April Through June 2013

Total Page:16

File Type:pdf, Size:1020Kb

April Through June 2013 April through June 2013 Updated Warnings—Current Drugs Fraudulent Versions of Botox: The FDA is alerting healthcare practitioners and the public that fraudulent versions of Botox that are not approved by the FDA are Codeine Sulfate – Warning: The FDA has issued a being sold to U.S. medical practices. The outer carton is Black Box Warning to the labeling for codeine sulfate oral counterfeit, while the vial inside is labeled as a foreign solution. There is a risk of respiratory depression and version of Botox—which is not FDA-approved for sale in death in children receiving this product after certain the United States. These products are being sold by surgeries—tonsillectomy and/or adenoidectomy. (5/9/13) unlicensed suppliers who are not part of the legitimate US supply chain. The FDA cannot confirm that the Compounding Shop: Lack of Sterility Assurance of manufacture, quality, storage, and handling of these Drug Products: The FDA is alerting healthcare products follow US standards. These fraudulent products providers, hospital supply managers, and pharmacists that are considered unsafe and should not be used. the FDA’s preliminary findings of practices at The The company selling the fraudulent versions of Botox goes Compounding Shop of St. Petersburg, Fla., raise concerns by the names “Online Botox Pharmacy,” about a lack of sterility assurance for sterile drugs “Onlinebotox.com,” and “Onlinebotox.” At the time this produced at and distributed from this site; therefore, these alert was issued, the company did not appear to be selling products should not be administered to patients. If a drug its products over the internet—instead, the company has product marketed as sterile has microbial contamination, it been using “blast faxes” to solicit sales from medical potentially places patients at risk of serious infection. practices, typically selling products at prices below those of The FDA has advised the firm that it is in the best interest FDA-approved products. As is the case with many of public health to take action to remove all sterile products companies that sell fraudulent products, Online Botox from the market. The Compounding Shop has informed Pharmacy uses a US return address when sending packages the FDA that it is recalling sterile products and is in the to medical practices, even though the products are from process of notifying customers. foreign sources. Medications purchased from foreign or The FDA is basing this warning on a recent inspection of unlicensed sources may be misbranded, adulterated, The Compounding Shop. The investigators observed poor counterfeit, contaminated, improperly stored and sterile production practices that raise concerns about a lack transported, ineffective, and/or unsafe. Medical practices of sterility assurance of The Compounding Shop’s sterile that purchase and administer illegal and unapproved drug products. medications from foreign sources are putting patients’ Healthcare providers and hospital staff should immediately health at risk, as patients may not be getting proper check their medical supplies, quarantine any sterile treatment. products from The Compounding Shop, not administer FDA-approved Botox for injection (100 units/vial), them to patients, and await further instructions from the manufactured by Allergan, displays the active ingredient as company regarding the recalled products. Patients who “OnabotulinumtoxinA” on the outer carton and vial. have received any product produced by The Compounding Currently, there is no indication that Allergan’s FDA- Shop and have concerns should contact their healthcare approved version is at risk, and this product should be provider. (5/8/13) considered safe and effective for its intended and approved uses. Fiorinal/Codeine #3—Warning: The FDA is alerting Suspect fraudulent products can be identified as follows: healthcare providers of the risk of respiratory depression the outer carton displays the active ingredient as and death in children related to use of Fiorinal/Codeine #3 “Botulinum Toxin Type A” OR (codeine phosphate/aspirin/ caffeine/butalbital). Such the lot numbers and expiration dates on the outer carton adverse reactions follow tonsillectomies and and accompanying vial do not match adenoidectomies. The manufacturer Watson must include Thus far, the following examples have been confirmed as a Black Box Warning on labeling/package inserts. (May fraudulent Botox. Products with any of these lot numbers 2013) and expiration dates should be considered suspect. www.AmericanHealthCare.com For informational purposes only, consult a physician for any drug changes. “FDA” stands for the United States Food and Drug Administration. Even with FDA approval, drug availability depends on each manufacturer. 