Institute of Zoology University of Veterinary Medicine Hannover

Total Page:16

File Type:pdf, Size:1020Kb

Institute of Zoology University of Veterinary Medicine Hannover Institute of Zoology University of Veterinary Medicine Hannover Phylogeography and population structure of the European tree frog (Hyla arborea) for supporting effective species conservation THESIS Submitted in partial fulfilment of the requirements for the degree DOCTOR OF PHILOSOPHY (PhD) awarded by the University of Veterinary Medicine Hannover by Astrid Krug Bruchsal, Germany Hannover 2012 Supervisor: Prof. Dr. Heike Pröhl Supervision Group: Prof. Dr. Heike Pröhl PD Dr. Heike Hadrys, Dr. Stefan Könemann (until 09.03.2011) Prof. Dr. Miguel Vences 1st Evaluation: Prof. Dr. Heike Pröhl University of Veterinary Medicine Hannover Institute of Zoology PD Dr. Heike Hadrys University of Veterinary Medicine Hannover Division of Ecology and Evolution Prof. Dr. Miguel Vences Technical University of Braunschweig Division of Evolutionary Biology Zoological Institute 2nd Evaluation: Dr. Robert Jehle University of Salford School of Environment & Life Sciences Ecosystems and Environment Research Centre Date of oral exam: 8th of November 2012 Astrid Krug was sponsored by the Scholarship Programme of the German Federal Environmental Foundation (DBU) # 20007/899. Research funds were provided by the German Federal Environmental Foundation (DBU), Heidehof-Stiftung # 57129.01.2/3.10, and “Hans-Schiemenz-Fonds“ - Deutsche Gesellschaft für Herpetologie und Terrarienkunde (DGHT). Table of Contents Table of Contents Summary..……………………………………………………………………………1 Zusammenfassung……………………………………………………………………3 1 General introduction………………………………………...…………………...…5 1.1 Global amphibian decline……………………………………………………………6 1.2 Conservation genetics………………………………………………………………..6 1.3 The European tree frog………………………………………………………………7 1.3.1 Characteristics……………………………………………………………………….7 1.3.2 Distribution………………………………………………………………………….9 1.3.3 Conservation status and major threats……………………………………………...10 1.3.4 Conservation genetics in the European tree frog…………………………………...11 1.4 Aims of the study…………………………………………………………………...12 1.4.1 Phylogeography in Germany and adjacent areas…………………………………...12 1.4.2 Management Units in Lower Saxony and adjacent areas…………………………..12 2 Defining units for conservation management for the European tree frog (Hyla arborea) in Lower Saxony and adjacent areas……………………………14 2.1 Abstract……………………………………………………………………………..15 2.2 Introduction…………………………………………………………………………16 2.3 Materials and methods……………………………………………………………...17 2.3.1 Sample collection and preparation………………………………………………….17 2.3.2 Statistical analysis…………………………………………………………………..20 2.3.2.1 Historic structure: Analysis of mtDNA……………………………………………..20 2.3.2.2 Recent structure: Analysis of microsatellites……………………………………….21 2.3.2.3 Biogeographic zones………………………………………………………………..22 2.4 Results………………………………………………………………………………23 2.4.1 Mitochondrial sequence analysis…………………………………………………...23 2.4.2 Microsatellite analysis………………………………………………………………24 2.4.3 Biogeographic zones………………………………………………………………..29 2.5 Discussion…………………………………………………………………………..30 2.5.1 Genetic structure and conservation units…………………………………………...31 2.5.2 Genetic diversity……………………………………………………………………33 Table of Contents 2.5.3 Future goals…………………………………………………………………………33 2.5.4 Conclusion and implications for conservation management……………………….34 2.6 Acknowledgement………………………………………………………………….34 3 Phylogeographic structure of the European tree frog (Hyla arborea) in its German distribution area…………………………………………………………36 3.1 Abstract……………………………………………………………………………..37 3.2 Introduction…………………………………………………………………………38 3.3 Material and methods……………………………………………………………….39 3.3.1 Sample collection and preparation………………………………………………….39 3.3.2 