Neuroendoscopic Choroid Plexus Coagulation for Pediatric Hydrocephalus

Total Page:16

File Type:pdf, Size:1020Kb

Neuroendoscopic Choroid Plexus Coagulation for Pediatric Hydrocephalus 32 Review Neuroendoscopic Choroid Plexus Coagulation for Pediatric Hydrocephalus: Review of Historical Aspects and Rebirth Coagulação Neuroendoscópica do Plexo Coróide: Revisão de Aspectos Históricos e Renascimento Roberto Alexandre Dezena1 Carlos Umberto Pereira2 Leopoldo Prézia de Araújo1 Monique Passos Ribeiro3 Helisângela Alves de Oliveira3 ABSTRACT This study aims to review historical aspects and rebirth of the neuroendoscopic choroid plexus coagulation (NCPC) for pediatric hydrocephalus. The literature covering this topic in PubMed was reviewed. The first NCPC procedure goes back to early 1930s. After the development of other treatment methods and the understanding of CSF dynamics, the application of NCPC dramatically decreased by 1970s. In 2000s, there was a rebirth of NCPC in combination with endoscopic third ventriculostomy (ETV). NCPC remains one of the options for the treatment of pediatric hydrocephalus in selected cases. NCPC might provide a temporary reduction in CSF production to allow a further development of CSF absorption in infant. Adding NCPC to ETV for infants with communicating hydrocephalus may increase the shunt independent rate thus avoiding the consequence of late complication related to the shunt device. This is important for patients who are difficult to be followed up, due to geographical and/or socioeconomic difficulties. Besides, adding NCPC to ETV for obstructive hydrocephalus in infant may also increase the successful rate. Furthermore, NCPC may be an option for cases with high chance of shunt complication such as multiloculated hydrocephalus, extreme hydrocephalus and hydranencephaly. In comparison with the traditional treatment of CSF shunting, the role of NCPC needs to be further evaluated in particular concerning the neurocognitive development. Key words: Pediatric hydrocephalus; Neuroendoscopic choroid plexus coagulation; Endoscopic third ventriculostomy. RESUMO Este trabalho objetiva revisar aspectos históricos e o renascimento da coagulação neuroendoscópica do plexo coróide para tratamento da hidrocefalia pediátrica. A literatura sobre o tema foi revisada na base PubMed. A primeira coagulação neuroendoscópica do plexo coróide ocorreu na década de 1930. Após o desenvolvimento de outros métodos de tratamento e um melhor entendimento da dinâmica liquórica, a utilização da coagulação endoscópica diminui dramaticamente em meados da década de 1970. Nos anos 2000, ocorreu um renascimento da metodologia em combinação com a terceiroventriculostomia endoscópica, permitindo sua utilização em casos selecionados de hidrocefalia pediátrica. A lógica de sua utilização é permitir uma redução temporária na produção liquórica, de modo que haja maturação da capacidade absortiva do cérebro da criança, permitindo a independência das derivações liquóricas e suas complicações. Isso é um fator de extrema relevância nos países em desenvolvimento. Indicações atuais incluem hidrocefalia comunicante, hidrocefalia multiseptada e hidrocefalia máxima/ hidranencefalia. Ainda não existem dados prognósticos acerca do desenvolvimento cognitivo das crianças tratadas com coagulação neuroendoscópica do plexo coróide. Palavras-chave: Hidrocefalia pediátrica; Coagulação neuroendoscópica do plexo coróide; Terceiro ventriculostomia endoscópica. are the main treatment since 1940s. However, sometimes INTRODUCTION shunt dependency in children with hydrocephalus is a terrible problem, and is more dangerous in emerging countries than Pediatric hydrocephalus is one of the most frequently diagnosed developed countries because of the difficulties that prevent diseases in pediatric neurosurgical practice. Approximately 60% access to prompt neurosurgical intervention, in cases of of the total cases of hydrocephalus in children are congenital infection or shunt malfunction8,22,23. In this scenario, mainly or acquired in childhood. It is a typical surgical disease, and in obstructive hydrocephalus, neuroendoscopic techniques if left untreated, most cases are lethal. Traditionally, shunts 1MD, PhD - Disciplina de Neurocirurgia, Programa de Pós-Graduação em Biociências Aplicadas – Universidade Federal do Triângulo Mineiro, Uberaba, MG 2MD, PhD - Disciplina de Neurocirurgia – Universidade Federal de Sergipe, Serviço de Neurocirurgia – Hospital