Linear Models for Regression

Linear Models for Regression

Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Linear Models for Regression Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 [email protected] Henrik I Christensen (RIM@GT) Linear Regression 1 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Outline 1 Introduction 2 Preliminaries 3 Linear Basis Function Models 4 Baysian Linear Regression 5 Baysian Model Comparison 6 Summary Henrik I Christensen (RIM@GT) Linear Regression 2 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Introduction The objective of regression is to enable prediction of a value t based on modelling over a dataset X . Consider a set of D observations over a space How can we generate estimates for the future? Battery time? Time to completion? Position of doors? Henrik I Christensen (RIM@GT) Linear Regression 3 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Introduction (2) Example from Chapter 1 1 t 0 −1 0 x 1 m 2 m X i y(x, w) = w0 + w1x + w2x + ... + wmx = wi x i=0 Henrik I Christensen (RIM@GT) Linear Regression 4 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Introduction (3) In general the functions could be beyond simple polynomials The “components” are termed basis functions, i.e. m X T ~ y(x, w) = wi φi (x) = w~ φ(x) i=0 Henrik I Christensen (RIM@GT) Linear Regression 5 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Outline 1 Introduction 2 Preliminaries 3 Linear Basis Function Models 4 Baysian Linear Regression 5 Baysian Model Comparison 6 Summary Henrik I Christensen (RIM@GT) Linear Regression 6 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Loss Function For optimization we need a penalty / loss function L(t, y(x)) Expected loss is then ZZ E[L] = L(t, y(x))p(x, t)dxdt For the squared loss function we have ZZ E[L] = {y(x) − t}2p(x, t)dxdt Goal: choose y(x) to minimize expected loss (E[L]) Henrik I Christensen (RIM@GT) Linear Regression 7 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Loss Function Derivation of the extrema δE[L] Z = 2 {y(x) − t}p(x, t)dt = 0 δy(x) Implies that R tp(x, t)dt Z y(x) = = tp(t|x)dt = E[t|x] p(x) Henrik I Christensen (RIM@GT) Linear Regression 8 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Loss Function - Interpretation t y(x) y(x0) p(tjx0) x0 x Henrik I Christensen (RIM@GT) Linear Regression 9 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Alternative Consider a small rewrite {y(x) − t}2 = {y(x) − E[t|x] + E[t|x] − t}2 The expected loss is then Z Z E[L] = {y(x) − E[t|x]}2p(x)dx + {E[t|x] − t}2p(x)dx Henrik I Christensen (RIM@GT) Linear Regression 10 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Outline 1 Introduction 2 Preliminaries 3 Linear Basis Function Models 4 Baysian Linear Regression 5 Baysian Model Comparison 6 Summary Henrik I Christensen (RIM@GT) Linear Regression 11 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Polynomial Basis Functions 1 Basic Definition: 0.5 φ (x) = xi i 0 Global functions −0.5 Small change in x affects all of them −1 −1 0 1 Henrik I Christensen (RIM@GT) Linear Regression 12 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Gaussian Basis Functions Basic Definition: 1 2 − (x−µi ) φi (x) = e 2s2 0.75 A way to Gaussian mixtures, 0.5 local impact Not required to have 0.25 probabilistic interpretation. 0 µ control position and s −1 0 1 control scale Henrik I Christensen (RIM@GT) Linear Regression 13 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Sigmoid Basis Functions Basic Definition: 1 x − µ φ (x) = σ i i s 0.75 where 0.5 1 σ(a) = 0.25 1 + e−a 0 µ controls location and s −1 0 1 controls slope Henrik I Christensen (RIM@GT) Linear Regression 14 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Maximum Likelihood & Least Squares Assume observation from a deterministic function contaminated by Gaussian Noise t = y(x, w) + p(|β) = N(|0, β−1) the problem at hand is then p(t|x, w, β) = N(t|y(x, w), β−1) From a series of observations we have the likelihood N Y T −1 p(t|X|w, β) = N(ti |w φ(xi ), β ) i=1 Henrik I Christensen (RIM@GT) Linear Regression 15 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Maximum Likelihood & Least Squares (2) This results in N N ln p(t|w, β) = ln β − ln(2π) − βE (w) 2 2 D where N 1 X E (w) = {t − wT φ(x )}2 D 2 i i i=1 is the sum of squared errors Henrik I Christensen (RIM@GT) Linear Regression 16 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Maximum