Een Korte Geschiedenis Van De Computeralgebra in Nederland NAW 5/11 Nr

Total Page:16

File Type:pdf, Size:1020Kb

Een Korte Geschiedenis Van De Computeralgebra in Nederland NAW 5/11 Nr 1 1 Arjeh Cohen Een korte geschiedenis van de computeralgebra in Nederland NAW 5/11 nr. 2 juni 2010 111 Arjeh Cohen Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Postbus 513 5600 MB Eindhoven [email protected] Overzichtsartikel Een korte geschiedenis van de computeralgebra in Nederland Computeralgebra is het rekenen aan wiskundige expressies volgens algebraïsche regels. Deze Wolfram. Het werd in 1981 commercieel ver- tak van sport wordt sinds de jaren zestig beoefend en kent vele toepassingen, variërend van het spreid, en is feitelijk de voorloper van het automatisch primitiveren van reële functies tot het berekenen van het bereik van een robotarm. overbekende systeem Mathematica [21]. In dit artikel geeft Arjeh Cohen een persoonlijke impressie van wat zich de afgelopen decennia Minder bekend is misschien dat Jos Verma- op het gebied van de computeralgebra in Nederland heeft afgespeeld. seren (Nikhef, Amsterdam) een direct vervolg op Schoonschip gemaakt heeft: een program- De allereerste computers rekenden tot op ze- ook dit gerealiseerd. Zo is op verschillende ma dat uiterst efficiënt met veeltermen en in- kere hoogte exact: ze konden vrijwel uitslui- plaatsen in de wereld symbolisch rekenen tegralen om kan gaan. De motivatie lag voor tend overweg met gehele getallen die niet ontstaan. een groot deel in Feynmans diagramcalculus. boven een door de machine bepaalde groot- Het is bekend dat daarin evaluatie van de som te uitkwamen. Al gauw werden numerici de Veltman en Vermaseren van een stel bepaalde integralen over alle toe- grootste gebruikers en was het zwevende- De behoefte om exact te rekenen was al vroeg standen in een gegeven configuratie tot een komma-getal (floating-point number) het ob- gesignaleerd door fysici die allerlei exacte, zinvol resultaat leidt, terwijl evaluatie van in- ject waarmee het meest gerekend werd. Pas dat wil zeggen precies in wiskundige formules dividuele summanden in die som plus of min in de jaren zestig, toen er voldoende vertrou- gevatte, uitdrukkingen wilden manipuleren. oneindig kan opleveren. Die som kan echter wen ontstond in de groei van geheugens en Een prominent voorbeeld is de Nederlandse alleen met grote exacte rekenkracht bepaald de kracht van computers, kwam de exactheid Nobelprijswinnaar Martinus Veltman. Hij had worden. Het programma van Jos Vermaseren weer terug. Om te beginnen kwamen er pak- behoefte aan software om met veeltermen en heet FORM en wordt nog steeds (voornamelijk ketten uit waarin gehele getallen als objecten integralen te werken zonder op benaderin- door fysici) gebruikt om spectaculaire bereke- behandeld werden zoals wiskundigen dat ge- gen over te gaan. In 1963 begon hij aan zijn ningen uit te voeren. Zie bijvoorbeeld het arti- wend zijn: ofwel het geheugen van de machi- symbolische rekenprogramma Schoonschip, ne liep over, ofwel het getal werd fatsoenlijk vooral gedreven door berekeningen die no- behandeld, zonder afkappingen en zonder dig waren bij een neutrino-experiment. Vol- modulair rekenwerk. Het werd mogelijk om gens zijn eigen woorden leidde de benodig- te rekenen met gehele getallen zoals wij dat de algebra voor de vector-boson-productie tot zelf ook zouden doen als we onvermoeid kon- een frustrerende hoeveelheid rekenwerk die den blijven werken. Dan moest het ook moge- moeilijk foutloos te krijgen was. Zijn program- lijk zijn om andere wiskundige uitdrukkingen ma Schoonschip heeft model gestaan voor als veeltermen, integralen, differentiaalverge- Symbolic Manipulation Program, of kortweg lijkingen en logische formules te manipuleren SMP. Dat was een computer-algebrasysteem volgens bekende algebraïsche regels, zonder dat rond 1979 voornamelijk ontwikkeld werd toevlucht tot benaderingen. Inderdaad werd door de op Caltech werkende fysicus Stephen Martinus Veltman (l) en Jos Vermaseren 1 1 2 2 112 NAW 5/11 nr. 2 juni 2010 Een korte geschiedenis van de computeralgebra in Nederland Arjeh Cohen dat ook wel computerwiskunde gedoopt is en veel interessante software heeft opgeleverd. Maar het is niet het onderwerp van dit artikel, want dat richt zich op de eigenlijke computer- algebra. De eerste