Extract from the Clinical Evaluation Report for Retigabine

Total Page:16

File Type:pdf, Size:1020Kb

Extract from the Clinical Evaluation Report for Retigabine AusPAR Attachment 2 Extract from the Clinical Evaluation Report for Retigabine Proprietary Product Name: Trobalt Sponsor: GlaxoSmithKline Australia Pty Ltd Date of CER: 9 July 2012 Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) · The Therapeutic Goods Administration (TGA) is part of the Australian Government Department of Health and is responsible for regulating medicines and medical devices. · The TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance), when necessary. · The work of the TGA is based on applying scientific and clinical expertise to decision- making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. · The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. TGA investigates reports received by it to determine any necessary regulatory action. · To report a problem with a medicine or medical device, please see the information on the TGA website <http://www.tga.gov.au>. About the Extract from the Clinical Evaluation Report · This document provides a more detailed evaluation of the clinical findings, extracted from the Clinical Evaluation Report (CER) prepared by the TGA. This extract does not include sections from the CER regarding product documentation or post market activities. · The words [Information redacted], where they appear in this document, indicate that confidential information has been deleted. · For the most recent Product Information (PI), please refer to the TGA website <http://www.tga.gov.au/hp/information-medicines-pi.htm>. Copyright © Commonwealth of Australia 2013 This work is copyright. You may reproduce the whole or part of this work in unaltered form for your own personal use or, if you are part of an organisation, for internal use within your organisation, but only if you or your organisation do not use the reproduction for any commercial purpose and retain this copyright notice and all disclaimer notices as part of that reproduction. Apart from rights to use as permitted by the Copyright Act 1968 or allowed by this copyright notice, all other rights are reserved and you are not allowed to reproduce the whole or any part of this work in any way (electronic or otherwise) without first being given specific written permission from the Commonwealth to do so. Requests and inquiries concerning reproduction and rights are to be sent to the TGA Copyright Officer, Therapeutic Goods Administration, PO Box 100, Woden ACT 2606 or emailed to <[email protected]>. Submission PM-2011-04248-3-1 Extract from the Clinical Evaluation Report for Retigabine Page 2 of 89 Therapeutic Goods Administration Contents List of abbreviations __________________________________________________________ 5 1. Clinical rationale _________________________________________________________ 8 2. Contents of the clinical dossier ________________________________________ 9 2.1. Scope of the clinical dossier _________________________________________________ 9 2.2. Paediatric data _______________________________________________________________ 9 2.3. Good clinical practice ________________________________________________________ 9 3. Pharmacokinetics ________________________________________________________ 9 3.1. Studies providing pharmacokinetic data __________________________________ 9 3.2. Summary of pharmacokinetics _____________________________________________ 9 3.3. Evaluator’s overall conclusions on pharmacokinetics __________________ 22 4. Pharmacodynamics ____________________________________________________ 22 4.1. Summary of pharmacodynamics _________________________________________ 22 4.2. Evaluator’s overall conclusions on pharmacodynamics ________________ 23 5. Dosage selection for the pivotal studies ___________________________ 23 6. Clinical efficacy _________________________________________________________ 23 6.1. Pivotal efficacy studies ____________________________________________________ 23 6.2. Other efficacy studies _____________________________________________________ 43 6.3. Analyses performed across trials (pooled and meta-analyses) ________ 50 6.4. Evaluator’s conclusions on clinical efficacy ______________________________ 58 7. Clinical safety ___________________________________________________________ 59 7.1. Studies providing evaluable safety data _________________________________ 59 7.2. Patient exposure ___________________________________________________________ 60 7.3. Adverse events _____________________________________________________________ 61 7.4. Laboratory tests ___________________________________________________________ 68 7.5. Electrocardiograph ________________________________________________________ 70 7.6. Vital signs __________________________________________________________________ 71 7.7. Weight ______________________________________________________________________ 72 7.8. Urological and renal safety ________________________________________________ 73 7.9. Psychiatric safety __________________________________________________________ 75 7.10. Post-marketing experience _______________________________________________ 77 7.11. Safety issues with the potential for major regulatory impact __________ 77 7.12. Other safety issues _________________________________________________________ 80 7.13. Evaluator’s overall conclusions on clinical safety _______________________ 83 8. First round benefit-risk assessment ________________________________ 85 Submission PM-2011-04248-3-1 Extract from the Clinical Evaluation Report for Retigabine Page 3 of 89 Therapeutic Goods Administration 