Statistical analysis…………………………………………………………………..41 3.3.2.1 Analysis of mtDNA in Germany……………………………………………………41 3.3.2.2 Analysis of microsatellites in Germany…………………………………………….41 3.3.2.3 Analysis of mtDNA in the European context……………………………………….42 3.4 Results………………………………………………………………………………43 3.4.1 Analysis of mtDNA in Germany……………………………………………………43 3.4.2 Analysis of microsatellites in Germany…………………………………………….46 3.4.3 Analysis of mtDNA in the European context……………………………………….49 3.5 Discussion…………………………………………………………………………..51 3.5.1 Distinct genetic lineages in the European tree frog? ……………………………….52 3.5.2 Phylogrographic structures of the tree frog in Germany……………………………52 3.5.3 Genetic diversity……………………………………………………………………53 3.5.4 Conclusion………………………………………………………………………….54 3.6 Acknowledgement………………………………………………………………….54 4 General discussion………………………………………………….……………...56 4.1 Future goals…………………………………………………………………………58 5 References………………………………………………………………………….60 6 Appendix…………………………………………………………………………...70 Affidavit……………………………………………………………………………87 7 Acknowledgment…………………………………………………………………..88 List of Abbreviations List of Abbreviations °C degree Celsius µl microliter µM micromolar bp base pairs cyt b cytochrome b DNA deoxyribonucleic acid dNTP’s deoxynucleotide triphosphates ESU evolutionary significant unit IUCN International Union for Conservation of Nature km kilometre min minute mM millimolar mtDNA mitochondrial DNA MU management unit ng nanogram nuDNA nuclear DNA P probability PCR polymerase chain reaction s second SD standard deviation Taq Thermus aquaticus U enzyme unit List of Figures and Tables List of Figures and Tables Figure 1.1: Calling tree frog male Figure 1.2: Distribution map of the European tree frog (Hyla arborea) Figure 2.1: Current distribution of the European tree frog in Lower Saxony and adjacent areas Figure 2.2: Haplotype network cyt b Lower Saxony Figure 2.3: Distribution of cyt b haplotypes in Lower Saxony Figure 2.4: Isolation by distance plots Figure 2.5: LnPD and delta K Figure 2.6: STRUCTURE bar plot for K = 7 Figure 2.7: GENELAND map of estimated cluster membership for K = 7 Figure 2.8: Most important barriers to gene flow Figure 3.1: Haplotype network of cytochrome b Germany Figure 3.2: Haplotype distribution and physical map of Germany Figure 3.3: LnPD and delta K Figure 3.4: Distribution of distinct genetic clusters K = 4 Figure 3.5: Haplotype network of cytochrome b Europe Figure 3.6: Distribution of cyt b haplotypes in Europe Table 2.1: Overview of sample sites Lower Saxony Table 2.2: Pairwise Dest values and pairwise FST values Table 3.1: Overview of sample sites Germany Summary Astrid Krug Phylogeography and population structure of the European tree frog (Hyla arborea) for supporting effective species conservation Many amphibian species around the world are threatened by consequences of habitat degradation and fragmentation. The European tree frog (Hyla arborea) has suffered from dramatic population declines in the last decades and has therefore been categorised as threatened in many Red Data lists. Conservation measures are conducted at many places. To support such measures I conducted molecular studies on two geographic levels to reveal phylogeographic structures and genetic diversity, which are important for effective species conservation management. In Lower Saxony in Germany the current distribution of the tree frog is very patchy with some main occurrences in the lowlands. In order to define management units I sampled 237 individuals at 14 sites (~ 3 - 250 km apart from each other) across the tree frog distribution area in Lower Saxony and adjacent areas. All samples were genotyped with eight microsatellite loci and twelve sites were sequenced for an mtDNA cytochrome b fragment. While all but one of the microsatellite pairwise Dest and FST values showed significant genetic differentiation (Dest: 0 - 0.46, FST: 0 - 0.18), Bayesian analyses suggested seven distinct genetic clusters. The cytochrome b haplotype distribution highlights the former connection of the currently fragmented populations along the river Elbe. However, to reveal genetic structuring at higher geographic levels, as could have been generated e.g. by different postglacial colonisation routes, I conducted the second study with a sampling network of 31 sites across the tree frogs’ distribution area in Germany. 