On the Kinematic Formula in the Lives of the Saints Danny Calegari

Total Page:16

File Type:pdf, Size:1020Kb

On the Kinematic Formula in the Lives of the Saints Danny Calegari SHORT STORIES On the Kinematic Formula in the Lives of the Saints Danny Calegari Saint Sebastian was an early Christian martyr. He served as a captain in the Praetorian Guard under Diocletian un- til his religious faith was discovered, at which point he was taken to a field, bound to a stake, and shot by archers “till he was as full of arrows as an urchin1 is full of pricks2.” Rather miraculously, he made a full recovery, but was later executed anyway for insulting the emperor. The trans- pierced saint became a popular subject for Renaissance painters, e.g., Figure 1. The arrows in Mantegna’s painting have apparently ar- rived from all directions, though they are conspicuously grouped around the legs and groin, almost completely missing the thorax. Intuitively, we should expect more ar- rows in the parts of the body that present a bigger cross section. This intuition is formalized by the claim that a subset of the surface of Saint Sebastian has an area pro- portional to its expected number of intersections with a random line (i.e., arrow). Since both area and expectation are additive, we may reduce the claim (by polygonal ap- proximation and limit) to the case of a flat triangular Saint Sebastian, in which case it is obvious. Danny Calegari is a professor of mathematics at the University of Chicago. His Figure 1. Andrea Mantegna’s painting of Saint Sebastian. email address is [email protected]. 1 hedgehog This is a 3-dimensional version of the classical Crofton 2quills formula, which says that the length of a plane curve is pro- For permission to reprint this article, please contact: portional to its expected number of intersections with a [email protected]. random line. A famous application is known as “Buffon’s DOI: https://doi.org/10.1090/noti2117 needle”. In the Euclidean plane we consider the family of 1042 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 67, NUMBER 7 Short Stories all horizontal lines whose 푦 coordinate is an integer, and dimension). Chern generalizes this as follows: for every we drop a needle of length 1 so that it lands somewhere even number 푒 ≤ 푝 + 푞 − 푛 he proves there is a formula at random. Then the probability that the needle crosses one of the lines is 2/휋 (i.e., the average of | sin(휃)|, where ∫ 휇푒(푀 ∩ 푔푁) 푑푔 = ∑ 푐푖휇푖(푀)휇푒−푖(푁) 휃 is the angle the needle makes with the horizontal). In 푔∈퐺 even 푖≤푒 fact, the only relevance of the straightness of the needle is where 푐푖 are universal constants depending only on 1 that a straight needle of length can cross at most one of 푛, 푝, 푞, 푒, and the 휇푒 are certain geometric invariants of 푀 the horizontal lines in at most one point. If you trade in and 푁 concentrated in “codimension 푒” (so to speak). Fur- your needle for a stick of spaghetti of the same length (i.e., thermore, Chern’s formula is valid in the “noodly” sense “Buffon’s noodle”) and then cook the spaghetti and drop that the invariants 휇푖 depend only on the intrinsic Rie- it at random in the plane, the expected number of cross- mannian geometry of the manifolds, and not on how they ings with the horizontal lines is still 2/휋, no matter what are isometrically embedded in Euclidean space. complicated physical process determines its shape. The geometric invariants 휇푒 appear in Weyl’s (closely re- lated) formula for the volume of a (sufficiently narrow) tube of radius 휌 about a 푘-dimensional submanifold 푋 of ℝ푛. Let 푇(푋, 휌) denote the tube around 푋 of radius 휌, where 휌 is sufficiently small depending on 푋. Then vol(푇(푋, 휌)) (푒 − 1)(푒 − 3) ⋯ 1 = 푂 ∑ 휇 (푋)휌푛−푘+푒, 푛−푘 (푛 − 푘 + 푒)(푛 − 푘 + 푒 − 2) ⋯ (푛 − 푘) 푒 even 푒≤푘 푖 where 푂푖 is the volume of the unit sphere in Euclidean ℝ , Figure 2. A random noodle of length 1 has 2/휋 expected and the 휇푒(푋) are certain integrals over 푋 of invariant poly- crossings with the horizontal lines. nomials in the matrix entries of the second fundamental form. Evidently the leading order term for small 휌 is just 푛−푘 Crofton’s formula can be greatly generalized. For ex- 푂푛−푘vol푘(푋)휌 ; i.e., 