Cirurgia, Aracaju, SE 3Bolsista de Iniciação Científica – Curso de Medicina – Universidade Federal do Triângulo Mineiro, Uberaba, MG Received Sept 9, 2014. Accepted Sept 15, 2014 Dezena RA, Pereira CU, Araújo LP, Ribeiro MP, Oliveira HA. - Neuroendoscopic choroid plexus coagulation for pediatric J Bras Neurocirurg 25 (1): 30 - 35, 2014 hydrocephalus: review of historical aspects and rebirth 33 Review such as endoscopic third ventriculostomy (ETV) become CSF shunts. In a review, from 1934 to 1957, there were 95 vitally important in the management of these patients. ETV cases of NCPC. The mean mortality rate was 15 %, while the is successful in about 80% of children older than 1 year of mean success rate was 60% with an average follow-up period age, regardless of the cause of obstructive hydrocephalus. of 8 years. On the other hand, there were 1087 cases of various For infants younger than 1 year of age, isolated ETV remains kinds of CSF shunt, including 230 ventriculoperitoneal shunts controversial, probably because of a deficiency in CSF (VPS). The mean mortality rate was 10%, and the mean initial absorption. success rate was 60% with an average follow-up time of 2 years. The result of the reviews showed a shift from NCPC to shunts, Benjamin C. Warf, at CURE Children´s Hospital of Uganda, perhaps due to poor, and limited and poor technology. On the hypothesized that the addition of neuroendoscopic choroid other hand, the late complication rate for shunt was 57%17,30. plexus coagulation (NCPC) at the time of the ETV, to Scarff, in 1970, published the first large series of NCPC cases, simultaneously reduce the rate of CSF production, might his own series of 39 children treated during 23-year period, with improve the outcome22. This old neuroendoscopic procedure 67% of success18. Milhorat, in 197413, reported his series of 12 of the early 20th century, abandoned due to limited technology cases underwent choroid plexectomy. Among 11 survivors, 8 and complications, has been reinvented and adapted to current (72%) failed and required further shunt13. After this report, that neurosurgery. NCPC in rhesus monkeys reduced CSF production by only 40%, it declined in favor of the shunts30. In neuroendoscopic literature from the 1980s to 2004 the success rate of NCPC HISTORICAL ASPECTS was between 30 and 52%9,10,16. In small series, two out of three cases were successful1,14,30. Griffith, in 1986, gave a detailed Faivre, in 1854 and Luschka, in 1855 were the first researchers account of endoscopic intracranial neurosurgery, through a to suggest that the choroid plexus is the source of CSF3,29. report of the results of 71 patients who received NCPC with or 9 Cushing supported this hypothesis through intraoperative without shunt from 1972 to 1982 . The selection criteria were observations4. Extrachoroidal fluid production was suggested infants with hydrocephalus who had progressively enlarging by Weed in 1914, by animal studies29. Dandy, in 1918, head circumference with ventricles grossly dilated and absent demonstrated in an animal study that unilateral hydrocephalus superficial CSF space on CT scan. Behavioral changes were was produced when the 4th ventricle was blocked together with also considered. In his series, 30 % were not shunt dependent. the access through the foramen of Monro to the contralateral The success rate was 54, 58, and 22 % for myelomenigocele, plexectomized lateral ventricle5,30. Furthermore, in the same communicating, and obstructive hydrocephalus groups, 10 year, he also demonstrated that CSF is produced by the choroid respectively. The same author, in 1990 , further reported the plexus in an animal study. Based on this result, he performed results of 32 childhood hydrocephalus cases treated by NCPC choroid plexus extirpation in four infants with communicating between 1985 and 1988 with CT scan examination. Eighteen hydrocephalus by open surgery. In this series, one infant with cases were below the age of 6 months. Patient selection moderate hydrocephalus and myelomenigocele was well on was the same as in his previous report. In addition, all cases 10 months follow-up, and the other three infants with severe showed marked ventricular dilatation on preoperative CT hydrocephalus died until 4 weeks after the operation5,30. After, scan. Different to his previous series, he added postoperative in 1932, Dandy also used a rigid Kelly cystoscope to inspect the perfusion of the ventricular system with