Insights Into the Origin of Carbonaceous Chondrite Organics from Their Triple Oxygen Isotope Composition

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into the Origin of Carbonaceous Chondrite Organics from Their Triple Oxygen Isotope Composition Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition Romain Tartèsea,1, Marc Chaussidonb, Andrey Gurenkoc, Frédéric Delarued, and François Roberte aSchool of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom; bInstitut de Physique du Globe de Paris, Université Sorbonne-Paris-Cité, Université Paris Diderot, CNRS UMR 7154, F-75238 Paris, France; cCentre de Recherches Pétrographiques et Géochimiques, UMR 7358, Université de Lorraine, F-54501 Vandoeuvre-lès-Nancy, France; dSorbonne Université, Université Pierre-et-Marie-Curie, CNRS, École Pratique des Hautes Etudes, Paris Sciences et Lettres, UMR 7619 Milieux Environnementaux, Transferts et Interactions dans les Hydrosystèmes et les Sols, F-75005 Paris, France; and eInstitut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d’Histoire Naturelle, Sorbonne Universités, CNRS, Université Pierre-et-Marie-Curie, and Institut de Recherche pour le Développement, F-75005 Paris, France Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved July 12, 2018 (received for review May 10, 2018) Dust grains of organic matter were the main reservoir of C and N studies of meteoritic materials (e.g., refs. 16 and 17), and this should in the forming Solar System and are thus considered to be an apply to CC OM since it contains ∼10–25 wt% O (11, 12). essential ingredient for the emergence of life. However, the physical However, determining the O isotope composition of OM is environment and the chemical mechanisms at the origin of these challenging since it tends to be intimately mixed with O-rich organic grains are still highly debated. In this study, we report high- silicates and oxides at nanoscale to microscale in carbonaceous precision triple oxygen isotope composition for insoluble organic chondrites (e.g., ref. 18). Acid maceration used to isolate the matter isolated from three emblematic carbonaceous chondrites, insoluble OM (IOM) fraction from whole-rock samples removes Orgueil, Murchison, and Cold Bokkeveld. These results suggest that most of the silicates but is less effective at dissolving sulfides and the O isotope composition of carbonaceous chondrite insoluble or- some refractory O-bearing oxides such as chromite, spinel, ganic matter falls on a slope 1 correlation line in the triple oxygen hibonite, or corundum. Bulk pyrolysis O isotope analysis of IOM isotope diagram. The lack of detectable mass-dependent O iso- is thus susceptible to contamination by residual mineral inclu- topic fractionation, indicated by the slope 1 line, suggests that the sions. To constrain the triple O isotope composition of CC bulk of carbonaceous chondrite organics did not form on asteroi- IOM, we integrate here high spatial resolution secondary ion dal parent bodies during low-temperature hydrothermal events. mass spectrometry (SIMS) data obtained using NanoSIMS with On the other hand, these O isotope data, together with the H and high-precision 17,18O/16O isotope ratios obtained using large N isotope characteristics of insoluble organic matter, may indicate geometry multicollector IMS 1270/80 ion probes (referred to as that parent bodies of different carbonaceous chondrite types largely L-SIMS in the following). For each L-SIMS O isotope analysis, accreted organics formed locally in the protosolar nebula, possibly by measurement of 28Si, 32S, and 56Fe16O intensities allowed a photochemical dissociation of C-rich precursors. first-order filtering of data for which the O signals were largely affected by contamination by residual silicate and/or oxide carbonaceous chondrites | organic matter | oxygen isotopes | phases (see Materials and Methods for details). The results protosolar nebula | secondary ion mass spectrometry presented here thus provide high-precision triple O isotope estimates for IOM residues isolated from two emblematic CC ype 1–2 carbonaceous chondrites (CCs) contain several falls, the Ivuna-type (CI) Orgueil meteorite and the Mighei- Tweight percent (wt%) carbon that mostly occurs as small type (CM) Murchison meteorite. patchesoforganicmatter(OM)dispersed in the fine-grained matrix (1). Because this OM possibly played a key role in the development Significance of life on the early Earth, its molecular structure and its chemical and isotopic compositions have been extensively investigated (see Refractory organic matter found in volatile-rich asteroidal ref. 2 and references therein for a recent review). Despite this materials essentially comprise the elements C, H, O, N, and S, profusion of structural, chemical, and isotopic information, the which are thought to be important building blocks for life. question of whether CC OM formed in the cold interstellar medium Characterizing the origin(s) of these organics thus constitutes a (e.g., refs. 3–5), formed in the protosolar nebula (PSN) (e.g., refs. 6– key step to constrain the origin of life on Earth and appraise 9), or is a product of organic synthesis during hydrothermalism on the habitability potential of other worlds. However, how and CC parent bodies (e.g., ref. 10) remains highly debated, notably where these organics formed are still highly debated. In this because the extent of chemical and isotopic alteration of OM during – study, we have determined the oxygen isotope composition of secondary processes on CC parent bodies is unclear (11 15). refractory organics from two families of carbonaceous chon- Oxygen is the third most abundant element in the Solar Sys- 16 17 18 drites. These data suggest that these organics formed in the tem and has three stable isotopes, O, O, and O. Because nascent Solar System, possibly through chemical reactions oc- different fractionation laws govern interplanetary and intra- curring in the disk surrounding the young Sun. planetary processes (e.g., ref. 16), the oxygen three-isotope sys- tem can provide information that cannot be accessed using other Author contributions: R.T., M.C., and F.R. designed research; R.T. performed research; R.T., two-isotope systems of light elements such as H, C, and N. In M.C., A.G., and F.D. contributed new reagents/analytic tools; R.T. analyzed data; and R.T., planetary bodies, variations of the 17O/16O and 18O/16O ratios M.C., A.G., F.D., and F.R. wrote the paper. 17 almost always obey the mass-dependent relationship δ O ∼ The authors declare no conflict of interest. EARTH, ATMOSPHERIC, 18 AND PLANETARY SCIENCES 0.52 × δ O, while oxygen isotope abundance variations between This article is a PNAS Direct Submission. Solar System gas and solids are primarily governed by the mass- Published under the PNAS license. 17 18 independent relationship δ O ∼ 1.0 × δ O (15). [This Data deposition: Raw data from this manuscript have been deposited in the Mendeley δ-notation represents deviations in parts per 1,000 (‰)ofthe Data repository (dx.doi.org/10.17632/hwwsdz8997.1). 17,18 16 O/ O ratios relative to those of the standard mean ocean water 1To whom correspondence should be addressed. Email: [email protected]. 17,18 17,18 16 (SMOW), according to the equation δ O = [( O/ O)sample/ This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 17,18 16 ( O/ O)SMOW − 1] × 1,000.] Much of our understanding of how 1073/pnas.1808101115/-/DCSupplemental. our Solar System formed and evolved is thus based on O isotope Published online August 6, 2018. www.pnas.org/cgi/doi/10.1073/pnas.1808101115 PNAS | August 21, 2018 | vol. 115 | no. 34 | 8535–8540 Downloaded by guest on September 23, 2021 Results Discussion The δ17O and δ18O values measured by L-SIMS in the Orgueil, Assessing the Level of Contamination from Residuals Microinclusions