휇0(푋) = vol푘(푋). One may think ample, Kang and Tasaki give a formula for the expected of Weyl’s formula as a special case of (Federer’s version of) 푛 number of intersections of a (real) surface 푆 in ℂℙ with a the kinematic formula, taking 푀 = 푋 and 푁 equal to a ball random hyperplane. The number of such intersections is 퐵휌 of small radius 휌. Then 휇푖(퐵휌) is (up to a constant) just 1 the appropriate power of 휌. ∫1 + cos2(휃 ) 푑area(푥), 2휋 푥 Weyl’s formula is exact, but only valid for 휌 small 푆 enough so that the exponential map is an embedding on 푥 ∈ 푆 휃 where for a point the “Kähler angle” 푥 measures the normal disk bundle of radius 휌. What the formula re- 푇푆 푣 , 푣 how far is from being complex: if 1 2 is an orthonor- ally computes is the integral over this normal disk bun- 푇 푆 cos(휃 ) 푖푣 mal basis for 푥 , then 푥 is the inner product of 1 dle of the pullback of the Euclidean volume form under 푣 푆 with 2. For example, if is a holomorphic curve, then the exponential map. For larger 휌 one must compute vol- 휃 = 0 and the area of 푆 is 휋 times the degree, whereas for 푆 2 ume with multiplicity (where different sheets of the image equal to the “standardly embedded” ℝℙ one has 휃 = 휋/2 of the exponential map overlap each other) and with sign and the area is 2휋. (where the Jacobian of the exponential map has negative One of the most beautiful generalizations is the so- sign). For accuracy we should call this the algebraic volume called kinematic formula of Chern (actually, a more general of 푇(푋, 휌), to distinguish it from the naive volume. Fig- formula still, valid for manifolds with boundary among ure 3 shows a region where three local sheets of the expo- other things, was obtained seven years earlier by Federer). nential map overlap, two with positive sign and one nega- “Kinematic” here refers to the group 퐺 of isometries of tive. 푝 푞 Euclidean space. Given submanifolds 푀 and 푁 of Eu- One can think of Weyl’s formula as a Taylor series, but 푛 clidean ℝ , a modest improvement of Crofton’s formula if so it has two properties that are rather startling at first says glance: 1. the nonzero terms all have the same parity (equal to ∫ vol푝+푞−푛(푀 ∩ 푔푁) 푑푔 = 푐 vol푝(푀)vol푞(푁), 푔∈퐺 the codimension of 푋); and 2. there are only finitely many nonzero terms! where vol푖 denotes 푖-dimensional volume, and 푐 is a univer- sal constant depending only on the dimensions 푛, 푝, 푞, and Actually a little reflection makes these properties appear the normalization of the measure on 퐺 (the actual compu- less preposterous. Firstly, if we express 푇(푋, 휌) as the inte- tation of 푐 was first carried out by Santal´o,who showed it gral of a density 푇(푋, 휌, 푣) over vectors 푣 in the unit normal is a ratio of products of Euclidean unit spheres of various bundle 휈, then if we expand 푇(푋, 휌, 푣) for any fixed 푣 as a AUGUST 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1043 Short Stories by 푁휌(푥, ±1) = exp(±휌푣), where 푣 is the positive unit nor- mal to 푋 at 푥. For big 휌, it is approximately true that 푁휌 maps 푋 × 1 (resp., 푋 × −1) to the sphere of radius 휌 by 휌 ⋅ 퐺 (resp., −휌 ⋅ 퐺) where 퐺 is the Gauss map. If 푘 is even the antipodal map has degree −1. Since the components of 푋 × ±1 have opposite orientations, it follows that the oriented degree of both maps is equal to deg(퐺) = 휒(푋)/2. 푛 Thus the coefficient of 휌 in Weyl’s formula is 푂푛휒(푋), and by running this argument in reverse, we obtain a proof of the Chern–Gauss–Bonnet formula! Taking 푒 = 푝 + 푞 − 푛 in Chern’s formula one has the rather extraordinary conclusion that if one drops 푝- and 푞-dimensional noodles 푀 and 푁 randomly into ℝ푛 the expected Euler characteristic of their intersection depends only on the intrinsic Riemannian geometry of 푀 and 푁. Saints alive! Figure 3. A ‘tube’ of sufficiently large radius has volume which must be counted with multiplicity and with sign. In this figure, the red region is counted with multiplicity 1, the green AUTHOR’S NOTE. Chern’s formula is proved in the pa- region with multiplicity 1 + 1 − 1, and the blue region with per “On the Kinematic Formula in Integral Geometry,” multiplicity 1 + 1. J. Math. Mech. 16 (1966), no. 1, 101–118. Federer’s pa- per “Curvature measures,” Trans. AMS 93 (1959), 418– power series in 휌 we will have 푇(푋, 휌, −푣) = 푇(푋, −휌, 푣). 491, is also recommended. Thus only the terms with an even exponent will survive after integrating over 푣. Secondly, if we approximate 푋 by a polyhedron 푌, it is obvious that each codimension 푒 simplex 휎 contributes an 푛−푘+푒 expression of the form 푐푒 훼(휎)vol푘−푒(휎)휌 , where 푐푒 is a constant depending only on 푛, 푘, 푒, and where 훼(휎) (the angle excess) is the volume of a certain (dual) immersed spherical polyhedron whose faces are inductively associ- ated to higher-dimensional simplices 휏 incident to 휎.
