PROVERA® (Medroxyprogesterone Acetate Tablets, USP)

Total Page:16

File Type:pdf, Size:1020Kb

PROVERA® (Medroxyprogesterone Acetate Tablets, USP) PROVERA® (medroxyprogesterone acetate tablets, USP) WARNINGS CARDIOVASCULAR AND OTHER RISKS Estrogens with progestins should not be used for the prevention of cardiovascular disease or dementia. (See CLINICAL STUDIES and WARNINGS, Cardiovascular disorders and Dementia.) The Women’s Health Initiative (WHI) estrogen plus progestin substudy reported increased risks of myocardial infarction, stroke, invasive breast cancer, pulmonary emboli, and deep vein thrombosis (DVT) in postmenopausal women (50 to 79 years of age) during 5.6 years of treatment with daily oral conjugated estrogens (CE 0.625 mg) combined with medroxyprogesterone acetate (MPA 2.5 mg) relative to placebo. (See CLINICAL STUDIES and WARNINGS, Cardiovascular disorders and Malignant neoplasms, Breast cancer.) The Women's Health Initiative Memory Study (WHIMS), a substudy of the WHI study, reported increased risk of developing probable dementia in postmenopausal women 65 years of age or older during 4 years of treatment with daily CE 0.625 mg combined with MPA 2.5 mg, relative to placebo. It is unknown whether this finding applies to younger postmenopausal women. (See CLINICAL STUDIES and WARNINGS, Dementia, and PRECAUTIONS, Geriatric Use.) In the absence of comparable data, these risks should be assumed to be similar for other doses of CE and MPA and other combinations and dosage forms of estrogens and progestins. Because of these risks, estrogens with or without progestins should be prescribed at the lowest effective doses and for the shortest duration consistent with treatment goals and risks for the individual woman. DESCRIPTION PROVERA® tablets contain medroxyprogesterone acetate, which is a derivative of progesterone. It is a white to off-white, odorless crystalline powder, stable in air, melting between 200 and 210°C. It is freely soluble in chloroform, soluble in acetone and in dioxane, sparingly soluble in alcohol and in methanol, slightly soluble in ether, and insoluble in water. The chemical name for medroxyprogesterone acetate is pregn-4-ene-3, 20-dione, 17-(acetyloxy)-6-methyl-, (6α)-. The structural formula is: Each PROVERA tablet for oral administration contains 2.5 mg, 5 mg or 10 mg of medroxyprogesterone acetate and the following inactive ingredients: calcium stearate, corn starch, lactose, mineral oil, sorbic acid, sucrose, and talc. The 2.5 mg tablet contains FD&C Yellow No. 6. CLINICAL PHARMACOLOGY Medroxyprogesterone acetate (MPA) administered orally or parenterally in the recommended doses to women with adequate endogenous estrogen, transforms proliferative into secretory endometrium. Androgenic and anabolic effects have been noted, but the drug is apparently devoid of significant estrogenic activity. While parenterally administered MPA inhibits gonadotropin production, which in turn prevents follicular maturation and ovulation, available data indicate that this does not occur when the usually recommended oral dosage is given as single daily doses. Pharmacokinetics The pharmacokinetics of MPA were determined in 20 postmenopausal women following a single-dose administration of eight PROVERA 2.5 mg tablets or a single administration of two PROVERA 10 mg tablets under fasting conditions. In another study, the steady- state pharmacokinetics of MPA were determined under fasting conditions in 30 postmenopausal women following daily administration of one PROVERA 10 mg tablet for 7 days. In both studies, MPA was quantified in serum using a validated gas chromatography-mass spectrometry (GC-MS) method. Estimates of the pharmacokinetic parameters of MPA after single and multiple doses of PROVERA tablets were highly variable and are summarized in Table 