8.1. First round assessment of benefits _______________________________________ 85 8.2. First round assessment of risks __________________________________________ 85 8.3. First round assessment of benefit-risk balance _________________________ 86 9. First round recommendation regarding authorisation _________ 87 10. Clinical questions ____________________________________________________ 87 10.1. Pharmacokinetics __________________________________________________________ 87 10.2. Pharmacodynamics ________________________________________________________ 88 10.3. Efficacy _____________________________________________________________________ 88 10.4. Safety _______________________________________________________________________ 88 11. References ____________________________________________________________ 88 Submission PM-2011-04248-3-1 Extract from the Clinical Evaluation Report for Retigabine Page 4 of 89 Therapeutic Goods Administration List of abbreviations Abbreviation Meaning ADR Adverse drug reactions AE Adverse event AED Antiepileptic drug AUA American Urological Association ALT Alanine aminotransferase ANCOVA Analysis of covariance AST Aspartate aminotransferase AUA SI American Urological Association Symptom Index AUC Area under the plasma concentration-time curve AUC(0- AUC over the dosing interval AUC(0-τ) AUC from zero up to infinity BID ∞) Two times daily BSA Body surface area CBZ Carbamazepine CHMP Committee for Medicinal Products for Human Use CL Systemic clearance CL/F Apparent oral clearance Cmax Maximum concentration CNS Central nervous system CrCL Creatinine clearance CSR Clinical Study Report ECG Electrocardiogram EMEA European Medicines Evaluation Agency FDA US Food and Drug Administration GABA Gamma-aminobutyric acid Submission PM-2011-04248-3-1 Extract from the Clinical Evaluation Report for Retigabine Page 5 of 89 Therapeutic Goods Administration Abbreviation Meaning GCP Good Clinical Practice ICH International Conference of Harmonisation ILAE International League Against Epilepsy IR Immediate release ITT Intent-to-treat LEV Levetiracetam LTG Lamotrigine MR Modified release NAMR N-acetyl metabolite of retigabine NDA New Drug Application PB Phenobarbital PCC Potential Clinical Concern PCT Pivotal Controlled Trials PD Pharmacodynamic PDCO Paediatric Committee PHN Post herpetic neuralgia PHT Phenytoin PIP Paediatric Implementation Plan PK Pharmacokinetic popPK Population pharmacokinetic PPSR Proposed Pediatric Study Request PREA Paediatric Research Equity Act QTc QT interval corrected QTcB QT interval corrected with Bazett’s formula QTcF QT interval corrected with Fridericia’s formula QTcI QT interval Submission PM-2011-04248-3-1 Extract from the Clinical Evaluation Report for Retigabine Page 6 of 89 Therapeutic Goods Administration Abbreviation Meaning RTG Retigabine SAE Serious adverse event SD Standard deviation SPA Special Protocol Assessment SUDEP Sudden Unexplained Death in Epilepsy TEAE Treatment-emergent adverse events TESAE Treatment-emergent serious adverse events TID Three times daily Tmax Time to maximum concentration / reach Cmax TPM Topiramate VNS Vagus nerve stimulation VPA Valproic acid Submission PM-2011-04248-3-1 Extract from the Clinical Evaluation Report for Retigabine Page 7 of 89 Therapeutic Goods Administration 1. Clinical rationale Epilepsy is a common neurological condition, affecting 0.7-1% of the population.1 It is characterized by seizures, which are episodes of abnormal, synchronous neuronal firing, usually accompanied by a reduction in awareness or by focal neurological symptoms. Seizures are usually classified into focal (“partial”) seizures, which begin in one part of the brain, or primary generalised seizures, which involve the whole
Recommended publications
  • Development of Pain-Free Methods for Analyzing 231 Multiclass Drugs and Metabolites by LC-MS/MS
    Clinical, Forensic & Toxicology Article “The Big Pain”: Development of Pain-Free Methods for Analyzing 231 Multiclass Drugs and Metabolites by LC-MS/MS By Sharon Lupo As the use of prescription and nonprescription drugs grows, the need for fast, accurate, and comprehensive methods is also rapidly increasing. Historically, drug testing has focused on forensic applications such as cause of death determinations or the detection of drug use in specific populations (military, workplace, probation/parole, sports doping). However, modern drug testing has expanded well into the clinical arena with a growing list of target analytes and testing purposes. Clinicians often request the analysis of large panels of drugs and metabolites that can be used to ensure compliance with prescribed pain medication regimens and to detect abuse or diversion of medications. With prescription drug abuse reaching epidemic levels [1], demand is growing for analytical methods that can ensure accurate results for comprehensive drug lists with reasonable analysis times. LC-MS/MS is an excellent technique for this work because it offers greater sensitivity and specificity than immunoassay and—with a highly selective and retentive Raptor™ Biphenyl column—can provide definitive results for a wide range of compounds. Typically, forensic and pain management drug testing consists of an initial screening analysis, which is qualitative, quick, and requires only minimal sample preparation. Samples that test positive during screening are then subjected to a quantitative confirmatory analysis. Whereas screening assays may cover a broad list of compounds and are generally less sensitive and specific, confirmation testing provides fast, targeted analysis using chromatographic conditions that are optimized for specific panels.
