Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References

Linear Models for Regression

Henrik I Christensen

Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 [email protected]

Henrik I Christensen (RIM@GT) 1 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Outline

1 Introduction

2 Preliminaries

3 Linear Basis Function Models

4 Baysian Linear Regression

5 Baysian Model Comparison

6 Summary

Henrik I Christensen (RIM@GT) Linear Regression 2 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Introduction

The objective of regression is to enable prediction of a value t based on modelling over a dataset X . Consider a set of D observations over a space How can we generate estimates for the future? Battery time? Time to completion? Position of doors?

Henrik I Christensen (RIM@GT) Linear Regression 3 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Introduction (2)

Example from Chapter 1

1 t

0

−1

0 x 1

m 2 m X i y(x, w) = w0 + w1x + w2x + ... + wmx = wi x i=0

Henrik I Christensen (RIM@GT) Linear Regression 4 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Introduction (3)

In general the functions could be beyond simple polynomials The “components” are termed basis functions, i.e.

m X T ~ y(x, w) = wi φi (x) = w~ φ(x) i=0

Henrik I Christensen (RIM@GT) Linear Regression 5 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Outline

1 Introduction

2 Preliminaries

3 Linear Basis Function Models

4 Baysian Linear Regression

5 Baysian Model Comparison

6 Summary

Henrik I Christensen (RIM@GT) Linear Regression 6 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References

For optimization we need a penalty / loss function

L(t, y(x))

Expected loss is then ZZ E[L] = L(t, y(x))p(x, t)dxdt

For the squared loss function we have ZZ E[L] = {y(x) − t}2p(x, t)dxdt

Goal: choose y(x) to minimize expected loss (E[L])

Henrik I Christensen (RIM@GT) Linear Regression 7 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Loss Function

Derivation of the extrema δE[L] Z = 2 {y(x) − t}p(x, t)dt = 0 δy(x)

Implies that

R tp(x, t)dt Z y(x) = = tp(t|x)dt = E[t|x] p(x)

Henrik I Christensen (RIM@GT) Linear Regression 8 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Loss Function - Interpretation

t

y(x)

y(x0)

p(t|x0)

x0 x

Henrik I Christensen (RIM@GT) Linear Regression 9 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Alternative

Consider a small rewrite

{y(x) − t}2 = {y(x) − E[t|x] + E[t|x] − t}2

The expected loss is then Z Z E[L] = {y(x) − E[t|x]}2p(x)dx + {E[t|x] − t}2p(x)dx

Henrik I Christensen (RIM@GT) Linear Regression 10 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Outline

1 Introduction

2 Preliminaries

3 Linear Basis Function Models

4 Baysian Linear Regression

5 Baysian Model Comparison

6 Summary

Henrik I Christensen (RIM@GT) Linear Regression 11 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Polynomial Basis Functions

1 Basic Definition: 0.5 φ (x) = xi i 0

Global functions −0.5 Small change in x affects all of them −1 −1 0 1

Henrik I Christensen (RIM@GT) Linear Regression 12 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Gaussian Basis Functions

Basic Definition: 1 2 − (x−µi ) φi (x) = e 2s2 0.75

A way to Gaussian mixtures, 0.5 local impact Not required to have 0.25

probabilistic interpretation. 0 µ control position and s −1 0 1 control scale

Henrik I Christensen (RIM@GT) Linear Regression 13 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Sigmoid Basis Functions

Basic Definition: 1 x − µ  φ (x) = σ i i s 0.75

where 0.5 1 σ(a) = 0.25 1 + e−a 0 µ controls location and s −1 0 1 controls slope

Henrik I Christensen (RIM@GT) Linear Regression 14 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Maximum Likelihood &

Assume observation from a deterministic function contaminated by Gaussian Noise

t = y(x, w) +  p(|β) = N(|0, β−1)

the problem at hand is then

p(t|x, w, β) = N(t|y(x, w), β−1)

From a series of observations we have the likelihood

N Y T −1 p(t|X|w, β) = N(ti |w φ(xi ), β ) i=1

Henrik I Christensen (RIM@GT) Linear Regression 15 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Maximum Likelihood & Least Squares (2)

This results in N N ln p(t|w, β) = ln β − ln(2π) − βE (w) 2 2 D where N 1 X E (w) = {t − wT φ(x )}2 D 2 i i i=1 is the sum of squared errors

Henrik I Christensen (RIM@GT) Linear Regression 16 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Maximum Likelihood & Least Squares (3)

Computing the extrema yields:

−1  T  T wML = Φ Φ Φ t

where   φ0(x1) φ1(x1) ··· φM−1(x1)  φ0(x1) φ1(x2) ··· φM−1(x2)  Φ =    . . .. .   . . . .  φ0(xN ) φ1(xN ) ··· φM−1(xN )

Henrik I Christensen (RIM@GT) Linear Regression 17 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Line Estimation

Least square minimization: Line equation: y = ax + b P 2 Error in fit: i (yi − axi − b) Solution:  y¯2   x¯2 x¯   a  = y¯ x¯ 1 b Minimizes vertical errors. Non-robust!