372 individuals were again analysed by mtDNA cytochrome b sequences and eight microsatellite loci. Sequence divergence between sample sites was low, varying between 0 and 0.4 % (overall 0.2 %), and no distinct genetic lineages were found. Nonetheless, a clear North-South partitioning was revealed by both molecular markers with the Central German Uplands as likely barrier. Furthermore, the influence of the major rivers such as Elbe, Rhine, and Danube on the phylogeographic structure was revealed. In general the genetic diversity was relatively high in both studies. Therefore, each of the sampled tree frog occurrences should have the potential to maintain or recover to a stable population size when applying appropriate local conservation measures. For new resettlement 1 Summary projects, the identified genetic structures should be considered when choosing source populations. Where possible, reconnection of originally linked occurrences that are now separated in different conservation units due to habitat fragmentation and genetic drift should be facilitated. 2 Zusammenfassung Astrid Krug Phylogeographie und Populationsstruktur des Europäischen Laubfroschs (Hyla arborea) zur Unterstützung eines effektiven Artenschutzes Weltweit sind viele Amphibienarten, hauptsächlich durch die Folgen von Habitat- Degradierung und Fragmentierung, gefährdet. Der Europäische Laubfrosch (Hyla arborea) hat in den letzten Jahrzehnten immense Bestandsrückgänge erfahren und wurde daher in vielen Roten Listen als gefährdet eingestuft. Naturschutzmaßnahmen werden bereits
Recommended publications
  • I T a L I a N Ecological N E T W O
    I T A L I A N E C O L O G I C A L N E T W O R K THE ROLE OF THE PROTECTED AREAS IN THE CONSERVATION OF VERTEBRATES Ministry of Environment Nature Conservation Directorate University of Rome “La Sapienza” Animal and Human Biology Department In collaboration with: IE A Institute o f A p p lie d Ecolo g y Via L. Spallanzani, 32 - 00161 Rome - Italy Tel./fax: +39 06 4403315 - e-mail: [email protected] ISBN 88- 87736- 03- 0 Luigi B oit a ni ● A less a n d r a F a lcucci ● Luigi M a io r a n o ● A less a n d ro M o nte m a g gio ri I T A L I A N E C O L O G I C A L N E T W O R K THE ROLE OF THE PROTECTED AREAS IN THE CONSERVATION OF VERTEBRATES Luigi Boitani Animal and Human Biology Department, University of Rome “La Sapienza” Alessandra Falcucci College of N atural Resources, Department of Fish and W ildlife Resources University of Idaho, Moscow (USA) Animal and Human Biology Department, University of Rome “La Sapienza” Luigi Maiorano College of N atural Resources, Department of Fish and W ildlife Resources University of Idaho, Moscow (USA) Animal and Human Biology Department, University of Rome “La Sapienza” Alessandro Montemaggiori Animal and Human Biology Department, University of Rome “La Sapienza” Institute of Applied Ecology, Rome September 2003 Recommended citation: Boitani L., A. Falcucci, L. Maiorano & A. Montemaggiori.
    [Show full text]
  • Maritime Southeast Asia and Oceania Regional Focus