1 Example 1 Example 2 • Talk to your healthcare professional about any risk factors or LOT # EXP DATE LOT # EXP DATE concerns you may have with human immune globulin C3016 C3 C3060 C3 products. 10-2014 01-2015 (carton) (carton) • Contact your healthcare professional if you develop any signs C3121 C3 (vial) 04-2015 C3121 C3 (vial) 04-2015 or symptoms of thrombosis during or after receiving human immune globulin. Signs or symptoms of thrombosis may The FDA is asking the public to report suspect Botox include: products obtained from Online Botox Pharmacy or other o pain and/or swelling of an arm or leg with warmth over questionable sources: the affected area a) Call FDA’s Office of Criminal Investigations (OCI) at 800-551-3989 o discoloration of an arm or leg b) Report to OCI at o unexplained shortness of breath www.accessdata.fda.gov/scripts/email/oc/oci/contact.cfm1, or c) email to [email protected] o chest pain or discomfort that worsens on deep breathing (4/26/13) o unexplained rapid pulse o chest pain o numbness or weakness on one side of the body Warning – Human Immune Globulin Products: Healthcare professionals should be aware of the risk for The FDA is requiring manufacturers to add information on thrombosis with human immune globulin products and thrombosis to the current boxed warning in the labels of all ensure appropriate patient selection and monitoring. intravenous human immune globulin products and to add a • Discuss with your patients the risk of thrombosis associated boxed warning to the labels of all subcutaneous and with these products. intramuscular human immune globulin products to • Carefully consider risk factors when selecting patients for highlight the risk of thrombosis and to add information on treatment with human immune globulin products. its mitigation. A retrospective analysis of data from a large • Monitor patients carefully for signs and symptoms of health claims-related database, as well as continued thrombosis both at the time of infusion and after infusion postmarketing adverse event reports of thrombosis, have and encourage patients to report any signs or symptoms. strengthened the evidence for an association between the • Report adverse events involving human immune globulin products to the FDA MedWatch program. use of intravenous, subcutaneous, and intramuscular (6/10/13) human immune globulin products and the risk of thrombosis. This information necessitates a boxed Kadcyla and Potential Medication Errors: The FDA warning for the entire class of products. notified healthcare professionals that the use of the Human immune globulin products are used in a variety of incorrect nonproprietary name for the breast cancer drug conditions, both on and off-label, by healthcare Kadcyla (ado-trastuzumab emtansine) in some medication- professionals who may not be aware of the thrombosis risk related electronic systems poses a risk of mix-up with and measures that could be taken to mitigate this risk. Herceptin (trastuzumab) and may result in medication Although all human immune globulin products already errors. The dosing and treatment schedules for Kadcyla contain some information related to the risk of thrombosis and Herceptin, another breast cancer drug, are quite in the current WARNINGS and PRECAUTIONS sections of different; so confusion between these products could lead their labels, the FDA recognizes that the communication of to dosing errors and potential harm to patients. The FDA- this risk and its mitigation are not standardized. The FDA approved nonproprietary name for Kadcyla, ado- proposes that for thrombosis a more prominent placement trastuzumab emtansine, should be used; however, some of risk information and a uniform approach for third-party publications, compendia references, health communicating the risk and its possible mitigation will information systems (e.g., electronic health record systems help to reduce the occurrence of these serious adverse and systems used for pharmacy prescription processing, events: • Thrombosis may occur regardless of the route of wholesaler ordering, pharmacy ordering, etc.), and sites on administration. the Internet are incorrectly using the United States • Risk factors include: advanced age, prolonged Adopted Name (USAN), which is “trastuzumab emtansine,” immobilization, hypercoagulable conditions, history of and omitting the “ado” prefix and hyphen. Use of this venous or arterial thrombosis, use of estrogens, indwelling truncated version of Kadcyla’s nonproprietary name may central vascular catheters, hyperviscosity and cardiovascular cause confusion with Herceptin (trastuzumab). (5/6/13) risk factors. • Thrombosis may occur in the absence of known risk factors. Potiga Warning: The FDA is warning the public that the • For patients at risk