computeralgebra pakketten Aan het eind van de jaren zestig was er dus software voor exacte berekeningen in de fysi- ca; na Schoonschip kwam al snel het commer- ciële pakket REDUCE [30]. In de jaren zeventig verschenen er ook exacte pakketten voor zeer specifieke onderwerpen als groepentheorie. Op dat laatste gebied waren er twee concur- renten: GAP uit Aken (van Joachim Neubüser) en Cayley uit Sydney (van John Cannon). Dit soort software maakte het bijvoorbeeld mo- gelijk om een groep bestaande uit permuta- ties van een gegeven verzameling (in den be- ginne altijd weergegeven als {1, . , n} voor een niet al te grote n) door te rekenen. De groep zelf wordt hierbij vastgelegd door en- kele permutaties die de groep voortbrengen. Voorbeelden van vragen die dan redelijk ef- ficiënt (maar niet polynomiaal) beantwoord kunnen worden zijn: hoeveel elementen heeft de groep? En: geef een stel voortbrengers voor de ondergroep van alle elementen van de ge- geven groep die het element 1 behouden. Illustratie: Jack van Wijk GAP [8] bestaat, groeit en bloeit nog steeds Gebruik van groepentheorische computeralgebra voor het genereren van de gekleurde driehoeken in een uitvouwing van een Riemannoppervlak van geslacht 14. R14.3’ {7, 3}: orde 2184, 156 septagons, 546 takken, 346 knopen als gratis beschikbare software; Cayley is uit- gegroeid tot het zeer krachtige en zeer veel kel [31], waarin veel complexe invarianten van wiskunde omvattende, commerciële pakket Liegroepvoorstellingen worden uitgerekend. MAGMA [19]. We komen hier later op terug. Buchberger algoritme In de jaren tachtig kwamen algemene soft- Het Buchberger algoritme is in de ja- Intermezzo: Formele bewijsvoering warepakketten als Maple [20] en Mathema- ren tachtig sterk onder de aandacht ge- Soms wordt symbolisch rekenen op één tica op de markt. Eerst (1968–1982) was er komen. Dit komt doordat het algoritme hoop gegooid met computeralgebra, dan nog Macsyma, een experiment op MIT, waar- voor veel problemen met betrekking tot weer wordt computeralgebra gezien als een van een nazaat tegenwoordig gratis beschik- veeltermen een effectieve oplosmetho- deel maar niet het totaal van deze activi- baar is onder de naam Maxima [24]. Dit pak- de levert, en het op het juiste moment teiten. Enerzijds is het uitvoeren van ope- ket is gebaseerd op de programmeertaal Lisp. ter beschikking kwam voor de computer- raties op symbolen een definitie van alge- Maple en Mathematica daarentegen zijn ge- algebrapakketten in opkomst. bra, en ligt het dus voor de hand de wiskun- schreven in C. Oorspronkelijk was Maple min- Veel wiskundige problemen zijn te dig georiënteerde algoritmische handelingen der commercieel van opzet dan Mathematica. vertalen in zoektochten naar oplossingen als algebra te betitelen—zelfs als ze een vak Het kwam voort uit de symbolic computation van stelsels veeltermvergelijkingen. Het als analyse of statistiek betreffen. Anderzijds group in Waterloo die geleid werd door Keith Buchberger algoritme helpt exacte oplos- wordt een formeel beschreven stelling en/of Geddes en Gaston Gonnet. singen te vinden, onder andere door een bewijs niet vaak als computeralgebra gezien, In Nederland was de informaticus Hans systematische eliminatie van variabelen maar wel als invoer voor symbool-manipula- van Hulzen (UT) er vroeg bij. Hij hield zich mogelijk te maken. tie, wat als synoniem voor symbolisch reke- bezig met code-optimalisatie en was als een Hoewel de methode effectief is, loopt nen gebruikt wordt. van de eerste Nederlanders actief betrokken het Buchberger algoritme al gauw vast als De formele bewijsvoering en automatische bij ISSAC, de grote jaarlijkse conferentie op het aantal variabelen of de graad van de verificatie van een formeel bewijs heeft een het vakgebied. Hij droeg bij aan het pak- veeltermen groot wordt. grootse Nederlandse geschiedenis, die be- ket REDUCE, dat destijds redelijk wijd ver- De beste implementatie voor prak- gint met het Automath project van Dick de spreid was, maar in de commerciële strijd met tische problemen is van Faugère; zie Bruijn in Eindhoven en doorloopt tot werk van Maple, MATLAB [23] (een minder exact maar zijn website www-calfor.lip6.fr/˜jcf, waar Henk Barendregt en zijn groep in Nijmegen. veel gebruikt pakket) en Mathematica ten on- mooie voorbeelden staan. De geïnteresseerde lezer raadplege het arti- der is gegaan. REDUCE is tegenwoordig gratis kel [35] van Freek Wiedijk over dit onderwerp, verkrijgbaar. 