1. Table 1. Mean (SD) Pharmacokinetic Parameters for Medroxyprogesterone Acetate (MPA) Tablet C max T max Auc 0-(∞) t 1/2 Vd/f CL/f Strength (ng/mL) (h) (ng·h/mL) (h) (L) (mL/min) Single Dose 2 × 10 mg 1.01 (0.599) 2.65 (1.41) 6.95 (3.39) 12.1 (3.49) 78024 64110 (47220) (42662) 8 × 2.5 mg 0.805 (0.413) 2.22 (1.39) 5.62 (2.79) 11.6 (2.81) 62748 74123 (40146) (35126) Multiple Dose 10 mg * 0.71 (0.35) 2.83 (1.83) 6.01 (3.16) 16.6 (15.0) 40564 41963 (38256) (38402) *Following Day 7 dose A. Absorption: No specific investigation on the absolute bioavailability of MPA in humans has been conducted. MPA is rapidly absorbed from the gastrointestinal tract, and maximum MPA concentrations are obtained between 2 to 4 hours after oral administration. Administration of PROVERA with food increases the bioavailability of MPA. A 10 mg dose of PROVERA, taken immediately before or after a meal, increased MPA Cmax (50 to 70%) and AUC (18 to 33%). The half-life of MPA was not changed with food. B. Distribution: MPA is approximately 90% protein bound, primarily to albumin; no MPA binding occurs with sex hormone binding globulin. C. Metabolism: Following oral dosing, MPA is extensively metabolized in the liver via hydroxylation, with subsequent conjugation and elimination in the urine. D. Excretion: Most MPA metabolites are excreted in the urine as glucuronide conjugates with only minor amounts excreted as sulfates. E. Special Populations Renal Insufficiency The pharmacokinetics of MPA in patients with varying degrees of renal insufficiency have not been investigated. Hepatic Insufficiency MPA is almost exclusively eliminated via hepatic metabolism. In 14 patients with advanced liver disease, MPA disposition was significantly altered (reduced elimination). In patients with fatty liver, the mean percent dose excreted in the 24-hour urine as intact MPA after a 10 mg or 100 mg dose was 7.3% and 6.4%, respectively. F. Drug Interactions No formal pharmacokinetic drug interaction studies have been conducted with PROVERA CLINICAL STUDIES Effects on the Endometrium In a 3-year, double-blind, placebo-controlled study of 356 nonhysterectomized, postmenopausal women between 45 and 64 years of age randomized to receive placebo (n=119), 0.625 mg conjugated estrogen only (n=119), or 0.625 mg conjugated estrogen plus cyclic PROVERA (n=118), results showed a reduced risk of endometrial hyperplasia in the treatment group receiving 10 mg PROVERA plus 0.625 mg conjugated estrogens compared to the group receiving 0.625 mg conjugated estrogens only. See Table 2. Table 2. Number (%) of Endometrial Biopsy Changes Since Baseline After 3 Years of Treatment * Histological Placebo CEE † PROVERA ‡ Results (n=119) (n=119) + CEE (n=118) Normal/No hyperplasia (%) 116 (97) 45 (38) 112 (95) Simple (cystic) hyperplasia (%) 1 (1) 33 (28) 4 (3) Complex (adenomatous) hyperplasia (%) 1 (1) 27 (22) 2 (2) Atypia (%) 0 14 (12) 0 Adenocarcinoma (%) 1 (1) 0 0 *Includes most extreme abnormal result † CEE = conjugated equine estrogens 0.625 mg/day ‡ PROVERA = medroxyprogesterone acetate tablets 10 mg/day for 12 days In a second 1-year study, 832 postmenopausal women between 45 and 65 years of age were treated with daily 0.625 mg conjugated estrogen (days 1-28), plus either 5 mg cyclic PROVERA or 10 mg cyclic PROVERA (days 15-28), or daily 0.625 mg conjugated estrogen only. The treatment groups receiving 5 or 10 mg cyclic PROVERA (days 15- 28) plus daily conjugated estrogens showed a significantly lower rate of hyperplasia as compared to the conjugated estrogens only group. See Table 3. Table 3. Number (%) of Women with Endometrial Hyperplasia at 1 Year CEE * MPA † + CEE * (n=283) MPA 5 mg MPA 10 mg (n=277) (n=272) Cystic hyperplasia (%) 55 (19) 3 (1) 0 Adenomatous hyperplasia without atypia 2 (1) 0 0 * CEE = conjugated equine estrogen 0.625 