Henrik I Christensen (RIM@GT) Linear Regression 18 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References LSQ on Lasers

Line model: ri cos(φi − θ) = ρ

Error model: di = ri cos(φi − θ) − ρ P 2 Optimize: argmin(ρ,θ) i (ri cos(φi − θ) − ρ) Error model derived in Deriche et al. (1992) Well suited for “clean-up” of Hough lines

Henrik I Christensen (RIM@GT) Linear Regression 19 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Total Least Squares

Line equation: ax + by + c = 0 P 2 2 2 Error in fit: i (axi + byi + c) where a + b = 1. Solution:

 x¯2 − x¯x¯ xy¯ − x¯y¯   a   a  = µ xy¯ − x¯y¯ y¯2 − y¯y¯ b b

where µ is a scale factor. c = −ax¯ − by¯

Henrik I Christensen (RIM@GT) Linear Regression 20 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Line Representations

The line representation is crucial Often a redundant model is adopted Line parameters vs end-points Important for fusion of segments. End-points are less stable

Henrik I Christensen (RIM@GT) Linear Regression 21 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Sequential Adaptation

In some cases one at a time estimation is more suitable Also known as gradient descent

(τ+1) (τ) w = w − η∇En (τ) (τ)T = w − η(tn − w φ(xn))φ(xn)

Knows as least-mean square (LMS). An issue is how to choose η?

Henrik I Christensen (RIM@GT) Linear Regression 22 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Regularized Least Squares

As seen in lecture 2 sometime control of parameters might be useful. Consider the error function:

ED (w) + λEW (w)

which generates

N 1 X λ {t − w t φ(x )}2 + wT w 2 i i 2 i=1 which is minimized by

 −1 w = λI + ΦT Φ ΦT t

Henrik I Christensen (RIM@GT) Linear Regression 23 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Outline

1 Introduction

2 Preliminaries

3 Linear Basis Function Models

4 Baysian Linear Regression

5 Baysian Model Comparison

6 Summary

Henrik I Christensen (RIM@GT) Linear Regression 24 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Bayesian Linear Regression

Define a conjugate prior over w

p(w) = N(w|m0, S0)

given the likelihood function and regular from Bayesian analysis we can derive p(w|t) = N(w|mN , SN ) where

 −1 T  mN = SN S0 m0 + βΦ t −1 −1 T SN = S0 + βΦ Φ

Henrik I Christensen (RIM@GT) Linear Regression 25 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Bayesian Linear Regression (2)

A common choice is

p(w) = N(w|0, α−1I )

So that

T mN = βSN Φ t −1 T SN = αI + βΦ Φ

Henrik I Christensen (RIM@GT) Linear Regression 26 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Example - No Data

Henrik I Christensen (RIM@GT) Linear Regression 27 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Example - 1 Data Point

Henrik I Christensen (RIM@GT) Linear Regression 28 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Example - 2 Data Points

Henrik I Christensen (RIM@GT) Linear Regression 29 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Example - 20 Data Points

Henrik I Christensen (RIM@GT) Linear Regression 30 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Outline

1 Introduction

2 Preliminaries

3 Linear Basis Function Models

4 Baysian Linear Regression

5 Baysian Model Comparison

6 Summary

Henrik I Christensen (RIM@GT) Linear Regression 31 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Bayesian Model Comparison

How does one select an appropriate model?

Assume for a minute we want to compare a set of models Mi , i ∈ 1, ...L for a dataset D We could compute

p(Mi |D) ∝ p(D|Mi )p(Mi )

Bayes Factor: Ratio of evidence for two models

p(D|Mi ) p(D|Mj )

Henrik I Christensen (RIM@GT) Linear Regression 32 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References The mixture distribution approach

We could use all the models:

L X p(t|x, D) = p(t|x, Mi , D)p(Mi |D) i=1 Or simply go with the most probably/best model.

Henrik I Christensen (RIM@GT) Linear Regression 33 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Model Evidence

We can compute model evidence Z p(D|Mi ) = p(D|w, Mi )p(w|Mi )dw

Allow computation of model fit based on parameter range

Henrik I Christensen (RIM@GT) Linear Regression 34 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Evaluation of Parameters

Evaluation of posterior over parameters

P(D|w, Mi )p(w|Mi ) p(w|D, Mi ) = P(D|Mi ) There is a need to understand how good is a model?

Henrik I Christensen (RIM@GT) Linear Regression 35 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Model Comparison

Consider evaluation of a model w. parameters w Z σposterior p(D) = p(D|w)p(w)dw ≈ p(D|wmap) σprior Then   σposterior ln p(D) ≈ ln p(D|wmap) + ln σprior

Henrik I Christensen (RIM@GT) Linear Regression 36 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Model Comparison as Kullback-Leibler

From earlier we have comparison of distributions Z p(D|M1) KL = p(D|M1) ln dD p(D|M2) Enables comparison of two different models

Henrik I Christensen (RIM@GT) Linear Regression 37 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Outline

1 Introduction

2 Preliminaries

3 Linear Basis Function Models

4 Baysian Linear Regression

5 Baysian Model Comparison

6 Summary

Henrik I Christensen (RIM@GT) Linear Regression 38 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Summary

Brief intro to linear methods for estimation of models Prediction of values and models Needed for adaptive selection of models (black-box/grey-box) Evaluation of sensor models, ... Consideration of batch and recursive estimation methods Significant discussion of methods for evaluation of models and parameters. This far purely a discussion of linear models

Henrik I Christensen (RIM@GT) Linear Regression 39 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Deriche, R., Vaillant, R., & Faugeras, O. 1992. From Noisy Edges Points to 3D Reconstruction of a Scene : A Robust Approach and Its Uncertainty Analysis. Vol. 2. World Scientific. Series in Machine Perception and Artificial Intelligence. Pages 71–79.

Henrik I Christensen (RIM@GT) Linear Regression 39 / 39