    November 2011 Vol. 99 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus Maritime Southeast Asia and Oceania INSIDE News from the ASG Regional Updates Global Focus Recent Publications General Announcements And More..... Spotted Treefrog Nyctixalus pictus. Photo: Leong Tzi Ming New The 2012 Sabin Members’ Award for Amphibian Conservation is now Bulletin open for nomination Board FrogLog Vol. 99 | November 2011 | 1 Follow the ASG on facebook www.facebook.com/amphibiansdotor2 | FrogLog Vol. 99| November 2011 g $PSKLELDQ$UN FDOHQGDUVDUHQRZDYDLODEOH 7KHWZHOYHVSHFWDFXODUZLQQLQJSKRWRVIURP $PSKLELDQ$UN¶VLQWHUQDWLRQDODPSKLELDQ SKRWRJUDSK\FRPSHWLWLRQKDYHEHHQLQFOXGHGLQ $PSKLELDQ$UN¶VEHDXWLIXOZDOOFDOHQGDU7KH FDOHQGDUVDUHQRZDYDLODEOHIRUVDOHDQGSURFHHGV DPSKLELDQDUN IURPVDOHVZLOOJRWRZDUGVVDYLQJWKUHDWHQHG :DOOFDOHQGDU DPSKLELDQVSHFLHV 3ULFLQJIRUFDOHQGDUVYDULHVGHSHQGLQJRQ WKHQXPEHURIFDOHQGDUVRUGHUHG±WKHPRUH \RXRUGHUWKHPRUH\RXVDYH2UGHUVRI FDOHQGDUVDUHSULFHGDW86HDFKRUGHUV RIEHWZHHQFDOHQGDUVGURSWKHSULFHWR 86HDFKDQGRUGHUVRIDUHSULFHGDW MXVW86HDFK 7KHVHSULFHVGRQRWLQFOXGH VKLSSLQJ $VZHOODVRUGHULQJFDOHQGDUVIRU\RXUVHOIIULHQGV DQGIDPLO\ZK\QRWSXUFKDVHVRPHFDOHQGDUV IRUUHVDOHWKURXJK\RXU UHWDLORXWOHWVRUIRUJLIWV IRUVWDIIVSRQVRUVRUIRU IXQGUDLVLQJHYHQWV" 2UGHU\RXUFDOHQGDUVIURPRXUZHEVLWH ZZZDPSKLELDQDUNRUJFDOHQGDURUGHUIRUP 5HPHPEHU±DVZHOODVKDYLQJDVSHFWDFXODUFDOHQGDU WRNHHSWUDFNRIDOO\RXULPSRUWDQWGDWHV\RX¶OODOVREH GLUHFWO\KHOSLQJWRVDYHDPSKLELDQVDVDOOSUR¿WVZLOOEH XVHGWRVXSSRUWDPSKLELDQFRQVHUYDWLRQSURMHFWV ZZZDPSKLELDQDUNRUJ FrogLog Vol. 99 | November
    [Show full text]
  • Treefrog (Hyla Squirella) Responses to Rangeland and Management in Semi-Tropical Florida, Usa
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2010 Treefrog (hyla Squirella) Responses To Rangeland And Management In Semi-tropical Florida, Usa Kathryn Windes University of Central Florida Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Windes, Kathryn, "Treefrog (hyla Squirella) Responses To Rangeland And Management In Semi-tropical Florida, Usa" (2010). Electronic Theses and Dissertations, 2004-2019. 4412. https://stars.library.ucf.edu/etd/4412 TREEFROG (HYLA SQUIRELLA) RESPONSES TO RANGELAND MANAGEMENT IN SEMI-TROPICAL FLORIDA, USA by KATHRYN MARIE WINDES B.S. Butler University, 2006 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biology in the College of Sciences at the University of Central Florida Orlando, Florida Summer Term 2010 © 2010 Kathryn Marie Windes ii ABSTRACT As urban areas expand, agricultural lands become increasingly important habitat for many species. Compared to some types of agricultural land-use, ranchlands provide vast expanses of minimally modified habitat that support many threatened and endangered species. Conservation biologists can promote ecologically sound management approaches by quantifying the effects of agricultural practices on resident species. I examined the effects of pasture management, cattle grazing, and landscape characteristics on both adult and larval treefrogs in a ranchland in south-central Florida.
    [Show full text]
  • Formal Description of the New Tree Frog Species Inhabiting Northern Italy and Southern Switzerland
    Formal description of the new tree frog species inhabiting Northern Italy and Southern Switzerland Autor(en): Dufresnes, Christophe / Mazepa, Glib / Rodrigues, Nicolas Objekttyp: Article Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles Band (Jahr): 97 (2018) PDF erstellt am: 26.09.2021 Persistenter Link: http://doi.org/10.5169/seals-813305 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Formal description of the new tree frog species inhabiting Northern Italy and Southern Switzerland Christophe DUFRESNES1'2'3 *, Glib MAZEPA1'4, Nicolas RODRIGUES1, Alan BRELSFORD1'5, Spartak N. LITVINCHUK6'7, Roberto SERMIER1, Guillaume LAVANCHY1, Caroline BETTO-COLLIARD1, Olivier BLASER1, Amaël BORZÉE8, Elisa CAVOTO1, Guillaume FAB RE1, Karim GHALI1, Christine GROSSEN1'9, Agnes HORN1, Julien LEUENBERGER1, Barret C PHILIPS1, Paul A.