mg every day of a 28-day cycle. † Cyclic medroxyprogesterone acetate on days 15 to 28 Women’s Health Initiative Studies The Women’s Health Initiative (WHI) enrolled approximately 27,000 predominantly healthy postmenopausal women in two substudies to assess the risks and benefits of either the use of daily oral conjugated estrogens (CE 0.625 mg) alone or in combination with medroxyprogesterone acetate (MPA 2.5 mg) compared to placebo in the prevention of certain chronic diseases. The primary endpoint was the incidence of coronary heart disease (CHD) (nonfatal myocardial infarction (MI), silent MI and CHD death), with invasive breast cancer as the primary adverse outcome studied. A "global index" included the earliest occurrence of CHD, invasive breast cancer, stroke, pulmonary embolism (PE), endometrial cancer (only in the CE/MPA substudy), colorectal cancer, hip fracture, or death due to other cause. The study did not evaluate the effects of CE or CE/MPA on menopausal symptoms. The estrogen plus progestin substudy was stopped early. According to the predefined stopping rule, after an average follow-up of 5.2 years of treatment, the increased risk of breast cancer and cardiovascular events exceeded the specified benefits included in the “global index.” The absolute excess risk of events included in the “global index” was 19 per 10,000 women-years (relative risk [RR] 1.15, 95 percent, nominal confidence interval [nCI], 1.03-1.28). For those outcomes included in the WHI “global index” that reached statistical significance after 5.6 years of follow-up, the absolute excess risks per 10,000 women- years in the group treated with CE/MPA were 6 more CHD events, 7 more strokes, 10 more PEs, and 8 more invasive breast cancers, while the absolute risk reduction per 10,000 women-years were 7 fewer colorectal cancers and 5 fewer hip fractures. (See BOXED WARNINGS, WARNINGS and PRECAUTIONS.) Results of the CE/MPA substudy which included 16,608 women (average age of 63 years, range 50 to 79; 83.9 percent White, 6.8 percent Black, 5.4 percent Hispanic,
Recommended publications
  • This Fact Sheet Provides Information to Patients with Eczema and Their Carers. About Topical Corticosteroids How to Apply Topic
    This fact sheet provides information to patients with eczema and their carers. About topical corticosteroids You or your child’s doctor has prescribed a topical corticosteroid for the treatment of eczema. For treating eczema, corticosteroids are usually prepared in a cream or ointment and are applied topically (directly onto the skin). Topical corticosteroids work by reducing inflammation and helping to control an over-reactive response of the immune system at the site of eczema. They also tighten blood vessels, making less blood flow to the surface of the skin. Together, these effects help to manage the symptoms of eczema. There is a range of steroids that can be used to treat eczema, each with different strengths (potencies). On the next page, the potencies of some common steroids are shown, as well as the concentration that they are usually used in cream or ointment preparations. Using a moisturiser along with a steroid cream does not reduce the effect of the steroid. There are many misconceptions about the side effects of topical corticosteroids. However these treatments are very safe and patients are encouraged to follow the treatment regimen as advised by their doctor. How to apply topical corticosteroids How often should I apply? How much should I apply? Apply 1–2 times each day to the affected area Enough cream should be used so that the of skin according to your doctor’s instructions. entire affected area is covered. The cream can then be rubbed or massaged into the Once the steroid cream has been applied, inflamed skin. moisturisers can be used straight away if needed.