Recommended publications
  • Curriculum Vitae: Marc Stephen Rendell, Md
    P a g e | 1 CURRICULUM VITAE: MARC STEPHEN RENDELL, M.D. ADDRESS: The Rose Salter Medical Research Foundation 34 Versailles Newport Coast, CA 92657-0065 clinic office 355 Placentia Avenue, Suite 308b Newport Beach, CA 92663 TELEPHONE: 402 -578-1580 HOSPITAL AND FACULTY APPOINTMENTS: 12/1977-6/1983 Active Staff and Assistant Professor Division of Endocrinology Department of Medicine The Johns Hopkins Hospital Baltimore, Maryland 6/1980-6/1983 Assistant Professor Division of Nuclear Medicine Department of Radiology The Johns Hopkins University School of Medicine Baltimore, Maryland 12/1977-6/1983 Chief, Endocrinology Director, Radioimmunoassay Laboratory The US Public Health Service Hospital Baltimore, Maryland 7/1983-11/1984 Director, Diabetes Institute City of Faith Medical and Research Center Associate Professor, Medicine and Pathology ORU School of Medicine Tulsa, Oklahoma 2/1985- 9/2016 Director, Creighton Diabetes Center Associate Professor of Medicine Associate Professor of Biomedical Sciences (1993-1995) P a g e | 2 Professor of Medicine and Biomedical Sciences (1996-2016 ) Creighton University School of Medicine Omaha, Nebraska 3/1999- Medical Director: Rose Salter Medical Research Foundation Baltimore, Maryland, Omaha, Nebraska, Newport Beach, California CLINICAL PRACTICE 12/1977-6/1983 Active Staff Division of Endocrinology Department of Medicine The Johns Hopkins Hospital Baltimore, Maryland 12/1977-6/1983 Chief, Endocrinology Director, Radioimmunoassay Laboratory The US Public Health Service Hospital Baltimore, Maryland 7/1983-11/1984 Director, Diabetes Institute City of Faith Medical and Research Center ORU School of Medicine Tulsa, Oklahoma 2/1985- 9/2016 Director, Creighton Diabetes Center Creighton University Medical Center Omaha, Nebraska 9/2016- Medical Director: Rose Salter Diabetes Center Newport Beach, California 1/2017- Telemedicine Physician Teladoc and MDLive EDUCATION: 9/1964-6/1968 B.S.
    [Show full text]
  • Effects of Long-Term Treatment with Ranirestat, a Potent Aldose Reductase Inhibitor, on Diabetic Cataract and Neuropathy in Spontaneously Diabetic Torii Rats
    Hindawi Publishing Corporation Journal of Diabetes Research Volume 2013, Article ID 175901, 8 pages http://dx.doi.org/10.1155/2013/175901 Research Article Effects of Long-Term Treatment with Ranirestat, a Potent Aldose Reductase Inhibitor, on Diabetic Cataract and Neuropathy in Spontaneously Diabetic Torii Rats Ayumi Ota,1 Akihiro Kakehashi,1 Fumihiko Toyoda,1 Nozomi Kinoshita,1 Machiko Shinmura,1 Hiroko Takano,1 Hiroto Obata,1 Takafumi Matsumoto,2 Junichi Tsuji,2 Yoh Dobashi,3 Wilfred Y. Fujimoto,3,4 Masanobu Kawakami,3 and Yasunori Kanazawa3 1 Department of Ophthalmology, Jichi Medical University, Saitama Medical Center, 1-847 Amanuma-cho, Omiya-ku, Saitama-shi 330-8503, Japan 2 Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka 554-0022, Japan 3 Department of Integrated Medicine I, Jichi Medical University, Saitama Medical Center, Saitama 330-8503, Japan 4 Division of Metabolism, Endocrinology and Nutrition, University of Washington School of Medicine, Seattle, WA, USA Correspondence should be addressed to Akihiro Kakehashi; [email protected] Received 22 December 2012; Accepted 29 January 2013 Academic Editor: Tomohiko Sasase Copyright © 2013 Ayumi Ota et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We evaluated ranirestat, an aldose reductase inhibitor, in diabetic cataract and neuropathy (DN) in spontaneously diabetic Torii (SDT)ratscomparedwithepalrestat,thepositivecontrol.Animalsweredividedintogroupsandtreatedoncedailywithoral ranirestat (0.1, 1.0, 10 mg/kg) or epalrestat (100 mg/kg) for 40 weeks, normal Sprague-Dawley rats, and untreated SDT rats. Lens opacification was scored from 0 (normal) to 3 (mature cataract).