Recommended publications
  • Groups of PL Homeomorphisms of Cubes
    GROUPS OF PL HOMEOMORPHISMS OF CUBES DANNY CALEGARI AND DALE ROLFSEN D´edi´e`aMichel Boileau sur son soixanti`eme anniversaire. Sant´e! Abstract. We study algebraic properties of groups of PL or smooth homeo- morphisms of unit cubes in any dimension, fixed pointwise on the boundary, and more generally PL or smooth groups acting on manifolds and fixing point- wise a submanifold of codimension 1 (resp. codimension 2), and show that such groups are locally indicable (resp. circularly orderable). We also give many examples of interesting groups that can act, and discuss some other algebraic constraints that such groups must satisfy, including the fact that a group of PL homeomorphisms of the n-cube (fixed pointwise on the boundary) contains no elements that are more than exponentially distorted. 1. Introduction We are concerned in this paper with algebraic properties of the group of PL homeomorphisms of a PL manifold, fixed on some PL submanifold (usually of codimension 1 or 2, for instance the boundary) and some of its subgroups (usually those preserving some structure). The most important case is the group of PL homeomorphisms of In fixed pointwise on ∂In; hence these are “groups of PL homeomorphisms of the (n-)cube”. The algebraic study of transformation groups (often in low dimension, or preserv- ing some extra structure such as a symplectic or complex structure) has recently seen a lot of activity; however, much of this activity has been confined to the smooth category. It is striking that many of these results can be transplanted to the PL category. This interest is further strengthened by the possibility of working in the PL category over (real) algebraic rings or fields (this possibility has already been exploited in dimension 1, in the groups F and T of Richard Thompson).
    [Show full text]
  • Commentary on Thurston's Work on Foliations
    COMMENTARY ON FOLIATIONS* Quoting Thurston's definition of foliation [F11]. \Given a large supply of some sort of fabric, what kinds of manifolds can be made from it, in a way that the patterns match up along the seams? This is a very general question, which has been studied by diverse means in differential topology and differential geometry. ... A foliation is a manifold made out of striped fabric - with infintely thin stripes, having no space between them. The complete stripes, or leaves, of the foliation are submanifolds; if the leaves have codimension k, the foliation is called a codimension k foliation. In order that a manifold admit a codimension- k foliation, it must have a plane field of dimension (n − k)." Such a foliation is called an (n − k)-dimensional foliation. The first definitive result in the subject, the so called Frobenius integrability theorem [Fr], concerns a necessary and sufficient condition for a plane field to be the tangent field of a foliation. See [Spi] Chapter 6 for a modern treatment. As Frobenius himself notes [Sa], a first proof was given by Deahna [De]. While this work was published in 1840, it took another hundred years before a geometric/topological theory of foliations was introduced. This was pioneered by Ehresmann and Reeb in a series of Comptes Rendus papers starting with [ER] that was quickly followed by Reeb's foundational 1948 thesis [Re1]. See Haefliger [Ha4] for a detailed account of developments in this period. Reeb [Re1] himself notes that the 1-dimensional theory had already undergone considerable development through the work of Poincare [P], Bendixson [Be], Kaplan [Ka] and others.