    [Show full text]
  • Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals
    Journal of Clinical Medicine Review Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals Carlotta Cocchetti 1, Jiska Ristori 1, Alessia Romani 1, Mario Maggi 2 and Alessandra Daphne Fisher 1,* 1 Andrology, Women’s Endocrinology and Gender Incongruence Unit, Florence University Hospital, 50139 Florence, Italy; [email protected] (C.C); jiska.ristori@unifi.it (J.R.); [email protected] (A.R.) 2 Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, 50139 Florence, Italy; [email protected]fi.it * Correspondence: fi[email protected] Received: 16 April 2020; Accepted: 18 May 2020; Published: 26 May 2020 Abstract: Introduction: To date no standardized hormonal treatment protocols for non-binary transgender individuals have been described in the literature and there is a lack of data regarding their efficacy and safety. Objectives: To suggest possible treatment strategies for non-binary transgender individuals with non-standardized requests and to emphasize the importance of a personalized clinical approach. Methods: A narrative review of pertinent literature on gender-affirming hormonal treatment in transgender persons was performed using PubMed. Results: New hormonal treatment regimens outside those reported in current guidelines should be considered for non-binary transgender individuals, in order to improve psychological well-being and quality of life. In the present review we suggested the use of hormonal and non-hormonal compounds, which—based on their mechanism of action—could be used in these cases depending on clients’ requests. Conclusion: Requests for an individualized hormonal treatment in non-binary transgender individuals represent a future challenge for professionals managing transgender health care. For each case, clinicians should balance the benefits and risks of a personalized non-standardized treatment, actively involving the person in decisions regarding hormonal treatment.
    [Show full text]
  • How to Select Pharmacologic Treatments to Manage Recidivism Risk in Sex Off Enders
    How to select pharmacologic treatments to manage recidivism risk in sex off enders Consider patient factors when choosing off -label hormonal and nonhormonal agents ® Dowden Healthex offenders Media traditionally are managed by the criminal justice system, but psychiatrists are fre- Squently called on to assess and treat these indi- CopyrightFor personalviduals. use Part only of the reason is the overlap of paraphilias (disorders of sexual preference) and sexual offending. Many sexual offenders do not meet DSM criteria for paraphilias,1 however, and individuals with paraphil- ias do not necessarily commit offenses or come into contact with the legal system. As clinicians, we may need to assess and treat a wide range of sexual issues, from persons with paraphilias who are self-referred and have no legal involvement, to recurrent sexual offenders who are at a high risk of repeat offending. Successfully managing sex offenders includes psychological and pharmacologic interven- 2009 © CORBIS / TIM PANNELL 2009 © CORBIS / tions and possibly incarceration and post-incarceration Bradley D. Booth, MD surveillance. This article focuses on pharmacologic in- Assistant professor terventions for male sexual offenders. Department of psychiatry Director of education Integrated Forensics Program University of Ottawa Reducing sexual drive Ottawa, ON, Canada Sex offending likely is the result of a complex inter- play of environment and psychological and biologic factors. The biology of sexual function provides nu- merous targets for pharmacologic intervention, in- cluding:2 • endocrine factors, such as testosterone • neurotransmitters, such as serotonin. The use of pharmacologic treatments for sex of- fenders is off-label, and evidence is limited. In general, Current Psychiatry 60 October 2009 pharmacologic treatments are geared toward reducing For mass reproduction, content licensing and permissions contact Dowden Health Media.