2 2 3 3 Arjeh Cohen Een korte geschiedenis van de computeralgebra in Nederland NAW 5/11 nr. 2 juni 2010 113 Specialistische software en algoritmen den uit de kast gehaald en bewerkt tot metho- software. Het werd in de jaren tachtig ook erg In het kielzog van de opkomst van de al- den waarmee ofwel een gesloten formule voor aantrekkelijk om wiskundige software te ont- gemene computeralgebra-programma’s zijn een primitieve van een functie gevonden kan wikkelen. Twee belangrijke beweegredenen in de jaren tachtig en negentig twee exact- worden, ofwel vastgesteld kan worden dat waren het uitvoeren van experimenten waar wiskundige activiteiten te onderscheiden. er, binnen een gegeven klasse functies, geen de theorievorming stokt en het vullen van ga- Enerzijds de opkomst van meer specialisti- primitieve bestaat. De meeste primitiveerop- ten in bewijzen waarvan de basis van de in- sche software, anderzijds de aandacht voor drachten op het niveau van de eerste jaren in ductie niet
Recommended publications
  • CAS (Computer Algebra System) Mathematica
    CAS (Computer Algebra System) Mathematica- UML students can download a copy for free as part of the UML site license; see the course website for details From: Wikipedia 2/9/2014 A computer algebra system (CAS) is a software program that allows [one] to compute with mathematical expressions in a way which is similar to the traditional handwritten computations of the mathematicians and other scientists. The main ones are Axiom, Magma, Maple, Mathematica and Sage (the latter includes several computer algebras systems, such as Macsyma and SymPy). Computer algebra systems began to appear in the 1960s, and evolved out of two quite different sources—the requirements of theoretical physicists and research into artificial intelligence. A prime example for the first development was the pioneering work conducted by the later Nobel Prize laureate in physics Martin Veltman, who designed a program for symbolic mathematics, especially High Energy Physics, called Schoonschip (Dutch for "clean ship") in 1963. Using LISP as the programming basis, Carl Engelman created MATHLAB in 1964 at MITRE within an artificial intelligence research environment. Later MATHLAB was made available to users on PDP-6 and PDP-10 Systems running TOPS-10 or TENEX in universities. Today it can still be used on SIMH-Emulations of the PDP-10. MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory") which is a system for numerical computation built 15 years later at the University of New Mexico, accidentally named rather similarly. The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a popular copyleft version of Macsyma called Maxima is actively being maintained.
    [Show full text]
  • SMT Solving in a Nutshell
    SAT and SMT Solving in a Nutshell Erika Abrah´ am´ RWTH Aachen University, Germany LuFG Theory of Hybrid Systems February 27, 2020 Erika Abrah´ am´ - SAT and SMT solving 1 / 16 What is this talk about? Satisfiability problem The satisfiability problem is the problem of deciding whether a logical formula is satisfiable. We focus on the automated solution of the satisfiability problem for first-order logic over arithmetic theories, especially using SAT and SMT solving. Erika Abrah´ am´ - SAT and SMT solving 2 / 16 CAS SAT SMT (propositional logic) (SAT modulo theories) Enumeration Computer algebra DP (resolution) systems [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories CAD Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping Partial CAD Virtual CDCL [GRASP’97] [zChaff’04] DPLL(T) substitution Watched literals Equalities and uninterpreted Clause learning/forgetting functions Variable ordering heuristics Bit-vectors Restarts Array theory Arithmetic Decision procedures for first-order logic over arithmetic theories in mathematical logic 1940 Computer architecture development 1960 1970 1980 2000 2010 Erika Abrah´ am´ - SAT and SMT solving 3 / 16 SAT SMT (propositional logic) (SAT modulo theories) Enumeration DP (resolution) [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping CDCL [GRASP’97] [zChaff’04]
    [Show full text]
  • Another Formulation of the Wick's Theorem. Farewell, Pairing?