artificial CSF to lateral ventricles in two hydrocephalic children6. Cauterization clear the postcoagulation blood and protein released to the of the choroid plexus was attempted in one case. He further CSF. The average follow-up time ranged from 1 to 4 years. detailed the technique of endoscopic coagulation of the Fifty-two percent of the patients were shunt independent. choroid plexus in 19387,30. Isolated NCPC was first described Those required shunting was all in an interval of ≤12 weeks by Putnam, in 193430. In the subsequent years, besides NCPC, except one. Among the successful group, most of the patients other surgical treatments of hydrocephalus were introduced showed a head circumference similar to the preoperative 30 16 including endoscopic third ventriculostomy and extrathecal size . Pople
Recommended publications
  • Telovelar Approach to the Fourth Ventricle: Microsurgical Anatomy
    J Neurosurg 92:812–823, 2000 Telovelar approach to the fourth ventricle: microsurgical anatomy ANTONIO C. M. MUSSI, M.D., AND ALBERT L. RHOTON, JR., M.D. Department of Neurological Surgery, University of Florida, Gainesville, Florida Object. In the past, access to the fourth ventricle was obtained by splitting the vermis or removing part of the cere- bellum. The purpose of this study was to examine the access to the fourth ventricle achieved by opening the tela cho- roidea and inferior medullary velum, the two thin sheets of tissue that form the lower half of the roof of the fourth ven- tricle, without incising or removing part of the cerebellum. Methods. Fifty formalin-fixed specimens, in which the arteries were perfused with red silicone and the veins with blue silicone, provided the material for this study. The dissections were performed in a stepwise manner to simulate the exposure that can be obtained by retracting the cerebellar tonsils and opening the tela choroidea and inferior medullary velum. Conclusions. Gently displacing the tonsils laterally exposes both the tela choroidea and the inferior medullary velum. Opening the tela provides access to the floor and body of the ventricle from the aqueduct to the obex. The additional opening of the velum provides access to the superior half of the roof of the ventricle, the fastigium, and the superolater- al recess. Elevating the tonsillar surface away from the posterolateral medulla exposes the tela, which covers the later- al recess, and opening this tela exposes the structure forming
    [Show full text]
  • The Choroid Plexus: a Comprehensive Review of Its History, Anatomy, Function, Histology, Embryology, and Surgical Considerations
    Childs Nerv Syst (2014) 30:205–214 DOI 10.1007/s00381-013-2326-y REVIEW PAPER The choroid plexus: a comprehensive review of its history, anatomy, function, histology, embryology, and surgical considerations Martin M. Mortazavi & Christoph J. Griessenauer & Nimer Adeeb & Aman Deep & Reza Bavarsad Shahripour & Marios Loukas & Richard Isaiah Tubbs & R. Shane Tubbs Received: 30 September 2013 /Accepted: 11 November 2013 /Published online: 28 November 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Keywords Choroid plexus . Anatomy . Neurosurgery . Introduction The role of the choroid plexus in cerebrospinal Hydrocephalus fluid production has been identified for more than a century. Over the years, more intensive studies of this structure has lead to a better understanding of the functions, including brain Introduction immunity, protection, absorption, and many others. Here, we review the macro- and microanatomical structure of the Around the walls of the ventricles, folds of pia mater form choroid plexus in addition to its function and embryology. vascularized layers named choroid plexus. This vasculature Method The literature was searched for articles and textbooks along with the overlying ependymal lining of the ventricles for data related to the history, anatomy, physiology, histology, forms the tela choroidea. Sometimes, however, the term embryology, potential functions, and surgical implications of choroid plexus is used to describe the entire structure [1]. The the choroid plexus. All were gathered and summarized narrow cleft, to which the choroids plexus is attached in the comprehensively. ventricles, is defined as the choroidal fissure. [2] The discovery Conclusion We summarize the literature regarding the choroid of the choroid plexus is attributed to Herophilus, who named it plexus and its surgical implications.