    [Show full text]
  • Aldose Reductase
    Aldose Reductase Aldose reductase is a small, cytosolic, monomeric enzyme which belongs to the aldo-keto reductase superfamily. Aldose reductase catalyzes the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of a wide variety of aromatic and aliphatic carbonyl compounds. It is implicated in the development of diabetic and galactosemic complications involving the lens, retina, nerves, and kidney. Aldose reductase is both the key enzyme of the polyol pathway, whose activation under hyperglycemic conditions leads to the development of chronic diabetic complications, and the crucial promoter of inflammatory and cytotoxic conditions, even under a normoglycemic status. Aldose reductase represents an excellent drug target and a huge effort is being done to disclose novel compounds able to inhibit it. www.MedChemExpress.com 1 Aldose Reductase Inhibitors 6-Methoxytricin Aldose reductase-IN-1 Cat. No.: HY-N6883 Cat. No.: HY-18967 6-Methoxytricin (Compound 6) is an flavonoid Aldose reductase-IN-1 is a inhibitor of aldose isolated from Artemisia iwayomogi. reductase with IC50 of 28.9 pM. IC50 value: 28.9 pM Target: aldose reductase Detailed information please refer to WO2014113380 A1 and US20130225592. Purity: >98% Purity: 99.86% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 5 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 50 mg, 100 mg Alrestatin Alrestatin sodium (AY-22284) Cat. No.: HY-B1202 (AY-22284A) Cat. No.: HY-B1202A Alrestatin is an inhibitor of aldose reductase, an Alrestatin sodium is an inhibitor of aldose enzyme involved in the pathogenesis of reductase, an enzyme involved in the pathogenesis complications of diabetes mellitus, including of complications of diabetes mellitus, including diabetic neuropathy.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr
    US008158152B2 (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr. 17, 2012 (54) LYOPHILIZATION PROCESS AND 6,884,422 B1 4/2005 Liu et al. PRODUCTS OBTANED THEREBY 6,900, 184 B2 5/2005 Cohen et al. 2002fOO 10357 A1 1/2002 Stogniew etal. 2002/009 1270 A1 7, 2002 Wu et al. (75) Inventor: Nageswara R. Palepu. Mill Creek, WA 2002/0143038 A1 10/2002 Bandyopadhyay et al. (US) 2002fO155097 A1 10, 2002 Te 2003, OO68416 A1 4/2003 Burgess et al. 2003/0077321 A1 4/2003 Kiel et al. (73) Assignee: SciDose LLC, Amherst, MA (US) 2003, OO82236 A1 5/2003 Mathiowitz et al. 2003/0096378 A1 5/2003 Qiu et al. (*) Notice: Subject to any disclaimer, the term of this 2003/OO96797 A1 5/2003 Stogniew et al. patent is extended or adjusted under 35 2003.01.1331.6 A1 6/2003 Kaisheva et al. U.S.C. 154(b) by 1560 days. 2003. O191157 A1 10, 2003 Doen 2003/0202978 A1 10, 2003 Maa et al. 2003/0211042 A1 11/2003 Evans (21) Appl. No.: 11/282,507 2003/0229027 A1 12/2003 Eissens et al. 2004.0005351 A1 1/2004 Kwon (22) Filed: Nov. 18, 2005 2004/0042971 A1 3/2004 Truong-Le et al. 2004/0042972 A1 3/2004 Truong-Le et al. (65) Prior Publication Data 2004.0043042 A1 3/2004 Johnson et al. 2004/OO57927 A1 3/2004 Warne et al. US 2007/O116729 A1 May 24, 2007 2004, OO63792 A1 4/2004 Khera et al.
    [Show full text]
  • United States Patent (10) Patent No.: US 9.457,029 B2 Dugi Et Al
    US0094.57029B2 (12) United States Patent (10) Patent No.: US 9.457,029 B2 Dugi et al. (45) Date of Patent: Oct. 4, 2016 (54) TREATMENT OF GENOTYPED DIABETIC 2,629,736 A 2f1953 Krimmel PATIENTS WITH DPP-IV INHIBITORS SUCH 2,730,544 A 1/1956 Melville AS LINAGLIPTIN 2,750,387 A 6, 1956 Krimmel (75) Inventors: Klaus Dugi. Dresden (DE); Eva Ulrike 3: A 3. A. et al. Graef-Mody, Ingelheim am Rhein 3.236,891. A 2, 1966 Seemiller (DE); Michael Mark, Biberach an der 3,454,635 A 7, 1969 Muth Riss (DE); Hans-Juergen Woerle, 3,673,241 A 6, 1972 Marxer Munich (DE); Heike Zimdahl-Gelling, 3,925,357. A 12/1975 Okada et al. Biberach an der Riss (DE) 4,005,208 A 1/1977 Bender et al. 4,061,753. A 12/1977 Bodor et al. (73) Assignee: Boehringer Ingelheim International 4,599.3384,382,091 A T.5/1983 1986 R",Beniamin et al. GmbH, Ingelheim am Rhein (DE) 4,639,436 A 1/1987 Junge et al. 4,687,777 A 8/1987 Meguro et al. (*) Notice: Subject to any disclaimer, the term of this 4,743.450 A 5/1988 Harris et al. patent is extended or adjusted under 35 i.S.S. A d 3. Sander et al. U.S.C. 154(b) by 0 days. 4,968,672w - A 1 1/1990 JacobsonCO et al. 5,041,448 A 8, 1991 Janssens et al. (21) Appl. No.: 13/511,771 5,051,509 A 9/1991 Nagano et al.