    Spec. Matrices 2015; 3:169–174 Communication Open Access Igor V. Beloussov Another formulation of the Wick’s theorem. Farewell, pairing? DOI 10.1515/spma-2015-0015 Received February 19, 2015; accepted July 2, 2015 Abstract: The algebraic formulation of Wick’s theorem that allows one to present the vacuum or thermal averages of the chronological product of an arbitrary number of field operators as a determinant (permanent) of the matrix is proposed. Each element of the matrix is the average of the chronological product of only two operators. This formulation is extremely convenient for practical calculations in quantum field theory, statistical physics, and quantum chemistry by the standard packages of the well known computer algebra systems. Keywords: vacuum expectation value; chronological product; contractions AMS: 15-04, 15A15, 65Z05, 81U20 1 Introduction Wick’s theorems are used extensively in quantum field theory [1–4], statistical physics [5–7], and quantum chemistry [8]. They allow one to use the Green’s functions method, and consequently to apply the Feynman’s diagrams for investigations [1–3]. The first of these, which can be called Wick’s Theorem for Ordinary Products, gives us the opportunity to reduce in almost automatic mode the usual product of operators into a unique sum of normal products multiplied by c–numbers. It can be formulated as follows [4]. Let Ai (xi) (i = 1, 2, ... , n ) are “linear operators”, i.e., some linear combinations of creation and annihilation operators. Then the ordi- nary product of linear operators is equal to the sum of all the corresponding normal products with all possible contractions, including the normal product without contractions, i.e., A1 ...An = : A1 ...An : +: A1A2 ...An : + ..
    [Show full text]
  • SCHOONSCHIP, the Largest Time Equationand the Continuous
    Vol. 52 (2021) Acta Physica Polonica B No 6–7 SCHOONSCHIP, THE LARGEST TIME EQUATION AND THE CONTINUOUS DIMENSIONAL REGULARISATION Ettore Remiddi Dipartimento di Fisica e Astronomia, University of Bologna, Italy [email protected] (Received May 11, 2021; accepted May 21, 2021) I will recall three results of Martinus J.G. Veltman, which had a sub- stantial importance in my scientific activity and which gave me the occasion of meeting him and of appreciating the great human and scientific gifts of his unforgettable personality. DOI:10.5506/APhysPolB.52.513 1. Introduction Tini Veltman had a highly positive, strong influence on my whole pro- fessional activity, although I was not a student of his and I never coauthored a paper with him or under his supervision. He was ten years older than me, taller — and with an imposing beard. The first time we exchanged letters I addressed him as “Dear Tiny, . ”, as I had never heard anyone calling him Martinus; in his answer, he replied: “Do I look tiny to you?” (but I think that happened also to other people). I got acquainted with him in 1968 at CERN. In those years, he was still young, but already rather authoritative, at the first sight I felt somewhat intimidated, but soon he became for me a kind of “senior friend”, ready to help and always to be listened to with attention. In this paper, I will recall in the three sections which follow, three of his many scientific results, for the importance that they had on my whole pro- fessional life, and for the occasion which they gave me of knowing him and of entering in contact with his unforgettable personality.
