India. [email protected] Abstract Safflower (Carthamus tinctorius L.) is affected by a number of diseases. Though root-rot caused by Rhizoctonia bataticola is of minor importance, it is sporadic in some areas and as it forms a disease complex with wilt, is difficult to manage. The present investigation deals with the biological control of Macrophomina phaseolina-the pycnidial stage of this fungus. A series of isolations were made from the soil of rhizosphere of healthy safflower plants. Among 13 isolates assayed for antagonism, all the seven fungi and six bacteria significantly inhibited colony growth of M. phaseolina in dual culture plates. In paper towel tests, four of the antagonists when used for seed treatment, did not show any detrimental effect on germination. On the contrary, the antagonist-coated seeds improved safflower germination and proved effective in protecting safflower from root-rot. Moreover, it also resulted in significant increase in root length and high vigour index. The four antagonists were later identified as Trichoderma viride, T. harzianum, Bacillus subtilis and Pseudomonas fluorescens. Keywords: Macrophomina phaseolina – antagonists – Trichoderma - Bacillus - Pseudomonas Introduction Safflower is affected by a number of diseases caused by fungi and a few caused by bacteria and viruses. In last few years the root-rot disease caused by the fungus Macrophomina phaseolina has become quite serious resulting in considerable yield losses in safflower. Seed treatment with fungicides does not protect the crop for very long.
    [Show full text]
  • Biocontrol Mechanisms of Trichoderma Harzianum Against Soybean Charcoal Rot Caused by Macrophomina Phaseolina
    JOURNAL OF PLANT PROTECTION RESEARCH DOI: 10.1515/jppr-2016-0004 Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina Nima Khaledi*, Parissa Taheri Department of Crop Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box: 91775–1163, Mashhad, Iran Received: October 1, 2015 Accepted: January 26, 2016 Abstract: Throughout the world, charcoal rot, caused by Macrophomina phaseolina, is one of the most destructive and widespread dis- eases of crop plants such as soybean. In this study, the biological control capability of 11 Trichoderma spp. isolates against M. phaseolina was investigated using screening tests. Among all the tested Trichoderma spp. isolates, inhibition varied from 20.22 to 58.67% in dual culture tests. Dual culture, volatile and non-volatile tests revealed that two isolates of Trichoderma harzianum (including the isolates T7 and T14) best inhibited the growth of M. phaseolina in vitro. Therefore, these isolates were selected for biocontrol of M. phaseolina in vivo. The results of greenhouse experiments revealed that disease severity in the seed treatment with T. harzianum isolates was significantly lower than that of the soil treatment. In most of the cases, though, soil treatment with T. harzianum resulted in higher plant growth parameters, such as root and shoot weight. The effects of T. harzianum isolates on the activity of peroxidase enzyme and phenolic contents of the soybean root in the presence and absence of M. phaseolina were determined in greenhouse conditions. Our results suggested that a part of the inhibitory effect of T. harzianum isolates on soybean charcoal rot might be related to the indirect influence on M.
    [Show full text]