    [Show full text]
  • Intraventricular Hemorrhage Caused by Intraventricular Meningioma: CT Appearance
    Intraventricular Hemorrhage Caused by Intraventricular Meningioma: CT Appearance I. Lang, A. Jackson, and F. A. Strang Summary: In a patient with intraventricular meningioma present- which extended into the body of the lateral ventricle, ing with intraventricular hemorrhage, CT demonstrated a well- through the foramen of Monro and into the third and fourth defined tumor mass in the trigone of the left lateral ventricle with ventricles. On postcontrast CT (iohexol 340, 50 mL) the extensive surrounding hematoma. lesion showed homogeneous enhancement (Fig 2). At surgery, the occipital pole of the left lateral ventricle was opened via a temporoparietal craniotomy. A “hard” Index terms: Meninges, neoplasms; Brain, ventricles; Cerebral avascular tumor surrounded by fresh clot was exposed. hemorrhage The tumor arose from a pedicle attached to the choroid plexus. It was removed without complication, and the as- Intraventricular meningioma is a rare tumor sociated hematoma was evacuated. Histologic examina- with approximately 170 previously reported tion confirmed the diagnosis of a fibroblastic meningioma. cases (1–7). Despite this it is the most common Postoperatively, there was a good recovery of the left intraventricular tumor in adults, in whom it is hemiparesis, although there was some residual hemi- most often located in the trigone of the lateral anopia and dysphasia. ventricle (1, 2). Computed tomography (CT) features are similar to meningiomas elsewhere, and in most cases they appear as well-defined Discussion high-attenuation masses that show marked en- Meningiomas arising within the ventricular hancement (1, 2). Presentation with subarach- system are rare but well described, constituting noid hemorrhage is rare (9). We describe a case approximately 0.5% to 2% of all intracranial of intraventricular hemorrhage attributable to meningiomas (4, 6) (Kaplan ES, Parasagittal intraventricular meningioma and present the CT Meningiomas: A Clinico-pathological Study, appearance.
    [Show full text]
  • CNS-Specific Immunity at the Choroid Plexus Shifts Toward Destructive Th2 Inflammation in Brain Aging
    CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging Kuti Barucha,1, Noga Ron-Harelb,1, Hilah Galc,1, Aleksandra Deczkowskaa, Eric Shifrutc, Wilfred Ndifonc, Nataly Mirlas-Neisberga, Michal Cardona, Ilan Vaknina, Liora Cahalona, Tamara Berkutzkia, Mark P. Mattsond, Fernando Gomez-Pinillae,f, Nir Friedmanc,2, and Michal Schwartza,2,3 Departments of aNeurobiology and cImmunology, Weizmann Institute of Science, Rehovot 76100, Israel; bDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115; dLaboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and Departments of eIntegrative Biology and Physiology and fNeurosurgery, University of California, Los Angeles, CA 90095 Edited* by Michael Sela, Weizmann Institute of Science, Rehovot, Israel, and approved November 13, 2012 (received for review July 4, 2012) In the present study, we show that the CP in young and aged The adaptive arm of the immune system has been suggested as an + important factor in brain function. However, given the fact that animals retains CD4 effector memory cells with a T-cell receptor fi interactions of neurons or glial cells with T lymphocytes rarely occur (TCR) repertoire speci c to CNS antigens. With aging, the CP mani- fl within the healthy CNS parenchyma, the underlying mechanism is fested signs of T helper type 2 (Th2) in ammation, linking its still a mystery. Here we found that at the interface between the functional plasticity to age-related cognitive decline. Using an immunological manipulation that induced homeostasis-driven brain and blood circulation, the epithelial layers of the choroid + proliferation and partially restored cognitive ability, we demon- plexus (CP) are constitutively populated with CD4 effector memory fi strate that peripheral rejuvenation of the immune system can cells with a T-cell receptor repertoire speci c to CNS antigens.