    [Show full text]
  • Modeling and Analysis of Hybrid Systems
    Building Bridges between Symbolic Computation and Satisfiability Checking Erika Abrah´ am´ RWTH Aachen University, Germany in cooperation with Florian Corzilius, Gereon Kremer, Stefan Schupp and others ISSAC’15, 7 July 2015 Photo: Prior Park, Bath / flickr Liam Gladdy What is this talk about? Satisfiability problem The satisfiability problem is the problem of deciding whether a logical formula is satisfiable. We focus on the automated solution of the satisfiability problem for first-order logic over arithmetic theories, especially on similarities and differences in symbolic computation and SAT and SMT solving. Erika Abrah´ am´ - SMT solving and Symbolic Computation 2 / 39 CAS SAT SMT (propositional logic) (SAT modulo theories) Enumeration Computer algebra DP (resolution) systems [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories CAD Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping Partial CAD Virtual CDCL [GRASP’97] [zChaff’04] DPLL(T) substitution Watched literals Equalities and uninterpreted Clause learning/forgetting functions Variable ordering heuristics Bit-vectors Restarts Array theory Arithmetic Decision procedures for first-order logic over arithmetic theories in mathematical logic 1940 Computer architecture development 1960 1970 1980 2000 2010 Erika Abrah´ am´ - SMT solving and Symbolic Computation 3 / 39 SAT SMT (propositional logic) (SAT modulo theories) Enumeration DP (resolution) [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62]
    [Show full text]
  • Robust Computer Algebra, Theorem Proving, and Oracle AI
    Robust Computer Algebra, Theorem Proving, and Oracle AI Gopal P. Sarma∗ Nick J. Hayyz School of Medicine, Emory University, Atlanta, GA USA Vicarious FPC, San Francisco, CA USA Abstract In the context of superintelligent AI systems, the term “oracle” has two meanings. One refers to modular systems queried for domain-specific tasks. Another usage, referring to a class of systems which may be useful for addressing the value alignment and AI control problems, is a superintelligent AI system that only answers questions. The aim of this manuscript is to survey contemporary research problems related to oracles which align with long-term research goals of AI safety. We examine existing question answering systems and argue that their high degree of architectural heterogeneity makes them poor candidates for rigorous analysis as oracles. On the other hand, we identify computer algebra systems (CASs) as being primitive examples of domain-specific oracles for mathematics and argue that efforts to integrate computer algebra systems with theorem provers, systems which have largely been developed independent of one another, provide a concrete set of problems related to the notion of provable safety that has emerged in the AI safety community. We review approaches to interfacing CASs with theorem provers, describe well-defined architectural deficiencies that have been identified with CASs, and suggest possible lines of research and practical software projects for scientists interested in AI safety. I. Introduction other hand, issues of privacy and surveillance, access and inequality, or economics and policy are Recently, significant public attention has been also of utmost importance and are distinct from drawn to the consequences of achieving human- the specific technical challenges posed by most level artificial intelligence.
    [Show full text]
  • Satisfiability Checking and Symbolic Computation
    Satisfiability Checking and Symbolic Computation E. Abrah´am´ 1, J. Abbott11, B. Becker2, A.M. Bigatti3, M. Brain10, B. Buchberger4, A. Cimatti5, J.H. Davenport6, M. England7, P. Fontaine8, S. Forrest9, A. Griggio5, D. Kroening10, W.M. Seiler11 and T. Sturm12 1RWTH Aachen University, Aachen, Germany; 2Albert-Ludwigs-Universit¨at, Freiburg, Germany; 3Universit`adegli studi di Genova, Italy; 4Johannes Kepler Universit¨at, Linz, Austria; 5Fondazione Bruno Kessler, Trento, Italy; 6University of Bath, Bath, U.K.; 7Coventry University, Coventry, U.K.; 8LORIA, Inria, Universit´ede Lorraine, Nancy, France; 9Maplesoft Europe Ltd; 10University of Oxford, Oxford, U.K.; 11Universit¨at Kassel, Kassel, Germany; 12CNRS, LORIA, Nancy, France and Max-Planck-Institut f¨ur Informatik, Saarbr¨ucken, Germany. Abstract Symbolic Computation and Satisfiability Checking are viewed as individual research areas, but they share common interests in the development, implementation and application of decision procedures for arithmetic theories. Despite these commonalities, the two communities are currently only weakly con- nected. We introduce a new project SC2 to build a joint community in this area, supported by a newly accepted EU (H2020-FETOPEN-CSA) project of the same name. We aim to strengthen the connection between these communities by creating common platforms, initiating interaction and exchange, identi- fying common challenges, and developing a common roadmap. This abstract and accompanying poster describes the motivation and aims for the project, and reports on the first activities. 1 Introduction We describe a new project to bring together the communities of Symbolic Computation and Satisfiability Checking into a new joint community, SC2. Both communities have long histories, as illustrated by the tool development timeline in Figure 1, but traditionally they do not interact much even though they are now individually addressing similar problems in non-linear algebra.