Likelihood & Least Squares (3) Computing the extrema yields: −1 T T wML = Φ Φ Φ t where φ0(x1) φ1(x1) ··· φM−1(x1) φ0(x1) φ1(x2) ··· φM−1(x2) Φ = . .. . φ0(xN ) φ1(xN ) ··· φM−1(xN ) Henrik I Christensen (RIM@GT) Linear Regression 17 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Line Estimation Least square minimization: Line equation: y = ax + b P 2 Error in fit: i (yi − axi − b) Solution: y¯2 x¯2 x¯ a = y¯ x¯ 1 b Minimizes vertical errors. Non-robust! Henrik I Christensen (RIM@GT) Linear Regression 18 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References LSQ on Lasers Line model: ri cos(φi − θ) = ρ Error model: di = ri cos(φi − θ) − ρ P 2 Optimize: argmin(ρ,θ) i (ri cos(φi − θ) − ρ) Error model derived in Deriche et al. (1992) Well suited for “clean-up” of Hough lines Henrik I Christensen (RIM@GT) Linear Regression 19 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Total Least Squares Line equation: ax + by + c = 0 P 2 2 2 Error in fit: i (axi + byi + c) where a + b = 1. Solution: x¯2 − x¯x¯ xy¯ − x¯y¯ a a = µ xy¯ − x¯y¯ y¯2 − y¯y¯ b b where µ is a scale factor. c = −ax¯ − by¯ Henrik I Christensen (RIM@GT) Linear Regression 20 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Line Representations The line representation is crucial Often a redundant model is adopted Line parameters vs end-points Important for fusion of segments. End-points are less stable Henrik I Christensen (RIM@GT) Linear Regression 21 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Sequential Adaptation In some cases one at a time estimation is more suitable Also known as gradient descent (τ+1) (τ) w = w − η∇En (τ) (τ)T = w − η(tn − w φ(xn))φ(xn) Knows as least-mean square (LMS). An issue is how to choose η? Henrik I Christensen (RIM@GT) Linear Regression 22 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Regularized Least Squares As seen in lecture 2 sometime control of parameters might be useful. Consider the error function: ED (w) + λEW (w) which generates N 1 X λ {t − w t φ(x )}2 + wT w 2 i i 2 i=1 which is minimized by −1 w = λI + ΦT Φ ΦT t Henrik I Christensen (RIM@GT) Linear Regression 23 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Outline 1 Introduction 2 Preliminaries 3 Linear Basis Function Models 4 Baysian Linear Regression 5 Baysian Model Comparison 6 Summary Henrik I Christensen (RIM@GT) Linear Regression 24 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Bayesian Linear Regression Define a conjugate prior over w p(w) = N(w|m0, S0) given the likelihood function and regular from Bayesian analysis we can derive p(w|t) = N(w|mN , SN ) where −1 T mN = SN S0 m0 + βΦ t −1 −1 T SN = S0 + βΦ Φ Henrik I Christensen (RIM@GT) Linear Regression 25 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Bayesian Linear Regression (2) A common choice is p(w) = N(w|0, α−1I ) So that T mN = βSN Φ t −1 T SN = αI + βΦ Φ Henrik I Christensen (RIM@GT) Linear Regression 26 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Example - No Data Henrik I Christensen (RIM@GT) Linear Regression 27 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Example - 1 Data Point Henrik I Christensen (RIM@GT) Linear Regression 28 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Example - 2 Data Points Henrik I Christensen (RIM@GT) Linear Regression 29 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Example - 20 Data Points Henrik I Christensen (RIM@GT) Linear Regression 30 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Outline 1 Introduction 2 Preliminaries 3 Linear Basis Function Models 4 Baysian Linear Regression 5 Baysian Model Comparison 6 Summary Henrik I Christensen (RIM@GT) Linear Regression 31 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References Bayesian Model Comparison How does one select an appropriate model? Assume for a minute we want to compare a set of models Mi , i ∈ 1, ...L for a dataset D We could compute p(Mi |D) ∝ p(D|Mi )p(Mi ) Bayes Factor: Ratio of evidence for two models p(D|Mi ) p(D|Mj ) Henrik I Christensen (RIM@GT) Linear Regression 32 / 39 Introduction Preliminaries Linear Models Bayes Regress Model Comparison Summary References The mixture distribution approach We could use all the models: L X p(t|x, D) = p(t|x, Mi , D)p(Mi |D) i=1 Or simply go with the most probably/best model.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    40 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us