    [Show full text]
  • Pharmacokinetic Drug–Drug Interactions Among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients
    International Journal of Molecular Sciences Review Pharmacokinetic Drug–Drug Interactions among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients Marta Kara´zniewicz-Łada 1 , Anna K. Główka 2 , Aniceta A. Mikulska 1 and Franciszek K. Główka 1,* 1 Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Pozna´n,Poland; [email protected] (M.K.-Ł.); [email protected] (A.A.M.) 2 Department of Bromatology, Poznan University of Medical Sciences, 60-354 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-(0)61-854-64-37 Abstract: Anti-epileptic drugs (AEDs) are an important group of drugs of several generations, rang- ing from the oldest phenobarbital (1912) to the most recent cenobamate (2019). Cannabidiol (CBD) is increasingly used to treat epilepsy. The outbreak of the SARS-CoV-2 pandemic in 2019 created new challenges in the effective treatment of epilepsy in COVID-19 patients. The purpose of this review is to present data from the last few years on drug–drug interactions among of AEDs, as well as AEDs with other drugs, nutrients and food. Literature data was collected mainly in PubMed, as well as google base. The most important pharmacokinetic parameters of the chosen 29 AEDs, mechanism of action and clinical application, as well as their biotransformation, are presented. We pay a special attention to the new potential interactions of the applied first-generation AEDs (carba- Citation: Kara´zniewicz-Łada,M.; mazepine, oxcarbazepine, phenytoin, phenobarbital and primidone), on decreased concentration Główka, A.K.; Mikulska, A.A.; of some medications (atazanavir and remdesivir), or their compositions (darunavir/cobicistat and Główka, F.K.
    [Show full text]
  • Chapter 25 Mechanisms of Action of Antiepileptic Drugs
    Chapter 25 Mechanisms of action of antiepileptic drugs GRAEME J. SILLS Department of Molecular and Clinical Pharmacology, University of Liverpool _________________________________________________________________________ Introduction The serendipitous discovery of the anticonvulsant properties of phenobarbital in 1912 marked the foundation of the modern pharmacotherapy of epilepsy. The subsequent 70 years saw the introduction of phenytoin, ethosuximide, carbamazepine, sodium valproate and a range of benzodiazepines. Collectively, these compounds have come to be regarded as the ‘established’ antiepileptic drugs (AEDs). A concerted period of development of drugs for epilepsy throughout the 1980s and 1990s has resulted (to date) in 16 new agents being licensed as add-on treatment for difficult-to-control adult and/or paediatric epilepsy, with some becoming available as monotherapy for newly diagnosed patients. Together, these have become known as the ‘modern’ AEDs. Throughout this period of unprecedented drug development, there have also been considerable advances in our understanding of how antiepileptic agents exert their effects at the cellular level. AEDs are neither preventive nor curative and are employed solely as a means of controlling symptoms (i.e. suppression of seizures). Recurrent seizure activity is the manifestation of an intermittent and excessive hyperexcitability of the nervous system and, while the pharmacological minutiae of currently marketed AEDs remain to be completely unravelled, these agents essentially redress the balance between neuronal excitation and inhibition. Three major classes of mechanism are recognised: modulation of voltage-gated ion channels; enhancement of gamma-aminobutyric acid (GABA)-mediated inhibitory neurotransmission; and attenuation of glutamate-mediated excitatory neurotransmission. The principal pharmacological targets of currently available AEDs are highlighted in Table 1 and discussed further below.