    [Show full text]
  • Neuroanatomy Dr
    Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Prof Yousry 10/15/17 A F B K G C H D I M E N J L Ventricular System, The Cerebrospinal Fluid, and the Blood Brain Barrier The lateral ventricle Interventricular foramen It is Y-shaped cavity in the cerebral hemisphere with the following parts: trigone 1) A central part (body): Extends from the interventricular foramen to the splenium of corpus callosum. 2) 3 horns: - Anterior horn: Lies in the frontal lobe in front of the interventricular foramen. - Posterior horn : Lies in the occipital lobe. - Inferior horn : Lies in the temporal lobe. rd It is connected to the 3 ventricle by body interventricular foramen (of Monro). Anterior Trigone (atrium): the part of the body at the horn junction of inferior and posterior horns Contains the glomus (choroid plexus tuft) calcified in adult (x-ray&CT). Interventricular foramen Relations of Body of the lateral ventricle Roof : body of the Corpus callosum Floor: body of Caudate Nucleus and body of the thalamus. Stria terminalis between thalamus and caudate. (connects between amygdala and venteral nucleus of the hypothalmus) Medial wall: Septum Pellucidum Body of the fornix (choroid fissure between fornix and thalamus (choroid plexus) Relations of lateral ventricle body Anterior horn Choroid fissure Relations of Anterior horn of the lateral ventricle Roof : genu of the Corpus callosum Floor: Head of Caudate Nucleus Medial wall: Rostrum of corpus callosum Septum Pellucidum Anterior column of the fornix Relations of Posterior horn of the lateral ventricle •Roof and lateral wall Tapetum of the corpus callosum Optic radiation lying against the tapetum in the lateral wall.
    [Show full text]
  • Anterior Third Ventricle Meningiomas. Report of Two Cases
    Neurocirugía 2008; 19: 356-360 Neurocirugía 2008 19: Anterior third ventricle meningiomas. Report of two cases E.R. Uygur; B. Deniz and K. Zafer Ministry of Health Dışkapı Education and Research Hospital. Second Neurosurgery Clinic. Ankara. Turkey Summary third ventricle6,15. We report two cases with large and giant meningiomas originating in the anterior part of the third Third ventricle meningiomas are rare, representing ventricle and discuss the differential diagnosis and treat- approximately 0,15% of all meningiomas. The majority ment options of this rare tumor. of third ventricular meningiomas are located poste- riorly in the pineal region. Less commonly, they arise Case 1 in the anterior part of the third ventricle. We report the cases of two patients with large and giant meningiomas A 25-year-old woman was admitted with a three month originating in the anterior part of the third ventricle. history of headache and almost three weeks of left sided weaknes. Neurological examination disclosed papilledema, KEY WORDS: Meningioma. Intraventricular tumor. Third 4/5 left hemiparesis, and left hemihypesthesia. Magnetic ventricle resonance (MR) imaging of the brain demonstrated an homogeneously enhancing midline mass within the third Meningiomas del tercer ventrículo. Presentación de dos ventricle causing hydrocephalus (Figure 1 a,b). The tumor, casos which was adherent to the anterior portion of the third ventricle, was removed near totally via an interhemispheric Resumen transcallosal approach (Figure 2 a,b). Postoperative course was uneventful. Pathological examination revealed a psam- Los meningiomas del tercer ventrículo son raros. momatous meningioma. Representan, aproximadamente, el 0,15% de todos los meningiomas. La mayoría de los meningiomas del tercer Case 2 ventrículo se localizan en la parte posterior, en la región pineal.