    [Show full text]
  • Universal Circles for Quasigeodesic Flows 1 Introduction
    Geometry & Topology 10 (2006) 2271–2298 2271 arXiv version: fonts, pagination and layout may vary from GT published version Universal circles for quasigeodesic flows DANNY CALEGARI We show that if M is a hyperbolic 3–manifold which admits a quasigeodesic flow, then π1(M) acts faithfully on a universal circle by homeomorphisms, and preserves a pair of invariant laminations of this circle. As a corollary, we show that the Thurston norm can be characterized by quasigeodesic flows, thereby generalizing a theorem of Mosher, and we give the first example of a closed hyperbolic 3–manifold without a quasigeodesic flow, answering a long-standing question of Thurston. 57R30; 37C10, 37D40, 53C23, 57M50 1 Introduction 1.1 Motivation and background Hyperbolic 3–manifolds can be studied from many different perspectives. A very fruitful perspective is to think of such manifolds as dynamical objects. For example, a very important class of hyperbolic 3–manifolds are those arising as mapping tori of pseudo-Anosov automorphisms of surfaces (Thurston [24]). Such mapping tori naturally come with a flow, the suspension flow of the automorphism. In the seminal paper [4], Cannon and Thurston showed that this suspension flow can be chosen to be quasigeodesic and pseudo-Anosov. Informally, a flow on a hyperbolic 3–manifold is quasigeodesic if the lifted flowlines in the universal cover are quasi-geodesics in H3 , and a flow is pseudo-Anosov if it looks locally like a semi-branched cover of an Anosov flow. Of course, such a flow need not be transverse to a foliation by surfaces. See Thurston [24] and Fenley [6] for background and definitions.
    [Show full text]
  • Department of Mathematics 1
    Department of Mathematics 1 Department of Mathematics Chair • Shmuel Weinberger Professors • Laszlo Babai, Computer Science and Mathematics • Guillaume Bal, Statistics and Mathematics • Alexander A. Beilinson • Danny Calegari • Francesco Calegari • Kevin Corlette • Marianna Csörnyei • Vladimir Drinfeld • Todd Dupont, Computer Science and Mathematics • Matthew Emerton • Alex Eskin • Benson Farb • Robert A. Fefferman • Victor Ginzburg • Denis Hirschfeldt • Kazuya Kato • Carlos E. Kenig • Gregory Lawler, Mathematics and Statistics • Maryanthe Malliaris • J. Peter May • Andre Neves • Bao Châu Ngô • Madhav Vithal Nori • Alexander Razborov, Mathematics and Computer Science • Luis Silvestre • Charles Smart • Panagiotis Souganidis • Sidney Webster • Shmuel Weinberger • Amie Wilkinson • Robert Zimmer Associate Professors • Simion Filip • Ewain Gwynne Assistant Professors • Sebastian Hurtado-Salazar • Dana Mendelson • Nikita Rozenblyum • Daniil Rudenko Instructors • Lucas Benigni • Guher Camliyurt • Stephen Cantrell • Elliot Cartee • Mark Cerenzia 2 Department of Mathematics • Andrea Dotto • Mikolaj Fraczyk • Pedro Gasper • Kornelia Hera • Trevor Hyde • Kasia Jankiewicz • Justin Lanier • Brian Lawrence • Zhilin Luo • Akhil Mathew • Henrik Matthieson • Cornelia Mihaila • Lucia Mocz • Benedict Morrissey • Davi Obata • Lue Pan • Wenyu Pan • Beniada Shabani • Danny Shi • Daniel Stern • Ao Sun • Xuan Wu • Zihui Zhao • Jinping Zhuge Senior Lecturers • John Boller • Lucas Culler • Jitka Stehnova • Sarah Ziesler Lecturer • Meghan Anderson Assistant Instructional
    [Show full text]
  • Arxiv:1911.02470V3 [Math.GT] 20 Apr 2021 Plicial Volume of Gr As Kgrk := Kαr,Rk1, the L -Semi-Norm of the Fundamental Class Αr (Section 3.1)
    Simplicial volume of one-relator groups and stable commutator length Nicolaus Heuer, Clara L¨oh April 21, 2021 Abstract A one-relator group is a group Gr that admits a presentation hS j ri with a single relation r. One-relator groups form a rich classically studied class of groups in Geometric Group Theory. If r 2 F (S)0, we introduce a simplicial volume kGrk for one-relator groups. We relate this invariant to the stable commutator length sclS (r) of the element r 2 F (S). We show that often (though not always) the linear relationship kGrk = 4·sclS (r)−2 holds and that every rational number modulo 1 is the simplicial volume of a one-relator group. Moreover, we show that this relationship holds approximately for proper powers and for elements satisfying the small cancellation condition C0(1=N), with a multiplicative error of O(1=N). This allows us to prove for random 0 elements of F (S) of length n that kGrk is 2 log(2jSj − 1)=3 · n= log(n) + o(n= log(n)) with high probability, using an analogous result of Calegari{ Walker for stable commutator length. 