    [Show full text]
  • Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva
    REVIEW ARTICLE Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva Philip N. Patsalos, FRCPath, PhD*† and Dave J. Berry, FRCPath, PhD† INTRODUCTION Abstract: Blood (serum/plasma) antiepileptic drug (AED) therapeu- Measuring antiepileptic drugs (AEDs) in serum or tic drug monitoring (TDM) has proven to be an invaluable surrogate plasma as an aid to personalizing drug therapy is now a well- marker for individualizing and optimizing the drug management of established practice in the treatment of epilepsy, and guidelines patients with epilepsy. Since 1989, there has been an exponential are published that indicate the particular features of epilepsy and increase in AEDs with 23 currently licensed for clinical use, and the properties of AEDs that make the practice so beneficial.1 recently, there has been renewed and extensive interest in the use of The goal of AED therapeutic drug monitoring (TDM) is to saliva as an alternative matrix for AED TDM. The advantages of saliva ’ fl optimize a patient s clinical outcome by supporting the man- include the fact that for many AEDs it re ects the free (pharmacolog- agement of their medication regimen with the assistance of ically active) concentration in serum; it is readily sampled, can be measured drug concentrations/levels. The reason why TDM sampled repetitively, and sampling is noninvasive; does not require the has emerged as an important adjunct to treatment with the expertise of a phlebotomist; and is preferred by many patients, AEDs arises from the fact that for an individual patient
    [Show full text]
  • PR2 2009.Vp:Corelventura
    Pharmacological Reports Copyright © 2009 2009, 61, 197216 by Institute of Pharmacology ISSN 1734-1140 Polish Academy of Sciences Review Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions Jarogniew J. £uszczki1,2 Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland Department of Physiopathology, Institute of Agricultural Medicine, Jaczewskiego 2, PL 20-950 Lublin, Poland Correspondence: Jarogniew J. £uszczki, e-mail: [email protected]; [email protected] Abstract: This review briefly summarizes the information on the molecular mechanisms of action, pharmacokinetic profiles and drug interac- tions of novel (third-generation) antiepileptic drugs, including brivaracetam, carabersat, carisbamate, DP-valproic acid, eslicar- bazepine, fluorofelbamate, fosphenytoin, ganaxolone, lacosamide, losigamone, pregabalin, remacemide, retigabine, rufinamide, safinamide, seletracetam, soretolide, stiripentol, talampanel, and valrocemide. These novel antiepileptic drugs undergo intensive clinical investigations to assess their efficacy and usefulness in the treatment of patients with refractory epilepsy. Key words: antiepileptic drugs, brivaracetam, carabersat, carisbamate, DP-valproic acid, drug interactions, eslicarbazepine, fluorofelbamate, fosphenytoin, ganaxolone, lacosamide, losigamone, pharmacokinetics, pregabalin, remacemide, retigabine, rufinamide, safinamide, seletracetam, soretolide, stiripentol, talampanel, valrocemide Abbreviations: 4-AP
    [Show full text]
  • Identification of Channels Underlying the M-Like Potassium Current In
    Identification of channeis underiying the M-like potassium current in NG108-15 neurobiastoma-giioma ceiis A thesis submitted for the degree of Doctor of Philosophy University of London by Jennifer Kathleen Hadley Department of Pharmacology University College London Gower Street London WC1E 6BT ProQuest Number: U644085 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U644085 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract NG108-15 cells express a potassium current resembling the IVI-current found in sympathetic ganglia. I contributed to the identification of the channels underlying this NG108-15 current. I used patch-clamp methodology to characterise the kinetics and pharmacology of the M-like current and of three candidate channel genes, all capable of producing “delayed rectifier” currents, expressed in mammalian cells. I studied two Kvi .2 clones: NGK1 (rat Kvi .2) expressed in mouse fibroblasts, and MK2 (mouse brain Kvi .2) expressed in Chinese hamster ovary (OHO) cells. Kvi.2 showed relatively positive activation that shifted negatively on repeated activation, some inactivation, block by dendrotoxin and various cations, and activation by niflumic acid.
    [Show full text]
  • KCNQ5 Antibody
    Product Datasheet KCNQ5 Antibody Catalog No: #34920 Package Size: #34920-1 50ul #34920-2 100ul Orders: [email protected] Support: [email protected] Description Product Name KCNQ5 Antibody Host Species Rabbit Clonality Polyclonal Purification The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen. Applications WB Species Reactivity Hu Specificity The antibody detects endogenous levels of total KCNQ5 protein. Immunogen Type Peptide Immunogen Description Synthesized peptide derived from internal of human KCNQ5. Target Name KCNQ5 Other Names Potassium voltage-gated channel subfamily KQT member 5; Voltage-gated potassium channel subunit Kv7.5; Potassium channel subunit alpha KvLQT5; KQT-like 5; Accession No. Swiss-Prot: Q9NR82NCBI Gene ID: 56479 SDS-PAGE MW 100kd Concentration 1.0mg/ml Formulation Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Storage Store at -20°C Application Details Western blotting: 1:500~1:3000 Images Western blot analysis of extracts from Jurkat cells, using KCNQ5 antibody #34920. Address: 8400 Baltimore Ave., Suite 302, College Park, MD 20740, USA http://www.sabbiotech.com 1 Background Probably important in the regulation of neuronal excitability. Associates with KCNQ3 to form a potassium channel which contributes to M-type current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons. May contribute, with other potassium channels, to the molecular diversity of a heterogeneous population of M-channels, varying in kinetic and pharmacological properties, which underlie this physiologically important current. Insensitive to tetraethylammonium, but inhibited by barium, linopirdine and XE991.