    [Show full text]
  • Phänotypische Plastizität Bei Kaulquappen Des Europäischen Laubfrosches, Hyla Arborea
    Phänotypische Plastizität bei Kaulquappen des Europäischen Laubfrosches, Hyla arborea. Claudia Lemcke Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität Phänotypische Plastizität bei Kaulquappen des Europäischen Laubfrosches, Hyla arborea Claudia Lemcke Dissertation zur Erlangung des Doktorgrades Dezember 2005 Ludwig-Maximilians-Universität München Department Biologie II Großhaderner Str. 2 82152 Planegg/Martinsried Gutachter: Dr. Ralph Tollrian Dr. Herwig Stibor Dissertationsabgabe Termin: 20.12.2005 Tag der mündlichen Prüfung: 02.02.2006 Inhaltsverzeichnis Inhaltsverzeichnis 1. Zusammenfassung........................................................................................................... 2 2. Abstract............................................................................................................................ 5 3. Einleitung ......................................................................................................................... 7 3.1. Induzierbare Verteidigung 7 3.2. Induzierbare Verteidigung bei Amphibien 8 4. Studienobjekte ............................................................................................................... 10 4.1. Laubfrosch, Hyla arborea (Anura, Hylidae) 10 4.2. Prädator: Libellenlarve Blaugrüne Mosaikjungfer, Aeshna cyanea (Odonata, Aeshnidae) 12 5. Zusammenfassung der einzelnen Artikel.................................................................... 13 5.1. Predator induced phenotypic plasticity in the European tree frog, Hyla arborea:
    [Show full text]
  • Bufotes Balearicus) Within the Sentina Regional Natural Reserve (San Benedetto Del Tronto, AP)
    Università degli Studi di Camerino Scuola di Scienze e Tecnologie Degree Course in Geological, Natural and Environmental Sciences (L-32) Ecological and biometric analysis techniques on two contiguous populations of green toad (Bufotes balearicus) within the Sentina Regional Natural Reserve (San Benedetto del Tronto, AP) Stage report Graduate: Fiamma Borgni Unicam Tutor: Dott. Mario Marconi Company Tutor: Dott. Stefano Chelli Accademic Year 2018-2019 Abstract La finalità di questo stage è volta allo studio della popolazione di rospo smeraldino (Bufotes balearicus, Laurenti, 1768) durante il periodo di fregola all’interno della Riserva Naturale Regionale della Sentina. Nel corso dei monitoraggi, avendo rinvenuto una consistente popolazione di questa specie nel vicino torrente Ragnola, a 2,2 km di distanza dalla riserva, quest’ultimo è stato incluso nel monitoraggio. Il rilevamento dei dati biometrici (lunghezza e peso) ha coinvolto anche gli altri membri della batracofauna della riserva, onde avere un quadro della situazione più chiaro. È stata rilevata la presenza abbondante di Pelophylax bergeri kl. Hispanicus (Bonaparte, 1839), e una più modesta di Hyla intermedia (Boulenger, 1882), oltre quella del rospo smeraldino, il quale all’interno della riserva sembra soffrire della situazione di instabilità del livello d’acqua dei canali e del regime agricolo attualmente presente. Al torrente Ragnola la popolazione e l’attività di fregola è più stabile. La virtuale assenza del rospo comune, specie euriecia per eccellenza, è degna di nota. Introduction The present study is an analysis of the herpetofauna in the Regional Natural Reserve of Sentina. In particular, our attention has focused on an ecological and biometric analysis of two adjacent populations of green toads (Bufotes balearicus, Laurenti, 1768), a species protected by the Habitat Directive, Annex IV.
    [Show full text]
  • Tree Frogs with Foreign Sex Chromosomes Are Less Fit 15 February 2016
    Tree frogs with foreign sex chromosomes are less fit 15 February 2016 the German Science Foundation (DFG) at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), by means of population genetic methods. Together with an international team he investigates the contact of the two tree frog species at the Vistula. For Dr. Christophe Dufresnes from the University of Lausanne, first author of the common study just published in Scientific Reports, this "suggests that the undifferentiated sex chromosomes in these tree frogs contribute more to the evolution of new species than other, normal chromosomes". "We have made great efforts and spent many nights in the field to cover large parts of Poland when sampling saliva from the two tree frog species for genetic analyses", said Tomasz The Eastern tree frog (Hyla orientalis) recolonized the Majtyka, the University of Wroclaw and equal first northern latitudes after the last ice age from a glacial author of the study. refugium around the Black Sea and meets the other species, the European tree frog, in the region of the Vistula River in Poland. Credit: Christophe Dufresnes Amphibian researcher Matthias Stöck refers to the fact that gene flow between these two young tree frog species is not completely interrupted, yet, which is typical of such young species. "The gene During the last glaciation, a huge ice shield exchange is the least between the sex reached up to the region of today's Berlin. By the chromosomes in interspecies crosses, the sex time it started to melt about 20.000 years ago, it chromosomes 'collaborate' the worst with the other enabled a gradual re-colonization of the northern chromosomes from the foreign species", he says.