    [Show full text]
  • Parca2: Architecture and Experiments
    ParCA2: Architecture and Experiments G.I.Malaschonok Tambov State University Internatsionalnaya, 33, 392000 Tambov, Russia email: [email protected] MMCP'2009 Dubna JINR (07.07-11.07.09) 07.07.2009 G.I.Malaschonok ParCA2: Architecture and Experiments Introduction (Short history of CAS) 1952 Computer algebra systems began to appear in the 1950-1960s. The paper of Lusternik L.A., Abramov A.A., Shestakov V.I. and Shura-Bura M.P. "Mathematical problem solving on automatic digital machines". Moscow, Acad. Sci. of the USSR, 1952. (Ëþñòåðíèê Ë.À., Àáðàìîâ À.À., Øåñòàêîâ Â.È., Øóðà-Áóðà Ì.Ð. Ðåøåíèå ìàòåìàòè÷åñêèõ çàäà÷ íà àâòîìàòè÷åñêèõ öèôðîâûõ ìàøèíàõ. Ì.: Èçä-âî ÀÍ ÑÑÑÐ, 1952) was endeed the rst paper in the eld of computer algebra. G.I.Malaschonok ParCA2: Architecture and Experiments 1963 The rst computer algebra system was done by the Martin Veltman, who designed a program for symbolic manipulation of mathematical equations, especially for High Energy Physics, called Schoonschip (Dutch "clean ship") in 1963. Martinus J.G. Veltman was born in 1931 in Netherlands. He studying mathematics and physics at Utrecht University in 1948. He obtained his PhD in theoretical physics in 1963. During an extended stay at Stanford Linear Accelerator Center in 1963-64 he designed the computer program Schoonschip. G.I.Malaschonok ParCA2: Architecture and Experiments 1971 In 1971, Gerardus 't Hooft was completing his PhD under the supervision of Veltman. They showed that if the symmetries of Yang-Mills theory were to be broken according to the Higgs method, then Yang-Mills theory can be renormalized.
    [Show full text]
  • Porovnanie Súčasných Systémov Počítačovej Algebry
    Masarykova univerzita Fakulta informatiky Porovnanie súčasných systémov počítačovej algebry Bakalárska práca Peter Gábor Brno, jar 2018 Masarykova univerzita Fakulta informatiky Porovnanie súčasných systémov počítačovej algebry Bakalárska práca Peter Gábor Brno, jar 2018 Na tomto mieste sa v tlačenej práci nachádza oficiálne podpísané zadanie práce a vyhlásenie autora školského diela. Vyhlásenie Vyhlasujem, že táto bakalárska práca je mojím pôvodným autorským dielom, ktoré som vypracoval samostatne. Všetky zdroje, pramene a literatúru, ktoré som pri vypracovaní používal alebo z nich čerpal, v práci riadne citujem s uvedením úplného odkazu na príslušný zdroj. Peter Gábor Vedúci práce: RNDr. Jaroslav Ráček Ph.D. i Poďakovanie Na tomto mieste by som sa chcel poďakovať vedúcemu bakalárskej práce RNDr. Jaroslavovi Ráčkovi Ph.D. za cenné rady, trpezlivosť a odborné vedenie pri vytváraní tejto práce. iii Zhrnutie Cieľom práce je vytvoriť komplexné zhodnotenie kvalít a vzájomné porovnanie systémov počítačovej algebry. V práci sa zmeriavam na piatich zástupcov spomedzi univerzálnych systémov počítačovej al- gebry. Konkrétne sa jedná o systémy Maple, Mathematica, MATLAB, Maxima a SageMath. Tieto systémy hodnotím z pohľadu užívateľskej a programátorskej prívetivosti, licenčnej a cenovej politiky a poskyto- vanej funkcionality. Súčasťou práce je vypracovanie (implementácia) spoločných vzorových úloh v prostrediach jednotlivých systémov, na ktorých demonštrujem charakter programovacieho jazyka, ako aj výpočtovú silu daného systému. iv Kľúčové slová
    [Show full text]
  • Machine Learning and Computer Algebra
    UCAM-CL-TR-884 Technical Report ISSN 1476-2986 Number 884 Computer Laboratory Machine learning and computer algebra Zongyan Huang April 2016 15 JJ Thomson Avenue Cambridge CB3 0FD United Kingdom phone +44 1223 763500 http://www.cl.cam.ac.uk/ c 2016 Zongyan Huang This technical report is based on a dissertation submitted August 2015 by the author for the degree of Doctor of Philosophy to the University of Cambridge, Lucy Cavendish College. Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet: http://www.cl.cam.ac.uk/techreports/ ISSN 1476-2986 Abstract Computer algebra is a fundamental research field of computer science, and computer al- gebra systems are used in a wide range of problems, often leading to significant savings of both time and effort. However, many of these systems offer different heuristics, deci- sion procedures, and parameter settings to tackle any given problem, and users need to manually select them in order to use the system. In this context, the algorithm selection problem is the problem of selecting the most efficient setting of the computer algebra system when faced with a particular problem. These choices can dramatically affect the efficiency, or even the feasibility of finding a solution. Often we have to rely on human expertise to pick a suitable choice as there are no fixed rules that determine the best approach, and even for experts, the relationship between the problem at hand and the choice of an algorithm is far from obvious. Machine learning techniques have been widely applied in fields where decisions are to be made without the presence of a human expert, such as in web search, text catego- rization, or recommender systems.