Murchison, and Cold Bokkeveld IOM residues range between in IOM. The main challenge in determining the O isotope com- −23.3 ± 2.4‰ and +18.9 ± 2.4‰ and −18.0 ± 2.3‰ and +16.9 ± position of IOM isolated from carbonaceous chondrites is related 2.3‰ (uncertainties reported at 2σ), respectively (Fig. 1 and SI to the presence of residual nanoinclusions to microinclusions that Appendix, Table S1). Least-square regression through all of the have resisted acid maceration, as shown here by NanoSIMS im- data yields a line defined by δ17O = 1.00 (±0.14) × δ18O − 3.78 aging. The consistency between O isotope values estimated for (±1.35) (95% confidence level, n = 36, r2 = 0.86), which is indis- pure IOM based on high-resolution NanoSIMS analyses and the tinguishable from the relationship known as the carbonaceous most 17,18O-rich compositions obtained by L-SIMS for Murchison chondrite anhydrous mineral (CCAM) line (δ17O = 0.95 × δ18O − and Orgueil acid residues, respectively, suggest that the latter 4.18) (Fig. 1). provide an accurate estimate for the O isotope composition of The NanoSIMS data allow determining O isotope ratios with Murchison and Orgueil IOM. We thus consider here that the larger uncertainties than those obtained by L-SIMS, but with average values calculated from the two most 17,18O-rich compo- higher spatial resolution, that is, over region of interests (ROI) sitions measured by L-SIMS on both Murchison and Orgueil that can be selected from ion imaging to minimize the effect of provide us with the best estimates for the O isotope compositions 18 residual oxides and/or silicates, located through analysis of 28Si of pure IOM end-members in these samples. This yields δ O = 17 and 56Fe16O simultaneously with O isotopes. The NanoSIMS +4.7 ± 7.7‰ (2 SD) and δ O =+2.9 ± 10.3‰ (2 SD) for 18 17 analyses obtained over 40-μm2 areas in Murchison and Orgueil Murchison IOM and δ O =+16.6 ± 0.8‰ (2 SD) and δ O = IOM residues show little 28Si hot spots but more abundant +17.0 ± 5.2‰ (2 SD) for Orgueil IOM.
Recommended publications
  • Accretion of Water in Carbonaceous Chondrites: Current Evidence and Implications for the Delivery of Water to Early Earth
    ACCRETION OF WATER IN CARBONACEOUS CHONDRITES: CURRENT EVIDENCE AND IMPLICATIONS FOR THE DELIVERY OF WATER TO EARLY EARTH Josep M. Trigo-Rodríguez1,2, Albert Rimola3, Safoura Tanbakouei1,3, Victoria Cabedo Soto1,3, and Martin Lee4 1 Institute of Space Sciences (CSIC), Campus UAB, Facultat de Ciències, Torre C5-parell-2ª, 08193 Bellaterra, Barcelona, Catalonia, Spain. E-mail: [email protected] 2 Institut d’Estudis Espacials de Catalunya (IEEC), Edif.. Nexus, c/Gran Capità, 2-4, 08034 Barcelona, Catalonia, Spain 3 Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain. E-mail: [email protected] 4 School of Geographical and Earth Sciences, University of Glasgow, Gregory Building, Lilybank Gardens, Glasgow G12 8QQ, UK. Manuscript Pages: 37 Tables: 2 Figures: 10 Keywords: comet; asteroid; meteoroid; meteorite; minor bodies; primitive; tensile strength Accepted in Space Science Reviews (SPAC-D-18-00036R3, Vol. Ices in the Solar System) DOI: 10.1007/s11214-019-0583-0 Abstract: Protoplanetary disks are dust-rich structures around young stars. The crystalline and amorphous materials contained within these disks are variably thermally processed and accreted to make bodies of a wide range of sizes and compositions, depending on the heliocentric distance of formation. The chondritic meteorites are fragments of relatively small and undifferentiated bodies, and the minerals that they contain carry chemical signatures providing information about the early environment available for planetesimal formation. A current hot topic of debate is the delivery of volatiles to terrestrial planets, understanding that they were built from planetesimals formed under far more reducing conditions than the primordial carbonaceous chondritic bodies.