    [Show full text]
  • Acute Triventricular Hydrocephalus Caused by Choroid Plexus Cysts: a Diagnostic and Neurosurgical Challenge
    NEUROSURGICAL FOCUS Neurosurg Focus 41 (5):E9, 2016 Acute triventricular hydrocephalus caused by choroid plexus cysts: a diagnostic and neurosurgical challenge Pietro Spennato, MD,1 Carmela Chiaramonte, MD,2 Domenico Cicala, MD,3 Vittoria Donofrio, MD,4 Manlio Barbarisi, MD,5 Anna Nastro, MD,3 Giuseppe Mirone, MD,1 Vincenzo Trischitta, MD,1 and Giuseppe Cinalli, MD1 Departments of 1Paediatric Neurosurgery and 3Neuroradiology, and 4Pathology Unit, Santobono-Pausilipon Children’s Hospital; 2Division of Neurosurgery, Department of Neurosciences and Reproductive and Odontostomatological Sciences, School of Medicine and Surgery “Federico II,” Naples; and 5Department of Neurosurgery, Second University of Naples, Italy OBJECTIVE Intraventricular choroid plexus cysts are unusual causes of acute hydrocephalus in children. Radiological diagnosis of intraventricular choroid plexus cysts is difficult because they have very thin walls and fluid contents similar to CSF and can go undetected on routine CT studies. METHODS This study reports the authors’ experience with 5 patients affected by intraventricular cysts originating from the choroid plexus. All patients experienced acute presentation with rapid neurological deterioration, sometimes associ- ated with hypothalamic dysfunction, and required urgent surgery. In 2 cases the symptoms were intermittent, with spon- taneous remission and sudden clinical deteriorations, reflecting an intermittent obstruction of the CSF pathway. RESULTS Radiological diagnosis was difficult in these cases because a nonenhanced CT scan revealed only triventric- ular hydrocephalus, with slight lateral ventricle asymmetry in all cases. MRI with driven-equilibrium sequences and CT ventriculography (in 1 case) allowed the authors to accurately diagnose the intraventricular cysts that typically occupied the posterior part of the third ventricle, occluding the aqueduct and at least 1 foramen of Monro.
    [Show full text]
  • Choroid Plexus of the Fourth Ventricle: Review and Anatomic Study Highlighting Anatomical Variations
    Choroid Plexus of the Fourth Ventricle: Review and Anatomic Study Highlighting Anatomical Variations R. Shane Tubbs1, Mohammadali M. Shoja2, Anjali Aggarwal3, Tulika Gupta3, Marios Loukas4, Daisy Sahni3, Shaheryar F. Ansari5, Aaron A. Cohen-Gadol5 1 Seattle Science Foundation, Seattle, WA, USA 2 Pediatric Neurosurgery, Children’s of Alabama, Birmingham, AL, USA 3 Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh India 4 Department of Anatomical Sciences, St. George’s University, Grenada 5 Goodman Campbell Brain and Spine, Indiana University Department of Neurological Surgery, Indianapolis, IN, USA Corresponding Author: Aaron A. Cohen-Gadol, MD, MSc Goodman Campbell Brain and Spine Indiana University, Department of Neurosurgery 355 W 16th St, Suite 5100 Indianapolis, IN 46202 E-mail: [email protected] Phone: 317-362-8760 Fax: 317-924-8472 __________________________________________________________________________________________ This is the author's manuscript of the article published in final edited form as: Tubbs, R. S., Shoja, M. M., Aggarwal, A., Gupta, T., Loukas, M., Sahni, D., … Cohen-Gadol, A. A. (2016). Choroid plexus of the fourth ventricle: Review and anatomic study highlighting anatomical variations. Journal of Clinical Neuroscience, 26, 79–83. http://dx.doi.org/10.1016/j.jocn.2015.10.006 1 Abstract Relatively few studies have been performed that comment on the morphology of the choroid plexus of the fourth ventricle. With this tissue’s importance as a landmark on imaging and during surgical intervention of the fourth ventricle, the authors performed a cadaveric study to better characterize this important structure. The choroid plexus of the fourth ventricle of sixty formalin fixed adult human brains was observed and measured.