    [Show full text]
  • Determination of 17 Hormone Residues in Milk by Ultra-High-Performance Liquid Chromatography and Triple Quadrupole Mass Spectrom
    No. LCMSMS-065E Liquid Chromatography Mass Spectrometry Determination of 17 Hormone Residues in Milk by Ultra-High-Performance Liquid Chromatography and Triple Quadrupole No. LCMSMS-65E Mass Spectrometry This application news presents a method for the determination of 17 hormone residues in milk using Shimadzu Ultra-High-Performance Liquid Chromatograph (UHPLC) LC-30A and Triple Quadrupole Mass Spectrometer LCMS- 8040. After sample pretreatment, the compounds in the milk matrix were separated using UPLC LC-30A and analyzed via Triple Quadrupole Mass Spectrometer LCMS-8040. All 17 hormones displayed good linearity within their respective concentration range, with correlation coefficient in the range of 0.9974 and 0.9999. The RSD% of retention time and peak area of 17 hormones at the low-, mid- and high- concentrations were in the range of 0.0102-0.161% and 0.563-6.55% respectively, indicating good instrument precision. Method validation was conducted and the matrix spike recovery of milk ranged between 61.00-110.9%. The limit of quantitation was 0.14-0.975 g/kg, and it meets the requirement for detection of hormones in milk. Keywords: Hormones; Milk; Solid phase extraction; Ultra performance liquid chromatograph; Triple quadrupole mass spectrometry ■ Introduction Since 2008’s melamine-tainted milk scandal, the With reference to China’s national standard GB/T adulteration of milk powder has become a major 21981-2008 "Hormone Multi-Residue Detection food safety concern. In recent years, another case of Method for Animal-derived Food - LC-MS Method", dairy product safety is suspected to cause "infant a method utilizing solid phase extraction, ultra- sexual precocity" (also known as precocious puberty) performance liquid chromatography and triple and has become another major issue challenging the quadrupole mass spectrometry was developed for dairy industry in China.
    [Show full text]
  • Steroid Use in Prednisone Allergy Abby Shuck, Pharmd Candidate
    Steroid Use in Prednisone Allergy Abby Shuck, PharmD candidate 2015 University of Findlay If a patient has an allergy to prednisone and methylprednisolone, what (if any) other corticosteroid can the patient use to avoid an allergic reaction? Corticosteroids very rarely cause allergic reactions in patients that receive them. Since corticosteroids are typically used to treat severe allergic reactions and anaphylaxis, it seems unlikely that these drugs could actually induce an allergic reaction of their own. However, between 0.5-5% of people have reported any sort of reaction to a corticosteroid that they have received.1 Corticosteroids can cause anything from minor skin irritations to full blown anaphylactic shock. Worsening of allergic symptoms during corticosteroid treatment may not always mean that the patient has failed treatment, although it may appear to be so.2,3 There are essentially four classes of corticosteroids: Class A, hydrocortisone-type, Class B, triamcinolone acetonide type, Class C, betamethasone type, and Class D, hydrocortisone-17-butyrate and clobetasone-17-butyrate type. Major* corticosteroids in Class A include cortisone, hydrocortisone, methylprednisolone, prednisolone, and prednisone. Major* corticosteroids in Class B include budesonide, fluocinolone, and triamcinolone. Major* corticosteroids in Class C include beclomethasone and dexamethasone. Finally, major* corticosteroids in Class D include betamethasone, fluticasone, and mometasone.4,5 Class D was later subdivided into Class D1 and D2 depending on the presence or 5,6 absence of a C16 methyl substitution and/or halogenation on C9 of the steroid B-ring. It is often hard to determine what exactly a patient is allergic to if they experience a reaction to a corticosteroid.