    [Show full text]
  • Presolar Grains As Tracers of Nebular and Parent Body Process- Ing of Chondritic Material
    Workshop on Parent-Body and Nebular Modification of Chondritic Materials 4019.pdf PRESOLAR GRAINS AS TRACERS OF NEBULAR AND PARENT BODY PROCESS- ING OF CHONDRITIC MATERIAL. Gary R. Huss, Lunatic Asylum of the Charles Arms Laboratory, Division of Geological and Planetary Sciences, 170-25, California Institute of Tech- nology, Pasadena, CA 91125 Presolar grains such as diamond, SiC, These observations show that a single wide- graphite, and Al2O3 are present in the least al- spread reservoir of presolar grains was sam- tered members of all chondrite classes [1,2]. pled by all chondrite classes. This reservoir is These grains reside in the fine-grained “matrix” most plausibly the dust from the solar system’s and did not experience the chondrule-forming parent molecular cloud. process. Because most types of presolar grains The CI chondrite, Orgueil, and the matrices are chemically unstable in putative nebular of CM2 chondrites have the highest matrix- conditions and in chondritic meteorites, they normalized abundances of silicon carbide, and serve as sensitive monitors of nebular and par- graphite; have among the highest diamond ent-body conditions. abundances; and have diamonds with high ni- Tracers of Metamorphism: Isotopic and trogen contents and the highest contents of P3 trace element characteristics of some presolar noble gases [1-4]. These characteristics indi- material and the abundances of presolar grains cate that CI chondrites and the matrices of in “matrix” are functions of the metamorphic CM2 chondrites contain the least processed history of the host meteorite [1–4]. Currently sample of the presolar-grains reservoir from recognized presolar grains show a range of the sun’s parent molecular cloud.
    [Show full text]
  • Chondrites and Chondrules Analogous to Sediments Dr
    Chondrites and Chondrules Analogous to Sediments Dr. Richard K. Herd Curator, National Meteorite Collection, Geological Survey of Canada, Natural Resources Canada (Retired) 51st Annual Lunar and Planetary Science Conference Houston, Texas March 16-20, 2020 Introduction and Summary • Comparing chondrites and terrestrial conglomerates [1] continues • Meteorites are fragmental rocks, continually subjected to impacts and collisions, whatever their ultimate origin in space and time • Space outside Earth’s atmosphere may be considered a 4D debris field • Of the debris that reaches the surface of Earth and is available for study, > 80 % are chondrites • Chondrites and chondrules are generally considered the product of heating of dust in the early Solar System, and therefore effectively igneous in origin • Modelling these abundant and important space rocks as analogous to terrestrial detrital sediments, specifically conglomerates, is innovative, can help derive data on their true origins and history, and provide con text for ongoing analyses Chondrites and Chondrules • Chondrites are rocks made of rocks • They are composed of chondrules and chondrule-like objects from which they take their name • Chondrules are roughly spheroidal pebble-like rocks predominantly composed of olivine, pyroxene, feldspar, iron-nickel minerals, chromite, magnetite, sulphides etc. • They range from nanoscale to more than a centimetre, with some size variation by chondrite type. There are thousands/millions of them available for study • Hundreds of chondrules fill the area of a single 3.5 x 2.5 cm standard thin section What is Known ? • Adjacent chondrules may be millions of years different in age • They date from the time of earliest solar system objects (viz.
    [Show full text]
  • Chondrule Sizes, We Have Compiled and Provide Commentary on Available Chondrule Dimension Literature Data
    Invited review Chondrule size and related physical properties: a compilation and evaluation of current data across all meteorite groups. Jon M. Friedricha,b,*, Michael K. Weisbergb,c,d, Denton S. Ebelb,d,e, Alison E. Biltzf, Bernadette M. Corbettf, Ivan V. Iotzovf, Wajiha S. Khanf, Matthew D. Wolmanf a Department of Chemistry, Fordham University, Bronx, NY 10458 USA b Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024 USA c Department of Physical Sciences, Kingsborough College of the City University of New York, Brooklyn, NY 11235, USA d Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016 USA e Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964 USA f Fordham College at Rose Hill, Fordham University, Bronx, NY 10458 USA In press in Chemie der Erde – Geochemistry 21 August 2014 *Corresponding Author. Tel: +718 817 4446; fax: +718 817 4432. E-mail address: [email protected] 2 ABSTRACT The examination of the physical properties of chondrules has generally received less emphasis than other properties of meteorites such as their mineralogy, petrology, and chemical and isotopic compositions. Among the various physical properties of chondrules, chondrule size is especially important for the classification of chondrites into chemical groups, since each chemical group possesses a distinct size-frequency distribution of chondrules. Knowledge of the physical properties of chondrules is also vital for the development of astrophysical models for chondrule formation, and for understanding how to utilize asteroidal resources in space exploration. To examine our current knowledge of chondrule sizes, we have compiled and provide commentary on available chondrule dimension literature data.