    [Show full text]
  • Sampling Techniques for Computational Statistical Physics
    S and/or limiting cases of the Hamiltonian dynamics; Sampling Techniques for Computational and (3) deterministic dynamics on an extended phase Statistical Physics space. Benedict Leimkuhler1 and Gabriel Stoltz2 1Edinburgh University School of Mathematics, Edinburgh, Scotland, UK Description 2Universite´ Paris Est, CERMICS, Projet MICMAC Ecole des Ponts, ParisTech – INRIA, Marne-la-Vallee,´ Applications of sampling methods arise most com- France monly in molecular dynamics and polymer modeling, but they are increasingly encountered in fluid dynamics and other areas. In this article, we focus on the treat- ment of systems of particles described by position and Mathematics Subject Classification momentum vectors q and p, respectively, and modeled by a Hamiltonian energy H D H.q;p/. 82B05; 82-08; 65C05; 37M05 Macroscopic properties of materials are obtained, according to the laws of statistical physics, as the average of some function with respect to a proba- Short Definition bility measure describing the state of the system ( Calculation of Ensemble Averages): The computation of macroscopic properties, as pre- Z dicted by the laws of statistical physics, requires sam- E.A/ D A.q; p/ .dq dp/: (1) pling phase-space configurations distributed according E to the probability measure at hand. Typically, approx- imations are obtained as time averages over trajecto- In practice, averages such as (1) are obtained by gener- ries of discrete dynamics, which can be shown to be ating, by an appropriate numerical method, a sequence i i ergodic in some cases. Arguably, the greatest interest of microscopic configurations .q ;p /i0 such that is in sampling the canonical (constant temperature) ensemble, although other distributions (isobaric, mi- n1 Z 1 X crocanonical, etc.) are also of interest.
    [Show full text]
  • Satisfiability Checking Meets Symbolic Computation
    SC 2 : Satisfiability Checking meets Symbolic Computation (Project Paper) Eriká Abrahám, John Abbott, Bernd Becker, Anna Bigatti, Martin Brain, Bruno Buchberger, Alessandro Cimatti, James Davenport, Matthew England, Pascal Fontaine, et al. To cite this version: Eriká Abrahám, John Abbott, Bernd Becker, Anna Bigatti, Martin Brain, et al.. SC 2 : Satisfiability Checking meets Symbolic Computation (Project Paper). Intelligent Computer Mathematics, Jul 2016, Bialystok, Poland. hal-01377655 HAL Id: hal-01377655 https://hal.inria.fr/hal-01377655 Submitted on 7 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SC2: Satisfiability Checking meets Symbolic Computation (Project Paper) Erika Abrah´am´ 1, John Abbott12, Bernd Becker2, Anna M. Bigatti3, Martin Brain11, Bruno Buchberger4, Alessandro Cimatti5, James H. Davenport6, Matthew England7, Pascal Fontaine9, Stephen Forrest10, Alberto Griggio5, Daniel Kroening11, Werner M. Seiler12, and Thomas Sturm8;13 1 RWTH Aachen University, Aachen, Germany 2 Albert-Ludwigs-Universit¨at,Freiburg, Germany 3 Universit`adegli studi di Genova, Italy 4 Johannes Kepler Universit¨at,Linz, Austria 5 Fondazione Bruno Kessler, Trento, Italy 6 University of Bath, Bath, U.K. 7 Coventry University, Coventry, U.K. 8 CNRS, LORIA, Inria, Nancy, France 9 LORIA, Inria, Universit´ede Lorraine, Nancy, France 10 Maplesoft Europe Ltd 11 University of Oxford, Oxford, U.K.
    [Show full text]