1 Introduction A one-relator group is a group Gr that admits a presentation hS j ri with a single relation r 2 F (S). This rich and well studied class of groups in Geometric Group Theory generalises surface groups and shares many properties with them. A common theme is to relate the geometric properties of a classifying space of Gr to the algebraic properties of the relator r 2 F (S).
    [Show full text]
  • Arxiv:Math/0605354V4 [Math.GT] 6 Jun 2007 Oino Hti En O Ojgc Ls Ohv Ml Tbeco Stable Small Have to Class Conjugacy a for Means It Length
    LENGTH AND STABLE LENGTH DANNY CALEGARI Abstract. This paper establishes the existence of a gap for the stable length spectrum on a hyperbolic manifold. If M is a hyperbolic n-manifold, for every positive ǫ there is a positive δ depending only on n and on ǫ such that an element of π1(M) with stable commutator length less than δ is represented by a geodesic with length less than ǫ. Moreover, for any such M, the first accumulation point for stable commutator length on conjugacy classes is at least 1/12. Conversely, “most” short geodesics in hyperbolic 3-manifolds have arbi- trarily small stable commutator length. Thus stable commutator length is typically good at detecting the thick-thin decomposition of M, and 1/12 can be thought of as a kind of homological Margulis constant. 1. Introduction If M is a closed hyperbolic n-manifold with n> 2, the Mostow Rigidity Theorem says that the geometric structure on M is uniquely determined by the algebraic structure of π1(M), up to isometry. This means that in principle, any kind of geometric information about M (e.g. length spectrum, volume, systoles, etc.) can be recovered from group theory. On the other hand, with some notable exceptions, it is not easy to find concepts which have a straightforward interpretation on both the geometric and the algebraic side. One of the most important geometric structures on a hyperbolic manifold is the thick-thin decomposition. There is a universal positive constant ǫ(n) in each dimension (i.e. the Margulis constant; see [16]) such that the part of a hyperbolic n-manifold M with injectivity radius less than ǫ (i.e.
    [Show full text]
  • CERTIFYING INCOMPRESSIBILITY of NON-INJECTIVE SURFACES with SCL 3 a Suitable S As Above
    CERTIFYING INCOMPRESSIBILITY OF NON-INJECTIVE SURFACES WITH SCL DANNY CALEGARI Abstract. Cooper–Manning [7] and Louder [10] gave examples of maps of surface groups to PSL(2, C) which are not injective, but are incompressible (i.e. no simple loop is in the kernel). We construct more examples with very simple certificates for their incompressibility arising from the theory of stable commutator length. The purpose of this note is to give examples of maps of closed surface groups to PSL(2, C) which are not π1-injective, but are geometrically incompressible, in the sense that no simple loop in the surface is in the kernel (in the sequel we use the word “incompressible” as shorthand for “geometrically incompressible”). The examples are very explicit, and the images can be taken to be all loxodromic. The significance of such examples is that they shed light on the simple loop conjecture, which says that any non-injective map from a closed oriented surface to a 3-manifold should be compressible. Examples of such maps were first shown to exist by Cooper–Manning [7], by a representation variety argument, thereby answering a question of Minsky [11] (also see Bowditch [1]). More sophisticated examples were then found by Louder [10]; he even found examples with the property that the minimal self-crossing number of a loop in the kernel can be taken to be arbitrarily large. Louder’s strategy is to exhibit an explicit finitely presented group (a limit group) which admits non- injective incompressible surface maps, and then to observe that such a group can be embedded as an all-loxodromic subgroup of PSL(2, C).