    [Show full text]
  • Formation Mechanisms of Ringwoodite: Clues from the Martian Meteorite
    Zhang et al. Earth, Planets and Space (2021) 73:165 https://doi.org/10.1186/s40623-021-01494-1 FULL PAPER Open Access Formation mechanisms of ringwoodite: clues from the Martian meteorite Northwest Africa 8705 Ting Zhang1,2, Sen Hu1, Nian Wang1,2, Yangting Lin1* , Lixin Gu1,3, Xu Tang1,3, Xinyu Zou4 and Mingming Zhang1 Abstract Ringwoodite and wadsleyite are the high-pressure polymorphs of olivine, which are common in shocked meteorites. They are the major constituent minerals in the terrestrial mantle. NWA 8705, an olivine-phyric shergottite, was heavily shocked, producing shock-induced melt veins and pockets associated with four occurrences of ringwoodite: (1) the lamellae intergrown with the host olivine adjacent to a shock-induced melt pocket; (2) polycrystalline assemblages preserving the shapes and compositions of the pre-existing olivine within a shock-induced melt vein (60 μm in width); (3) the rod-like grains coexisting with wadsleyite and clinopyroxene within a shock-induced melt vein; (4) the microlite clusters embedded in silicate glass within a very thin shock-induced melt vein (20 μm in width). The frst two occurrences of ringwoodite likely formed via solid-state transformation from olivine, supported by their mor- phological features and homogeneous compositions (Mg# 64–62) similar to the host olivine (Mg# 66–64). The third occurrence of ringwoodite might fractionally crystallize from the shock-induced melt, based on its heterogeneous and more FeO-enriched compositions (Mg# 76–51) than those of the coexisting wadsleyite (Mg# 77–67) and the host olivine (Mg# 66–64) of this meteorite. The coexistence of ringwoodite, wadsleyite, and clinopyroxene suggests a post- shock pressure of 14–16 GPa and a temperature of 1650–1750 °C.
    [Show full text]
  • A Multielement Isotopic Study of Refractory FUN and F Cais: 2 Mass-Dependent and Mass-Independent Isotope Effects 3 Levke Kööp1,2,3,*, Daisuke Nakashima4,5, Philipp R
    1 A multielement isotopic study of refractory FUN and F CAIs: 2 Mass-dependent and mass-independent isotope effects 3 Levke Kööp1,2,3,*, Daisuke Nakashima4,5, Philipp R. Heck1,2,3, Noriko T. Kita4, Travis J. Ten- 4 ner4,6, Alexander N. Krot7, Kazuhide Nagashima7, Changkun Park7,8, Andrew M. Davis1,2,3,9 5 1Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637, 6 USA ([email protected]) 7 2Chicago Center for Cosmochemistry, The University of Chicago, Chicago, IL 60637, USA 8 3Robert A. Pritzker Center for Meteoritics and Polar Studies, Field Museum of Natural His- 9 tory, Chicago, IL, USA 10 4Department of Geoscience, University of Wisconsin, Madison, WI 53706, USA 11 5Division of Earth and Planetary Material Sciences, Faculty of Science, Tohoku University, 12 Aoba, Sendai, Miyagi 980-8578 Japan 13 6 Chemistry Division, Nuclear and Radiochemistry, Los Alamos National Laboratory, 14 MSJ514, Los Alamos, NM 87545, USA 15 7Hawai‘i Institute of Geophysics and Planetology, School of Ocean and Earth Science and 16 Technology, University of Hawai‘i at M!noa, Honolulu, HI 17 8Korea Polar Research Institute, Incheon 21990, Korea 18 9Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA. 19 20 *E-mail address of the corresponding author: [email protected] 21 ABSTRACT 22 Calcium-aluminum-rich inclusions (CAIs) are the oldest dated objects that formed inside the 23 Solar System. Among these are rare, enigmatic objects with large mass-dependent fractionation 24 effects (F CAIs), which sometimes also have large nucleosynthetic anomalies and a low initial 25 abundance of the short-lived radionuclide 26Al (FUN CAIs).