    [Show full text]
  • Progress Report on New Antiepileptic Drugs
    Epilepsy Research (2013) 103, 2—30 j ournal homepage: www.elsevier.com/locate/epilepsyres REVIEW Progress report on new antiepileptic drugs: A summary of the Eleventh Eilat Conference (EILAT XI) a,∗ b c d Meir Bialer , Svein I. Johannessen , René H. Levy , Emilio Perucca , e f Torbjörn Tomson ,H. Steve White a Institute for Drug Research, School of Pharmacy and David R. Bloom Center for Pharmacy, Faculty of Medicine, Ein Karem, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel b The National Center for Epilepsy, Sandvika, and Department of Pharmacology, Oslo University Hospital, Oslo, Norway c Department of Pharmaceutics and Neurological Surgery, University of Washington, Seattle, Washington, WA, USA d Clinical Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, and National Institute of Neurology IRCCS C. Mondino Foundation, Pavia, Italy e Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden f Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA Received 13 September 2012; accepted 8 October 2012 Available online 4 December 2012 KEYWORDS Summary The Eleventh Eilat Conference on New Antiepileptic Drugs (AEDs)-EILAT XI, took place in Eilat, Israel from the 6th to 10th of May 2012. About 100 basic scientists, clinical phar- Antiepileptic drugs; macologists and neurologists from 20 countries attended the conference, whose main themes Drug development; Epilepsy; included ‘‘Indications overlapping with epilepsy’’ and ‘‘Securing the successful development Pharmacology; of an investigational antiepileptic drug in the current environment’’. Consistent with previ- ous formats of this conference, a large part of the program was devoted to a review of AEDs Clinical trials; Conference in development, as well as updates on AEDs introduced since 1994.
    [Show full text]
  • The Effects of Antiepileptic Inducers in Neuropsychopharmacology, a Neglected Issue
    University of Kentucky UKnowledge Psychiatry Faculty Publications Psychiatry 7-2015 The ffecE ts of Antiepileptic Inducers in Neuropsychopharmacology, a Neglected Issue. Part II: Pharmacological Issues and Further Understanding Jose de Leon University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/psychiatry_facpub Part of the Psychiatry and Psychology Commons Repository Citation de Leon, Jose, "The Effects of Antiepileptic Inducers in Neuropsychopharmacology, a Neglected Issue. Part II: Pharmacological Issues and Further Understanding" (2015). Psychiatry Faculty Publications. 36. https://uknowledge.uky.edu/psychiatry_facpub/36 This Article is brought to you for free and open access by the Psychiatry at UKnowledge. It has been accepted for inclusion in Psychiatry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. The Effects of Antiepileptic Inducers in Neuropsychopharmacology, a Neglected Issue. Part II: Pharmacological Issues and Further Understanding Notes/Citation Information Published in Revista de Psiquiatría y Salud Mental, v. 8, issue 3, p. 167-188. © 2015 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Digital Object Identifier (DOI) http://dx.doi.org/10.1016/j.rpsm.2014.10.005 This article is available at UKnowledge: https://uknowledge.uky.edu/psychiatry_facpub/36 The Effects of Antiepileptic Inducers in Neuropsychopharmacology, a Neglected Issue. Part II: Pharmacological Issues and Further Understanding Jose de Leon © 2015 Elsevier B.V.