    [Show full text]
  • Orally Active Compound Library (96-Well)
    • Bioactive Molecules • Building Blocks • Intermediates www.ChemScene.com Orally Active Compound Library (96-well) Product Details: Catalog Number: CS-L061 Formulation: A collection of 2244 orally active compounds supplied as pre-dissolved Solutions or Solid Container: 96- or 384-well Plate with Peelable Foil Seal; 96-well Format Sample Storage Tube With Screw Cap and Optional 2D Barcode Storage: -80°C Shipping: Blue ice Packaging: Inert gas Plate layout: CS-L061-1 1 2 3 4 5 6 7 8 9 10 11 12 a Empty Vonoprazan Mivebresib AZD0156 BAY-876 Tomivosertib PQR620 NPS-2143 R547 PAP-1 Delpazolid Empty Varenicline b Empty Varenicline (Hydrochlorid Varenicline A-205804 CI-1044 KW-8232 GSK583 Quiflapon MRK-016 Diroximel Empty e) (Tartrate) fumarate SHP099 c Empty A 922500 SHP099 (hydrochlorid Nevanimibe Pactimibe Pactimibe GNF-6231 MLi-2 KDM5-IN-1 PACMA 31 Empty e) hydrochloride (sulfate) Rilmenidine d Empty Cadazolid Treprostinil GSK3179106 Esaxerenone (hemifumarat Rilmenidine Fisogatinib BP-1-102 Avadomide Aprepitant Empty e) (phosphate) Cl-amidine AZD5153 (6- e Empty Maropitant Abscisic acid (hydrochlorid BGG463 WNK463 Ticagrelor Axitinib Hydroxy-2- CGS 15943 Pipamperone Empty e) naphthoic Setogepram Teglarinad f Empty Y-27632 GSK2193874 Lanabecestat CXD101 Ritlecitinib YL0919 PCC0208009 (sodium salt) (chloride) Futibatinib Empty TAK-659 g Empty NCB-0846 GS-444217 (hydrochlorid Navitoclax ABX464 Zibotentan Simurosertib (R)- CEP-40783 MK-8617 Empty e) Simurosertib Choline JNJ- h Empty CCT251236 (bitartrate) Sarcosine Brensocatib AS-605240 PF-06840003
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]
  • WHO-EMP-RHT-TSN-2018.1-Eng.Pdf
    WHO/EMP/RHT/TSN/2018.1 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization [2018] Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO.
    [Show full text]
  • 2757.Full-Text.Pdf
    Original Article A Selective Aldose Reductase Inhibitor of a New Structural Class Prevents or Reverses Early Retinal Abnormalities in Experimental Diabetic Retinopathy Wei Sun,1 Peter J. Oates,2 James B. Coutcher,2 Chiara Gerhardinger,1 and Mara Lorenzi1 Previously studied inhibitors of aldose reductase were enzyme in the pathway, prevents all early effects of largely from two chemical classes, spirosuccinamide/hydan- diabetes on neural, glial, and vascular cells of the retina toins and carboxylic acids. Each class has its own draw- (2); an aldose reductase inhibitor (ARI) prevents a spec- backs regarding selectivity, in vivo potency, and human trum of retinal abnormalities more comprehensively than safety; as a result, the pathogenic role of aldose reductase other types of drugs (3); and aldose reductase contributes in diabetic retinopathy remains controversial. ARI-809 is a to myocardial ischemic injury (4) and diabetic atheroscle- recently discovered aldose reductase inhibitor (ARI) of a new structural class, pyridazinones, and has high selectiv- rosis (5). ity for aldose versus aldehyde reductase. To further test On the other hand, the polyol pathway remains a dread the possible pathogenic role of aldose reductase in the target (1) because ARIs have yielded at best only minor development of diabetic retinopathy, we examined the benefits in clinical studies (rev. in 6), and this could retinal effects of this structurally novel and highly selec- indicate that the polyol pathway is not a major pathogenic tive ARI in insulinized streptozotocin-induced diabetic pathway in human diabetes. Alternatively, the past failures rats. ARI-809 treatment was initiated 1 month after diabe- may simply reflect insufficient inhibition of the pathway in tes induction and continued for 3 months at a dose that target tissues by the doses of drugs used in humans (6).