    [Show full text]
  • Histopathological Changes in the Choroid Plexus After Traumatic Brain Injury in the Rats: a Histologic and Immunohistochemical Study H
    Folia Morphol. Vol. 77, No. 4, pp. 642–648 DOI: 10.5603/FM.a2018.0029 O R I G I N A L A R T I C L E Copyright © 2018 Via Medica ISSN 0015–5659 www.fm.viamedica.pl Histopathological changes in the choroid plexus after traumatic brain injury in the rats: a histologic and immunohistochemical study H. Özevren1, E. Deveci2, M.C. Tuncer3 1Department of Neurosurgery, Dicle University, Faculty of Medicine, Diyarbakir, Turkey 2Department of Histology and Embryology, Faculty of Medicine, University of Dicle, Diyarbakir, Turkey 3Department of Anatomy, Faculty of Medicine, University of Dicle, Diyarbakir, Turkey [Received: 17 January 2018; Accepted: 22 February 2018] Background: Traumatic brain injury (TBI) is in part associated with the disruption of the blood-brain barrier. In this study, we analysed the histopathological chan- ges in E-cadherin and vascular endothelial growth factor (VEGF) expression after TBI in rats. Materials and methods: The rats were divided into two groups as the con- trol and the trauma groups. Sprague-Dawley rats were subjected to TBI with a weight-drop device using 300 g/1 m weight-height impact. After 5 days of TBI, blood samples were taken under ketamine hydroxide anaesthesia and biochemi- cal analyses were performed. The control and trauma groups were compared in terms of biochemical values. Results: There was no change in glutathione (GSH) levels and blood-brain barrier permeability. However, malondialdehyde (MDA) and myeloperoxidase (MPO) ac- tivity levels increased in the trauma group. In the histopathological examination, choroid plexus in the lateral ventricle, near the pia mater membrane, was removed.
    [Show full text]
  • Inhibition of Penicillin Transport from the Cerebrospinal Fluid After Intracisternal Inoculation of Bacteria
    Inhibition of Penicillin Transport from the Cerebrospinal Fluid after Intracisternal Inoculation of Bacteria Reynold Spector, A. V. Lorenzo J Clin Invest. 1974;54(2):316-325. https://doi.org/10.1172/JCI107767. Research Article The effect of intracisternal inoculation of bacteria on the choroid plexus system, which transports penicillin from cerebrospinal fluid (CSF) to blood, was studied in vitro and in vivo. Meningeal and choroid plexus inflammations as well as CSF pleocytosis were induced in rabbits with intracisternal inoculations of Hemophilus influenzae or Staphylococcus aureus. At various times after bacterial inoculation, the choroid plexuses of the inoculated rabbits were removed and incubated in artificial CSF containing [14C]penicillin. The ability of the choroid plexuses to accumulate pencillin in vitro was measured and was found to be depressed as compared with controls. This depression of choroid plexus uptake reversed with resolution of the inflammatory process. In vivo on the day after intracisternal inoculation of Hemophilus influenzae, a decrease in the disappearance of penicillin relative to inulin in the inoculated rabbits (as compared to the controls) was observed when [14C]penicillin and [3H]inulin were injected intraventricularly and cisternal CSF was sampled 2 h later. This decrease could not be explained by penicillin binding to the CSF exudate. However, the choroid plexus transport system for penicillin was only partially depressed in those inoculated rabbits with bacterially induced inflammation, since in vitro the choroid plexuses could still accumulate penicillin and in vivo CSF penicillin levels could be further increased with probenecid pretreatment. These results suggest that CSF penicillin levels are […] Find the latest version: https://jci.me/107767/pdf Inhibition of Penicillin Transport from the Cerebrospinal Fluid after Intracisternal Inoculation of Bacteria REYNOLD SPECrOR and A.