    [Show full text]
  • Referral Support Service Gynaecology
    Referral Support Service Gynaecology GY11 Heavy Menstrual Bleeding (Menorrhagia and Polymenorrhagia) Definitions Menorrhagia: Excessive menstrual blood loss which interferes with the woman’s physical, emotional, social and material quality of life and which can occur alone or in combination with other symptoms. Polymenorrhagia: Frequent heavy bleeding, with shortening of menstrual cycle (eg < K- 5/21) for more than 3 cycles. Most cases are due to Dysfunctional uterine bleeding (DUB), however, this is a diagnosis of exclusion. Exclude Red Flag Symptoms Postmenopausal Bleeding (PMB) i.e. bleeding >12 months after last period over age 55 Persistent Intermenstrual bleeding (IMB): if >45 or other risk factors for endometrial cancer (eg obesity, PCOS unopposed oestrogen, tamoxifen) Treatment failure in women aged 45 years or over Significant anaemia- Hb< 8- consider admission for transfusion/ urgent referral Suspicious USS features General Points History: Sudden change in bleeding pattern? Recent childbirth? Recent change in contraception? Family history/ onset of HMB from puberty- consider von Willebrand Disease. Examination: Consider infection (especially if under 25 or change in partner) Abdominal examination/ Pelvic examination (is there pain, is there an enlarged uterus?) Investigations: Bloods: FBC, TFTs.(check for vWF if onset of HBM from puberty) Consider USS if enlarged uterus or new change in bleeding pattern. Refer for hysteroscopy if any suspected polyps or thickened endometrium on USS. How to Reduce Sudden/New onset
    [Show full text]
  • Combined Estrogen–Progestogen Menopausal Therapy
    COMBINED ESTROGEN–PROGESTOGEN MENOPAUSAL THERAPY Combined estrogen–progestogen menopausal therapy was considered by previous IARC Working Groups in 1998 and 2005 (IARC, 1999, 2007). Since that time, new data have become available, these have been incorporated into the Monograph, and taken into consideration in the present evaluation. 1. Exposure Data 1.1.2 Progestogens (a) Chlormadinone acetate Combined estrogen–progestogen meno- Chem. Abstr. Serv. Reg. No.: 302-22-7 pausal therapy involves the co-administration Chem. Abstr. Name: 17-(Acetyloxy)-6-chlo- of an estrogen and a progestogen to peri- or ropregna-4,6-diene-3,20-dione menopausal women. The use of estrogens with IUPAC Systematic Name: 6-Chloro-17-hy- progestogens has been recommended to prevent droxypregna-4,6-diene-3,20-dione, acetate the estrogen-associated risk of endometrial Synonyms: 17α-Acetoxy-6-chloro-4,6- cancer. Evidence from the Women’s Health pregnadiene-3,20-dione; 6-chloro-Δ6-17- Initiative (WHI) of adverse effects from the use acetoxyprogesterone; 6-chloro-Δ6-[17α] of a continuous combined estrogen–progestogen acetoxyprogesterone has affected prescribing. Patterns of exposure Structural and molecular formulae, and relative are also changing rapidly as the use of hormonal molecular mass therapy declines, the indications are restricted, O CH and the duration of the therapy is reduced (IARC, 3 C 2007). CH3 CH3 O C 1.1 Identification of the agents CH3 H O 1.1.1 Estrogens HH For Estrogens, see the Monograph on O Estrogen-only Menopausal Therapy in this Cl volume. C23H29ClO4 Relative molecular mass: 404.9 249 IARC MONOGRAPHS – 100A (b) Cyproterone acetate Structural and molecular formulae, and relative Chem.
    [Show full text]
  • Combined Estrogen–Progestogen Menopausal Therapy
    PHARMACEUTICALS volume 100 A A review of humAn cArcinogens This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 14-21 October 2008 LYON, FRANCE - 2012 iArc monogrAphs on the evAluAtion of cArcinogenic risks to humAns COMBINED ESTROGEN–PROGESTOGEN MENOPAUSAL THERAPY Combined estrogen–progestogen menopausal therapy was considered by previous IARC Working Groups in 1998 and 2005 (IARC, 1999, 2007). Since that time, new data have become available, these have been incorporated into the Monograph, and taken into consideration in the present evaluation. 1. Exposure Data 1.1.2 Progestogens (a) Chlormadinone acetate Combined estrogen–progestogen meno- Chem. Abstr. Serv. Reg. No.: 302-22-7 pausal therapy involves the co-administration Chem. Abstr. Name: 17-(Acetyloxy)-6-chlo- of an estrogen and a progestogen to peri- or ropregna-4,6-diene-3,20-dione menopausal women. The use of estrogens with IUPAC Systematic Name: 6-Chloro-17-hy- progestogens has been recommended to prevent droxypregna-4,6-diene-3,20-dione, acetate the estrogen-associated risk of endometrial Synonyms: 17α-Acetoxy-6-chloro-4,6- cancer. Evidence from the Women’s Health pregnadiene-3,20-dione; 6-chloro-Δ6-17- Initiative (WHI) of adverse effects from the use acetoxyprogesterone; 6-chloro-Δ6-[17α] of a continuous combined estrogen–progestogen acetoxyprogesterone has affected prescribing. Patterns of exposure Structural and molecular formulae, and relative are also changing rapidly as the use of hormonal molecular mass therapy declines, the indications are restricted, O CH and the duration of the therapy is reduced (IARC, 3 C 2007).