    [Show full text]
  • Addibischoffite, Ca2al6al6o20, a New Calcium Aluminate Mineral from The
    1 Revision 3 2 Addibischoffite, Ca2Al6Al6O20, a new calcium aluminate mineral from 3 the Acfer 214 CH carbonaceous chondrite: A new refractory phase from 4 the solar nebula 5 Chi Ma1,*, Alexander N. Krot2, Kazuhide Nagashima2 6 1Division of Geological and Planetary Sciences, California Institute of Technology, 7 Pasadena, California 91125, USA 8 2Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, 9 Honolulu, Hawai‘i 96822, USA 10 11 ABSTRACT 12 Addibischoffite (IMA 2015-006), Ca2Al6Al6O20, is a new calcium aluminate mineral 13 that occurs with hibonite, perovskite, kushiroite, Ti-kushiroite, spinel, melilite, 14 anorthite and FeNi-metal in the core of a Ca-Al-rich inclusion (CAI) in the Acfer 15 214 CH3 carbonaceous chondrite. The mean chemical composition of type 16 addibischoffite by electron probe microanalysis is (wt%) Al2O3 44.63, CaO 15.36, 17 SiO2 14.62, V2O3 10.64, MgO 9.13, Ti2O3 4.70, FeO 0.46, total 99.55, giving rise to 18 an empirical formula of 3+ 3+ 2+ 19 (Ca2.00)(Al2.55Mg1.73V 1.08Ti 0.50Ca0.09Fe 0.05)Σ6.01(Al4.14Si1.86)O20. The general 20 formula is Ca2(Al,Mg,V,Ti)6(Al,Si)6O20. The end-member formula is Ca2Al6Al6O20. 21 Addibischoffite has the P1 aenigmatite structure with a = 10.367 Å, b = 10.756 Å, c 22 = 8.895 Å, α = 106.0°, β = 96.0°, γ = 124.7°, V = 739.7 Å3, and Z = 2, as revealed by 23 electron back-scatter diffraction. The calculated density using the measured 24 composition is 3.41 g/cm3.
    [Show full text]
  • Magnetite Biomineralization and Ancient Life on Mars Richard B Frankel* and Peter R Buseckt
    Magnetite biomineralization and ancient life on Mars Richard B Frankel* and Peter R Buseckt Certain chemical and mineral features of the Martian meteorite with a mass distribution unlike terrestrial PAHs or those from ALH84001 were reported in 1996 to be probable evidence of other meteorites; thirdly, bacterium-shaped objects (BSOs) ancient life on Mars. In spite of new observations and up to several hundred nanometers long that resemble fos­ interpretations, the question of ancient life on Mars remains silized terrestrial microorganisms; and lastly, 10-100 nm unresolved. Putative biogenic, nanometer magnetite has now magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) become a leading focus in the debate. crystals. These minerals were cited as evidence because of their similarity to biogenic magnetic minerals in terrestrial Addresses magnetotactic bacteria. *Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA; e-mail: [email protected] The ancient life on Mars hypothesis has been extensively tDepartments of Geology and Chemistry/Biochemistry, Arizona State challenged, and alternative non-biological processes have University, Tempe, Arizona 85287-1404, USA; e-mail: [email protected] been proposed for each of the four features cited by McKay et al. [4]. In this paper we review the current situa­ tion regarding their proposed evidence, focusing on the Abbreviations putative biogenic magnetite crystals. BCM biologically controlled mineralization BIM biologically induced mineralization BSO bacterium-shaped object Evidence for and against ancient Martian life PAH polycyclic aromatic hydrocarbon PAHs and BSOs Reports of contamination by terrestrial organic materials [5°,6°] and the similarity of ALH84001 PAHs to non-bio­ genic PAHs in carbonaceous chondrites [7,8] make it Introduction difficult to positively identify PAHs of non-terrestrial, bio­ A 2 kg carbonaceous stony meteorite, designated genic origin.