    [Show full text]
  • Re-Introduction of European Tree Frog in Latvia
    Amphbians Re-introduction of European tree frog in Latvia Ilze Dunce Curator of Amphibians, Riga Zoo, Meza av.1, LV1014, Riga, Latvia [email protected] Introduction European tree frog was considered as extinct in Latvia since last decades of the 20th century. Data on the former distribution of this species are rather incomplete. Several faunists of German origin (Fischer, Seidlitz and Schweder) have mentioned the species as being present in Latvia in the 18th - 19th centuries (Silins & Lamsters,1934). Several reports have even been received in the 1980s (Zvirgzds et al., 1995). Intensive agriculture, rapid deterioration in total area covered mainly by wetlands, and extinction of beaver (Castor fiber) in Latvia in the end of 19th century, could be the main factors, which could cause the vanishing of Hyla arborea from Latvia. The re-introduction program was started by Riga Zoo in 1987, and a total of 4,110 juveniles in total were released in SW Latvia (Liepaja district), where protected area with total area of 350 ha was established in 1999. The area accommodates a large number of ponds, considerably changed by beavers. Before the re-introduction started, the European tree frog was listed in Red Data Book of Latvia under Category I (endangered species) (Latvijas PSR Sarkana gramata, 1985), at meantime Category II (vulnerable species) (Latvijas Sarkana gramata, 2003). The European tree frog is included in Appendix II of the Bern Convention. Goals x Goal 1:ȱCreating sustainable populations of European tree frog in Latvia. x Goal 2:ȱProving that creating sustainable populations of amphibians in nature is possible by releasing of specimens, bred under laboratory conditions.
    [Show full text]
  • Effectiveness of Artificial Amphibian Breeding Sites Against Non-Native Species in a Public Protected Area in Tuscany, Italy
    G. Bruni, G. Ricciardi & A.Vannini / Conservation Evidence (2016) 13, 12-16 Effectiveness of artificial amphibian breeding sites against non-native species in a public protected area in Tuscany, Italy Giacomo Bruni*1, Giulia Ricciardi2 & Andrea Vannini3 1 Centro Iniziativa Ambiente Sestese, Circolo Legambiente, via Scardassieri 47/A, 50019 Sesto Fiorentino, Italy 2 via Leonardo da Vinci 15, 50132 Firenze, Italy 3 via Pompeo Ciotti 60/2, 59100 Prato, Italy SUMMARY The spread of non-native invasive species is among the factors thought to be responsible for the recent global declines in amphibian populations. In a Protected Natural Area of Local Interest in Tuscany, Italy, we tested approaches for preserving the local amphibian populations threatened by the presence of the red swamp crayfish Procambarus clarkii. The construction of artificial breeding ponds, with suitable vertical barriers, was initially effective in preventing the spread of the red swamp crayfish and created a source site for amphibians, in particular newt species. Unfortunately, five years after construction, the breeding sites were colonized by fish and crayfish, possibly due to the actions of members of the public. BACKGROUND importance were still present. Five species of amphibian were observed at the site: Italian crested newt Triturus carnifex, Amphibians are regarded as the most endangered class of smooth newt Lissotriton vulgaris, Italian tree frog Hyla vertebrates (Gibbons et al. 2000, Stuart et al. 2004), and their intermedia, Balearic green toad Bufotes balearicus, and Italian global decline is matter of great concern because of its pool frog Pelophylax bergeri, together with the hybrid species consequences for species conservation and ecosystem function Pelophylax kl.
    [Show full text]
  • (Neomys Fodiens) and Tree Frog (Hyla Arborea) in the Baakse Beek Study Area
    Temporary habitats within multifunctional agriculture for the water shrew (Neomys fodiens) and tree frog (Hyla arborea) in the Baakse Beek study area Coen Westerduin Plant Production Systems Group, Wageningen University, Wageningen, the Netherlands Various factors have contributed to the decline of many organisms, including the Eurasian water shrew Neomys fodiens and the European tree frog Hyla arborea, over the past decades. This literature study focuses on the habitat requirements for these two animals, including water quality, food and vegetation, to investigate a re-introduction of these species in the Baakse Beek area in the east of the Netherlands, which is one of the subjects of study of the CARE (Climate Adaptation for Rural arEas) project. Developmental possibilities and timescales are investigated to find out if only temporary living areas for these animals could be accomplished, allowing for freedom of land use for farmers in the area. The varied diet, tolerance to pollution, relative independence of vegetation and lack of preference for different substrates or banks, complemented by its little affinity to certain areas and short lifespan, seem to make N. fodiens a suitable candidate for such schemes. Higher demands for water quality by H. arborea are the main objections against introduction of this species in an eutrophicated agricultural landscape. Dependence on vegetation and a habit of returning to older, no longer existing habitats provide further arguments against this practice. However, more research is needed on the optimum habitats of both animals, as reasons for their decline, and as such their requirements, are still ill- understood. 1. Introduction agricultural area in the Netherlands was involved Habitat loss, pollution and several other factors in nature conservation, well below the EU have resulted in a decline or even local extinction average of 25% in 2002 (Berentsen et al., 2007).