    [Show full text]
  • Therapeutic Drug Monitoring of Antiepileptic Drugs in Serum: a Fully Automated Approach
    PO-CON1775E Therapeutic drug monitoring of Antiepileptic drugs in serum: a fully automated approach ASMS 2017 TP450 Davide Vecchietti1, Claudio Ghilardi1, Katharina Kern2, Stephane Moreau3, Isabel Cabruja1 1 Shimadzu Italia, Milano, Italy, 2 RECIPE Chemicals + Instruments GmbH, Munich, Germany, 3 Shimadzu Europe GmbH, Duisburg, Germany Therapeutic drug monitoring of Antiepileptic drugs in serum: a fully automated approach Introduction Epilepsy is a chronic neurological disorder which is N-Desmethylmethsuximide NDMS, Oxcarbazepine, characterized by recurrent epileptic seizures whose Phenylethylmalonamide PEMA, Perampanel, Phenobarbital, frequency and rhythm are mostly not predictable. For the Phenytoin, Pregabaline, Primidone, Retigabine, Runamide, pharmacological therapy of epilepsy a variety of Stiripentol, Sulthiame, Tiagabine, Topiramate, Valproic antiepileptic drugs (AEDs) are available today, most of acid, Zonisamide) in serum samples by LC-MS/MS analysis. them exhibit a pronounced intra and inter individual Usually LC-MS/MS analysis of serum samples require variability in pharmacokinetics. For that reason the manual preparation steps for extraction and protein therapeutic drug monitoring of these molecules needs to precipitation before the injection. With the aim to reduce be accomplished by extremely accurate techniques (e.g: the operator involvement and to increase the throughput LC–MS/MS). LC-MS/MS currently lacks in standardization and data quality, we completely eliminated the and throughput for routine analysis. We report
    [Show full text]
  • Profile of Ezogabine (Retigabine) and Its Potential As an Adjunctive
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2011 Profile of ezogabine (retigabine) and its potential as an adjunctive treatment for patients with partial- onset seizures Judith L.Z Weisenberg Washington University School of Medicine in St. Louis Michael Wong Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Part of the Medicine and Health Sciences Commons Recommended Citation Weisenberg, Judith L.Z and Wong, Michael, ,"Profile of ezogabine (retigabine) and its potential as an adjunctive treatment for patients with partial-onset seizures." Neuropsychiatric Disease and Treatment.,. 409-414. (2011). https://digitalcommons.wustl.edu/open_access_pubs/314 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Neuropsychiatric Disease and Treatment Dovepress open access to scientific and medical research Open Access Full Text Article EXPERT OPINION Profile of ezogabine (retigabine) and its potential as an adjunctive treatment for patients with partial-onset seizures Judith LZ Weisenberg Abstract: Epilepsy is a common disease with significant morbidity and mortality. Approximately Michael Wong one-third of patients with epilepsy are refractory to available seizure medications, emphasizing the need to develop better drugs with novel mechanisms of action. Ezogabine, also known as Department of Neurology, Washington University School retigabine, is a new potential adjunctive treatment for adults with intractable partial seizures. of Medicine, St Louis, MO, USA Ezogabine has a unique mechanism of action consisting of activating KCNQ2/3 (Kv7) potassium channels.
    [Show full text]
  • Retigabine: a Novel Anticonvulsant Drug
    Molecules of the Millennium Retigabine: A novel anticonvulsant drug Epilepsy is a neurological disorder characterized by ex- kg, i.p., has been reported to dose dependently increase the cessive electrical discharge in brain, which causes seizures. threshold current for induction of after discharges. Following The therapeutic strategy in countering epilepsy involves stimulation with the after discharge threshold current, reducing neuronal excitability through different mechanistic retigabine (5 mg/kg, i.p.) also reduced other seizure measures pathways. Most therapeutics currently used in the treatment including seizure severity, seizure duration, total duration of of epilepsy is either directed towards blocking voltage-gated behavioral changes and of changes after discharge.[6] sodium and calcium channels or potentiating gamma amino A number of recent studies have reported that retigabine butyric acid (GABA)–mediated neurotransmission, with little can relieve pain-like behaviors in animal models of neuropathic focus on voltage-gated potassium ion channels, despite these pain.[7-9] Some animal experiments using mouse have shown channels having a major role in the control of all aspects of that retigabine (1–10 mg/kg, i.p.) can dose dependently reduce neuronal excitability. It is reported that functional impairment anxiety-like behaviour.[10, 11] of potassium ion channels, either by mutation or inhibition, Retigabine is rapidly absorbed and distributed, with an oral results in epilepsy.[1] bioavailability of 60% and a high volume of distribution of Retigabine (D23129), N-[2-amino-4-(4-fluorobenzylamino) approximately 6.2 L/kg.[12] Plasma protein binding of the drug phenyl] carbamic acid ethyl ester is a close structural analog is approximately 80%.
    [Show full text]