    [Show full text]
  • Brecciation and Chemical Heterogeneities of CI Chondrites
    Geochimica et Cosmochimica Acta 70 (2006) 5371–5394 www.elsevier.com/locate/gca Brecciation and chemical heterogeneities of CI chondrites Andreas Morlok a,b,*, Addi Bischoff a, Thomas Stephan a, Christine Floss c, Ernst Zinner c, Elmar K. Jessberger a a Institut fu¨r Planetologie, Wilhelm-Klemm-Strasse 10, 48149 Mu¨nster, Germany b Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Kobe 657-8501, Japan c Laboratory for Space Sciences and Physics Department, Washington University, St. Louis, MO, USA Received 5 December 2005; accepted in revised form 3 August 2006 Abstract Fragments in the size range from 40 lm to several hundred lm in the CI chondrites Orgueil, Ivuna, Alais, and Tonk show a wide range of chemical compositions with variations in major elements such as iron (10.4–42.4 wt% FeO), silicon (12.7–42.2 wt% SiO2), and sulfur (1.01–15.8 wt% SO3), but also important minor elements such as phosphorous (up to 5.2 wt% P2O5) or calcium (up to 6.6 wt% CaO). These variations are the result of the varying mineralogical compositions of these fragments. The distribution of phyl- losilicates, magnetites, and possibly ferrihydrite, in particular, control the abundances of these elements. High REE contents—up to 150 times the solar abundances—were observed in phosphates, while matrix and sulfates are REE-depleted. The studied 113 fragments were subdivided into eight lithologies with similar mineralogical and thus chemical properties. The most common is the CGA lithology, consisting of a groundmass of Mg-rich, coarse-grained phyllosilicates and varying abundances of inclusions such as magnetite.
    [Show full text]
  • Lost Lake by Robert Verish
    Meteorite-Times Magazine Contents by Editor Like Sign Up to see what your friends like. Featured Monthly Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob’s Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Galactic Lore by Mike Gilmer Meteorite Calendar by Anne Black Meteorite of the Month by Michael Johnson Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2010 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Petrography and Mineral Chemistry of the Anhydrous Component of the Tagish Lake Carbonaceous Chondrite
    Meteoritics & Planetary Science 38, Nr 5, 813–825 (2003) Abstract available online at http://meteoritics.org Petrography and mineral chemistry of the anhydrous component of the Tagish Lake carbonaceous chondrite S. B. SIMON1* and L. GROSSMAN1, 2 1Department of the Geophysical Sciences, 5734 South Ellis Avenue, The University of Chicago, Chicago, Illinois 60637, USA 2The Enrico Fermi Institute, 5640 South Ellis Avenue, The University of Chicago, Chicago, Illinois 60637, USA *Corresponding author. E-mail: [email protected] (Received 30 August 2002; revision accepted 16 January 2003) Abstract–Most studies of Tagish Lake have considered features that were either strongly affected by or formed during the extensive hydrous alteration experienced by this meteorite. This has led to some ambiguity as to whether Tagish Lake should be classified a CI, a CM, or something else. Unlike previous workers, we have focused upon the primary, anhydrous component of Tagish Lake, recovered through freeze-thaw disaggregation and density separation and located by thin section mapping. We found many features in common with CMs that are not observed in CIs. In addition to the presence of chondrules and refractory forsterite (which distinguish Tagish Lake from the CIs), we found hibonite-bearing refractory inclusions, spinel-rich inclusions, forsterite aggregates, Cr-, Al-rich spinel, and accretionary mantles on many clasts, which clearly establishes a strong link between Tagish Lake and the CM chondrites. The compositions of isolated olivine crystals in Tagish Lake are also like those found in CMs. We conclude that the anhydrous inclusion population of Tagish Lake was, originally, very much like that of the known CM chondrites and that the inclusions in Tagish Lake are heavily altered, more so than even those in Mighei, which are more heavily altered than those in Murchison.
    [Show full text]