    [Show full text]
  • The Effects of Dehydroepiandrosterone Sulfate on Counterregulatory Responses During Repeated Hypoglycemia in Conscious Normal Rats Darleen A
    The Effects of Dehydroepiandrosterone Sulfate on Counterregulatory Responses During Repeated Hypoglycemia in Conscious Normal Rats Darleen A. Sandoval, Ling Ping, Ray Anthony Neill, Sachiko Morrey, and Stephen N. Davis ␮ ⅐ ؊1 ⅐ ؊1 We previously determined that both antecedent hy- mol/l kg min ; P < 0.05). In summary, day-1 poglycemia and elevated cortisol levels blunt neu- antecedent hypoglycemia blunted neuroendocrine and roendocrine and metabolic responses to subsequent metabolic responses to next-day hypoglycemia. How- hypoglycemia in conscious, unrestrained rats. The adre- ever, simultaneous DHEA-S infusion during antecedent nal steroid dehydroepiandrosterone sulfate (DHEA-S) hypoglycemia preserved neuroendocrine and metabolic has been shown in several studies to oppose corticoste- counterregulatory responses during subsequent hypo- roid action. The purpose of this study was to determine glycemia in conscious rats. Diabetes 53:679–686, 2004 if DHEA-S could preserve counterregulatory responses during repeated hypoglycemia. We studied 40 male Sprague-Dawley rats during a series of 2-day protocols. he Diabetes Control and Complications Trial Day 1 consisted of two 2-h episodes of 1) hyperinsuline- mic (30 pmol ⅐ kg؊1 ⅐ min؊1) euglycemia (6.2 ؎ 0.2 established that intensive glucose control in type ANTE EUG), 2) hyperinsulinemic eug- 1 diabetic patients can slow the progression or ;12 ؍ mmol/l; n -plus simultaneous Tsignificantly reduce the onset of diabetic micro (8 ؍ lycemia (6.0 ؎ 0.1 mmol/l; n intravenous infusion of DHEA-S (30 mg/kg; ANTE EUG vascular complications (e.g., retinopathy, nephropathy, ؉ DHEA-S), 3) hyperinsulinemic hypoglycemia (2.8 ؎ neuropathy) (1). Unfortunately, the study also established ANTE HYPO), or 4) hyperinsulinemic that intensive glucose treatment causes an approximate ;12 ؍ mmol/l; n 0.1 -with simulta- threefold increase in the frequency of severe hypoglyce (8 ؍ hypoglycemia (2.8 ؎ 0.1 mmol/l; n neous intravenous infusion of DHEA-S (30 mg/kg; ANTE mia (2).