    [Show full text]
  • Geometric Group Theory and 3-Manifolds Hand in Hand: the Fulfillment of Thurston's Vision
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 51, Number 1, January 2014, Pages 53–70 S 0273-0979(2013)01434-4 Article electronically published on September 30, 2013 GEOMETRIC GROUP THEORY AND 3-MANIFOLDS HAND IN HAND: THE FULFILLMENT OF THURSTON’S VISION MLADEN BESTVINA Dedicated to Bill Thurston (1946–2012), who taught us how to think about mathematics Abstract. In the late 1970s, Thurston revolutionized our understanding of 3-manifolds. He stated a far-reaching geometrization conjecture and proved it for a large class of manifolds, called Haken manifolds. He also posed 24 open problems, describing his vision of the structure of 3-manifolds. Pieces of Thurston’s vision have been confirmed in the subsequent years. In the meantime, Dani Wise developed a sophisticated program to study cube complexes and, in particular, to promote immersions to embeddings in a finite cover. Ian Agol completed Wise’s program and, as a result, essentially all problems on Thurston’s list are now solved. In these notes I will outline a proof that closed hyperbolic 3-manifolds are virtually Haken. 1. Introduction One way to understand surfaces is to successively cut them along incompressible circles and arcs until a collection of disks is obtained. Figure 1 shows this process for the torus. Figure 1. Cutting a torus. By incompressible we mean that circles are π1-injective (or equivalently do not bound disks), and that arcs, whose boundaries are always in the boundary of the surface, do not cobound disks with arcs in the boundary of the surface. The collec- tion of surfaces obtained by successive cuts is the hierarchy of the original surface.
    [Show full text]
  • [Math.GT] 9 Nov 2001
    THE GROMOV NORM AND FOLIATIONS DANNY CALEGARI Abstract. We define a norm on the homology of a foliated manifold, which refines and majorizes the usual Gromov norm on homology. This norm depends in an upper semi–continuous way on the underlying foliation, in the geometric topology. We show that this norm is non–trivial — i.e. it distinguishes certain taut foliations of a given hyperbolic 3–manifold. Using a homotopy–theoretic refinement, we show that a taut foliation whose leaf space branches in at most one direction cannot be the geometric limit of a sequence of isotopies of a fixed taut foliation whose leaf space branches in both directions. Our technology also lets us produce examples of taut foliations which cannot be made transverse to certain geodesic triangulations of hyperbolic 3–manifolds, even after passing to a finite cover. Finally, our norm can be extended to actions of fundamental groups of manifolds on order trees, where it has similar upper semi–continuity properties. 1. Introduction The study of group actions on trees and tree–like objects has for a long time been an important tool in 3–manifold topology. J. Stallings pioneered this approach with a topological proof of Grushko’s theorem [23], and more generally it is by now a standard observation that a decomposition of a 3–manifold along an incompressible surface is “dual” to some action of π1(M) on a tree. M. Culler and P. Shalen [6] used the action of π1(M) for M a hyperbolic manifold on the Bruhat–Tits tree of SL(2, F ), where F is the function field of a curve in the SL(2, C) representation variety of π1, to obtain striking topological results about M.