    [Show full text]
  • Medicines in Development for Diabetes
    2014 MEDICINES IN DEVELOPMENT REPORT Diabetes PRESENTED BY AMERICA’S BIOPHARMACEUTICAL RESEARCH COMPANIES Biopharmaceutical Research Companies Are Developing 180 Medicines to Treat Diabetes and Related Conditions Nearly 26 million Americans are affected options for patients battling diabetes by diabetes—including 7 million people and diabetes-related conditions. who are unaware they have the disease. Medicines in Development One of the top 10 causes of death in the According to the Centers for Disease For Diabetes United States, diabetes has far-reaching Control and Prevention (CDC), death implications for patients and their fami- rates for people with diabetes fell sub- Application lies and our health care system. stantially—up to 40 percent—between Submitted 1997 and 2006. CDC links this decrease Phase III While healthy eating and exercise can to improved cardiovascular medical Phase II help prevent and manage type 2 diabe- treatment, better management of diabe- tes, medicines play a key role in helping tes, and some healthy lifestyle changes. Phase I reduce the risk of and treat the disease. For example, one medicine was found in Unfortunately, while the death rates due studies to lower the risk by 31 percent. to diabetes are declining, the rate of new cases has been rising. The number of 100 And in recent years, eight new classes of type 2 diabetes medicines have been ap- Americans diagnosed with diabetes has proved by the Food and Drug Administra- more than tripled since 1980, according tion (FDA), giving patients and health care to the CDC. Lifestyle choices can affect providers powerful new options to treat this increase.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,846,695 B2 Dugi (45) Date of Patent: Sep
    USOO8846695B2 (12) United States Patent (10) Patent No.: US 8,846,695 B2 Dugi (45) Date of Patent: Sep. 30, 2014 (54) TREATMENT FOR DIABETES IN PATIENTS 5,084,460 A 1/1992 Munson, Jr. et al. 5,130,244 A 7, 1992 Nishimaki et al. WITH INADEQUATE GLYCEMIC CONTROL 5,219,870 A 6, 1993 Kim DESPTE METFORMIN THERAPY 5,223,499 A 6/1993 Greenlee et al. COMPRISINGADPP-IV INHIBITOR 5,234,897 A 8, 1993 Findeisen et al. 5,258,380 A 11/1993 Janssens et al. 5,266,555 A 11/1993 Findeisen et al. (75) Inventor: Klaus Dugi. Dresden (DE) 5,273,995 A 12, 1993 Roth 5,284.967 A 2f1994 Macher (73) Assignee: Boehringer Ingelheim International 5,300,298 A 4, 1994 LaNoue GmbH, Ingelheim am Rhein (DE) 5,329,025 A 7/1994 Wong et al. 5,332,744 A 7/1994 Chakravarty et al. (*) Notice: Subject to any disclaimer, the term of this 5,389,642 A 2f1995 Dorsch et al. 5,399,578 A 3/1995 Buhlmayer et al. patent is extended or adjusted under 35 5,407,929 A 4/1995 Takahashi et al. U.S.C. 154(b) by 148 days. 5,470,579 A 11/1995 Bonte et al. 5,591,762 A 1/1997 Hauel et al. (21) Appl. No.: 13/143,370 5,594,003 A 1/1997 Hauel et al. 5,602,127 A 2f1997 Hauel et al. 5,614,519 A 3, 1997 Hauel et al. (22) PCT Filed: Jan. 7, 2010 5,719,279 A 2f1998 Kufner-Muhl et al.
    [Show full text]