    [Show full text]
  • Meninges,Cerebrospinal Fluid, and the Spinal Cord
    The Nervous System MENINGES CSF Protection of the Brain Bone (skull) Membranes (meninges) Watery cushion (cerebrospinal fluid) Blood-brain barrier Meninges Series of membranes Cover and protect the CNS Anchor and cushion the brain Contain cerebrospinal fluid (CSF) Meninges Three layers Dura mater Arachnoid mater Pia mater Skin of scalp Periosteum Bone of skull Periosteal Dura Meningeal mater Superior Arachnoid mater sagittal sinus Pia mater Subdural Arachnoid villus space Blood vessel Subarachnoid Falx cerebri space (in longitudinal fissure only) Figure 12.24 Dura Mater Strongest meninx Fibrous connective tissue Limit excessive movement of the brain Superior sagittal sinus Falx cerebri Straight sinus Crista galli of the Tentorium ethmoid cerebelli bone Falx Pituitary cerebelli gland (a) Dural septa Figure 12.25a Arachnoid Mater Middle layer with weblike extensions Separated from the dura mater by the subdural space Subarachnoid space contains CSF and blood vessels Pia Mater Layer of delicate vascularized connective tissue that clings tightly to the brain Meningitis Inflammation of meninges May be bacterial or viral Diagnosed by obtaining CSF sample via lumbar tap T12 Ligamentum flavum L5 Lumbar puncture needle entering subarachnoid space L4 Supra- spinous ligament L5 Filum terminale S1 Inter- Cauda equina vertebral Arachnoid Dura in subarachnoid disc matter mater space Figure 12.30 Cerebrospinal Fluid (CSF) Composition Watery solution Modified plasma Constant volume (about 150 ml) About 500 ml formed daily Replaced
    [Show full text]
  • Median Aperture of the Fourth Ventricle Revisited
    Folia Morphol. Vol. 70, No. 2, pp. 84–90 Copyright © 2011 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Median aperture of the fourth ventricle revisited M. Ciołkowski1, 2, M. Sharifi1, 3, S. Tarka4, B. Ciszek1, 5 1Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Poland 2Department of Neurosurgery, Bielanski Hospital, Warsaw, Poland 3Department of Paediatric Otolaryngology, Medical University of Warsaw, Poland 4Department of Forensic Medicine, Medical University of Warsaw, Poland 5Department of Neurosurgery, Prof. Bogdanowicz Children’s Hospital, Warsaw, Poland [Received 22 March 2011; Accepted 5 April 2011] Background: The median aperture of Magendie is the largest of three open- ings of the fourth ventricle and thus it forms the main path for the outflow of the cerebrospinal fluid from the ventricle. The Magendie aperture connects the fourth ventricle with the cisterna magna and makes a natural corridor for neu- rosurgical approach and inspection of the ventricle and its floor. The purpose of this study was to give a contemporary anatomical view of this structure in the context of historical data. Material and methods: The Magendie foramen was studied in 30 fixed spe- cimens of human brainstems with cerebella. The microdissection technique was used. Measurements were taken with a microscope ocular ruler. Results: The aperture is limited by the following structures: obex and gracile tubercles inferiorly, and tela choroidea with choroid plexus superolaterally. Obex tubercles usually have the form of a piece of neural tissue bridging two halves of the brainstem above the entrance to the central canal.
    [Show full text]