    [Show full text]
  • Algebraic Topology, Fall 2013, Final
    ALGEBRAIC TOPOLOGY, FALL 2013, FINAL DANNY CALEGARI This final exam was posted online on Friday, December 6, and is due by 11:30 on Friday, December 13. Collaboration is not allowed, nor is the use of outside materials and textbooks. Hatcher and your class notes may be used to remember definitions, but not to copy calculations or proofs. Bonus problems are just for fun, and do not contribute to the grade for the class. Problem 1. Compute the cup product structure on the cohomology of a Klein bottle, for both integer and Z/2Z coefficients. 2 1 Problem 2. Show that π2(S ∨ S ) is infinitely generated (hint: think about covering spaces). Problem 3. Let M be a closed 3-manifold with π2(M) = 0. Show that the fundamental group of M cannot contain a subgroup isomorphic to Z4, and if it contains a subgroup isomorphic to Z3, that subgroup is finite index. 2n Problem 4. Show that for any n, the covering projection S2n → RP induces 0 in (integral) homology or cohomology (except in dimension 0) but this map is not null-homotopic. 2 2 2 Problem 5. Is there a map f : CP → CP of negative degree (i.e. taking the generator of H4(CP ) to a negative multiple of itself)? Problem 6. Give an example of two closed, connected manifolds whose homotopy groups are isomorphic in every dimension, but which are not homotopy equivalent. Problem 7. A closed orientable n-manifold M is spherical if there is some map f : Sn → M of nonzero n degree (i.e.
    [Show full text]
  • Notes on 3-Manifolds
    CHAPTER 1: COMBINATORIAL FOUNDATIONS DANNY CALEGARI Abstract. These are notes on 3-manifolds, with an emphasis on the combinatorial theory of immersed and embedded surfaces, which are being transformed to Chapter 1 of a book on 3-Manifolds. These notes follow a course given at the University of Chicago in Winter 2014. Contents 1. Dehn’s Lemma and the Loop Theorem1 2. Stallings’ theorem on ends, and the Sphere Theorem7 3. Prime and free decompositions, and the Scott Core Theorem 11 4. Haken manifolds 28 5. The Torus Theorem and the JSJ decomposition 39 6. Acknowledgments 45 References 45 1. Dehn’s Lemma and the Loop Theorem The purpose of this section is to give proofs of the following theorem and its corollary: Theorem 1.1 (Loop Theorem). Let M be a 3-manifold, and B a compact surface contained in @M. Suppose that N is a normal subgroup of π1(B), and suppose that N does not contain 2 1 the kernel of π1(B) ! π1(M). Then there is an embedding f :(D ;S ) ! (M; B) such 1 that f : S ! B represents a conjugacy class in π1(B) which is not in N. Corollary 1.2 (Dehn’s Lemma). Let M be a 3-manifold, and let f :(D; S1) ! (M; @M) be an embedding on some collar neighborhood A of @D. Then there is an embedding f 0 : D ! M such that f 0 and f agree on A. Proof. Take B to be a collar neighborhood in @M of f(@D), and take N to be the trivial 0 1 subgroup of π1(B).
    [Show full text]
  • Virtual Properties of 3-Manifolds Dedicated to the Memory of Bill Thurston
    Virtual properties of 3-manifolds dedicated to the memory of Bill Thurston Ian Agol ∗ Abstract. We will discuss the proof of Waldhausen's conjecture that compact aspheri- cal 3-manifolds are virtually Haken, as well as Thurston's conjecture that hyperbolic 3- manifolds are virtually fibered. The proofs depend on major developments in 3-manifold topology of the past decades, including Perelman's resolution of the geometrization con- jecture, results of Kahn and Markovic on the existence of immersed surfaces in hyperbolic 3-manifolds, and Gabai's sutured manifold theory. In fact, we prove a more general the- orem in geometric group theory concerning hyperbolic groups acting on CAT(0) cube complexes, concepts introduced by Gromov. We resolve a conjecture of Dani Wise about these groups, making use of the theory that Wise developed with collaborators including Bergeron, Haglund, Hsu, and Sageev as well as the theory of relatively hyperbolic Dehn filling developed by Groves-Manning and Osin. Mathematics Subject Classification (2010). Primary 57M Keywords. hyperbolic, 3-manifold 1. Introduction In Thurston's 1982 Bulletin of the AMS paper Three Dimensional Manifolds, Kleinian groups, and hyperbolic geometry [118], he asked 24 questions which have guided the last 30 years of research in the field. Four of the questions have to do with \virtual" properties of 3-manifolds: • Question 15 (paraphrased): Are Kleinian groups LERF? [76, Problem 3.76 (Hass)] • Question 16: \Does every aspherical 3-manifold have a finite-sheeted cover which is Haken?" This
    [Show full text]