    [Show full text]
  • Effect of Tibolone on Bone Mineral Density in Postmenopausal Women: Systematic Review and Meta-Analysis
    biology Review Effect of Tibolone on Bone Mineral Density in Postmenopausal Women: Systematic Review and Meta-Analysis Lizett Castrejón-Delgado 1, Osvaldo D. Castelán-Martínez 2 , Patricia Clark 3, Juan Garduño-Espinosa 4, Víctor Manuel Mendoza-Núñez 1 and Martha A. Sánchez-Rodríguez 1,* 1 Research Unit on Gerontology, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico; [email protected] (L.C.-D.); [email protected] (V.M.M.-N.) 2 Clinical Pharmacology Laboratory, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico; [email protected] 3 Clinical Epidemiology Research Unit, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; [email protected] 4 Research Department, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-55-5623-0700 (ext. 83210) Simple Summary: Low bone mineral density (osteoporosis) is associated with vertebral and non- vertebral fractures in postmenopausal women. Tibolone is a low-risk hormone replacement therapy alternative to estrogen therapy, effective in the treatment of menopausal symptoms and prevention of bone loss, but the evidence is controversial. This systematic review with meta-analysis summarizes Citation: Castrejón-Delgado, L.; the clinical trials of the tibolone effect on percentage change of bone mineral density in the lumbar Castelán-Martínez, O.D.; Clark, P.; spine, femoral neck, and total hip in postmenopausal women. The results show that tibolone 2.5 mg Garduño-Espinosa, J.; dose increases the percent change in bone mineral density compared with non-active controls at Mendoza-Núñez, V.M.; 24 months in lumbar spine and femoral neck, regardless of the scanner used to evaluate the bone Sánchez-Rodríguez, M.A.
    [Show full text]
  • The Realization of New Medical Alternatives to Surgery for Endometriosis
    Paradigm Shift: The Realization of New Medical Alternatives to Surgery for Endometriosis Edward M. Lichten, MD* ©2016, Edward M. Lichten, MD Journal Compilation ©2016, AARM DOI 10.14200/jrm.2016.5.0099 ABSTRACT Endometriosis is one of the most destructive benign diseases of women. It is established as developing and being present in upward of 70% of adolescents who do not experience relief of menstrual pain with use of oral contraceptives and anti- inflammatory drugs. It occurs in 8%–10% of women in the United States and is most prevalent in developed countries. Symptoms of endometriosis include disabling pain, hemorrhagic uterine bleeding, and infertility. Women with disease can expect a 12% hysterectomy rate. While present medical therapy may offer relief of many symptoms, there have been no major new directions in pharmacologic therapy since leuprolide acetate was made available in 1977. Danazol remains the only alternative to GnRH agonists with proven efficacy and reasonable side effects, according to Cochrane Reviews, yet, it is underused, and GnRH agonists are favored even when Danazol in combination seems more effective. A previously published case report on use of the combination of nandrolone and stanozolol to treat a young woman scheduled for hemicolectomy is discussed as an alternative to surgery along with the limits of standard therapy. This review will focus on recent research and theories seeking to establish causation for disease and offer treatment recommendations. Keywords: Endometriosis; Environmental toxins; Xenoestrogens;
    [Show full text]
  • EUROPEAN PHARMACOPOEIA 10.0 Index 1. General Notices
    EUROPEAN PHARMACOPOEIA 10.0 Index 1. General notices......................................................................... 3 2.2.66. Detection and measurement of radioactivity........... 119 2.1. Apparatus ............................................................................. 15 2.2.7. Optical rotation................................................................ 26 2.1.1. Droppers ........................................................................... 15 2.2.8. Viscosity ............................................................................ 27 2.1.2. Comparative table of porosity of sintered-glass filters.. 15 2.2.9. Capillary viscometer method ......................................... 27 2.1.3. Ultraviolet ray lamps for analytical purposes............... 15 2.3. Identification...................................................................... 129 2.1.4. Sieves ................................................................................. 16 2.3.1. Identification reactions of ions and functional 2.1.5. Tubes for comparative tests ............................................ 17 groups ...................................................................................... 129 2.1.6. Gas detector tubes............................................................ 17 2.3.2. Identification of fatty oils by thin-layer 2.2. Physical and physico-chemical methods.......................... 21 chromatography...................................................................... 132 2.2.1. Clarity and degree of opalescence of
    [Show full text]