    [Show full text]
  • European Tree Frog
    Presentation by: Sofija Videska Scientific classification Kingdom: Animalia Phylum: Chordata Class: Amphibia Order: Anura Family: Hylidae Genus: Hyla Species: H.arborea Basic description The European tree frog (Hyla arborea formerly Rana arborea) is a small tree frog found in Europe, Asia and part of Africa Males range from 32–43 mm in length Females range from 40–50 mm in length Females have white throats, while males have golden brown throats The discs on the frog's toes, is a characteristic feature of H. arborea Distribution and habitat Most of Europe (except Ireland), northwest Africa, and temperate Asia to Japan European tree frogs can be found in marshlands,damp meadows,reed beds,parks,gardens, vineyards, orchards, stream banks, lakeshores,or humid or dry forests They tend to avoid dark or thick forests Behavior Historically, tree frogs were used as barometers because they respond to approaching rain by croaking Depending on subspecies, temperature, humidity, and the frog's 'mood', skin colour ranges from bright to olive green, grey, brown and yellow They hibernate in walls, cellars, under rocks, under clumps of vegetation, or buried in leaf piles or manure piles Diet European tree frogs eat a variety of small arthropods, such as spiders, flies, beetles, butterflies, and smooth caterpillars Their ability to take long leaps allow them to catch fast-flying insects, which make up most of their diets Reproduction European tree frogs They croak in the reproduce in stagnant breeding season, bodies of water, such as even when migrating lakes, ponds, swamps, to their mating pools reservoirs, and or ponds sometimes puddles,[from late March to June About 800 to 1000 eggs are laid in clumps the size of a walnut.
    [Show full text]
  • LIFE and Europe's Reptiles and Amphibians: Conservation
    LIFE and Europe’s reptiles and amphibians Conservation in practice colours C/M/Y/K 32/49/79/21 LIFE Focus I LIFE and Europe’s reptiles and amphibians: Conservation in practice EUROPEAN COMMISSION ENVIRONMENT DIRecTORATE-GENERAL LIFE (“The Financial Instrument for the Environment”) is a programme launched by the European Commission and coordinated by the Environment Directorate-General (LIFE Unit - E.4). The contents of the publication “LIFE and Europe’s reptiles and amphibians: Conservation in practice” do not necessarily reflect the opinions of the institutions of the European Union. Authors: João Pedro Silva (Nature expert), Justin Toland, Wendy Jones, Jon Eldridge, Tim Hudson, Eamon O’Hara (AEIDL, Commu- nications Team Coordinator). Managing Editor: Joaquim Capitão (European Commission, DG Environment, LIFE Unit). LIFE Focus series coordination: Simon Goss (DG Environment, LIFE Communications Coordinator), Evelyne Jussiant (DG Environment, Com- munications Coordinator). The following people also worked on this issue: Esther Pozo Vera, Juan Pérez Lorenzo, Frank Vassen, Mark Marissink, Angelika Rubin (DG Environment), Aixa Sopeña, Lubos Halada, Camilla Strandberg-Panelius, Chloé Weeger, Alberto Cozzi, Michele Lischi, Jörg Böhringer, Cornelia Schmitz, Mikko Tiira, Georgia Valaoras, Katerina Raftopoulou, Isabel Silva (Astrale EEIG). Production: Monique Braem. Graphic design: Daniel Renders, Anita Cortés (AEIDL). Acknowledgements: Thanks to all LIFE project beneficiaries who contributed comments, photos and other useful material for this report. Photos: Unless otherwise specified; photos are from the respective projects. Europe Direct is a service to help you find answers to your questions about the European Union. New freephone number: 00 800 6 7 8 9 10 11 Additional information on the European Union is available on the Internet.
    [Show full text]