Foliations and the Geometry of 3–Manifolds

Total Page:16

File Type:pdf, Size:1020Kb

Foliations and the Geometry of 3–Manifolds Foliations and the Geometry of 3–Manifolds Danny Calegari California Institute of Technology CLARENDON PRESS . OXFORD 2007 iv PREFACE The pseudo-Anosov theory of taut foliations The purpose of this book is to give an exposition of the so-called “pseudo- Anosov” theory of foliations of 3-manifolds. This theory generalizes Thurston’s theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Some (but by no means all) of the content of this theory can be found already in the literature, espe- cially [236], [239], [82], [95], [173], [73], [75], [72], [31], [33], [35], [40] and [37], although I hope my presentation and perspective offers something new, even to the experts. This book is not meant to be an introduction to either the theory of folia- tions in general, nor to the geometry and topology of 3-manifolds. An excellent reference for the first is [42] and [43]. Some relevant references for the second are [127], [140], [230], and [216]. Spiral of ideas One conventional school of mathematical education holds that children should be exposed to the same material year after year, but that each time they return they should be exposed to it at a “higher level”, with more nuance, and with gradually more insight and perspective. The student progresses in an ascending spiral, rising gradually but understanding what is important. This book begins with the theory of surface bundles. The first chapter is both an introduction to, and a rehearsal for the theory developed in the rest of the book. In Thurston’s theory, this is a kind of branched linear algebra: train tracks and measured foliations reduce automorphisms of surfaces to Perron-Frobenius matrices and algebraic weights. The key to this approach is that the dynamics is carried by Abelian groups and groupoids: train tracks with one dimensional leaves carry transverse measures parameterized by manifold charts, and the dy- namical system generated by a single pseudo-Anosov element can be diagonal- ized near fixed points in these co-ordinate systems. In Nielsen’s more primitive version of this theory, cruder topological tools like the Hausdorff topology and order structures on transversals are important. When we return to these ideas at a “higher dimension”, we run up against laminations without transverse mea- sures, non-Hausdorff 1-manifolds, and “recurrent” branched surfaces which carry nothing. The linear algebra does not survive (except in the best cases), but the cruder topological tools prove more resilient. v vi Unifying themes This book is not written from a single, unified, coherent perspective. The theory of taut foliations, and their relation to geometric structures on 3-manifolds is incomplete, and one should not be too eager to stuff it into a narrow framework. Under Ren´eThom’s classification system, it deserves to be denoted by a baby’s crib denoting “live mathematics”, allowing change, clarification, completing of proofs (or development of better proofs), objection, refutation. Of course, I have at- tempted to make the arguments presented in this book as complete and self- contained as space allows; but sometimes subtle issues are better treated by giving examples (or counterexamples) than by general nonsense. And yet, there are a number of themes which are significant and are re- peated again and again throughout the book. One is the importance of geome- try, especially the hyperbolic geometry of surfaces. Another is the importance of monotonicity, especially in 1 dimensional and co-dimensional dynamics. A third theme is combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated con- tinuous objects. vii Aims and scope A principal aim of this book is to expose the idea of universal circles for taut foli- ations and other dynamical objects in 3-manifolds. Many sources feed into this idea, and I have tried to collect and present some of them and to explain how they work and fit together. Some of these sources (Dehn, Moore, Poincar´e) are very old; others are very new. Their continued vitality reflects the multiplicity of contexts in which they arise. This diversity is celebrated, and there are many loose threads in the book for the reader to tease out and play with. One of the most significant omissions is that I do not give an exposition of the many important developments in the theory of genuine laminations, mainly carried out by Dave Gabai and Will Kazez, especially in the trio of papers [92], [95] and [94]. Another serious omission is that the discussion of Fenley’s recent work re- lating pseudo-Anosov flows and (asymptotic) hyperbolic geometry is cursory, and does not attempt to explain much of the content of [79] or [78]. One sort of excuse is that Fenley’s program is currently in a period of substantial excite- ment and activity, and that one expects it to look very different even by the time this book appears in print. This book can be read straight through (like a “novel”) or the reader should be able to dip into individual chapters or sections. Only Chapter 7 and 8 are really cumulative and technical, requiring the reader to have a reasonable fa- miliarity with the contents of the rest of the book. The ideal reader is me when I entered graduate school: having a little bit of familiarity with Riemann surfaces and cut-and-paste topology in dimension 2 and 3, and a generalized fear of analysis, big technical machinery, and noncon- structive arguments. Low-dimensional topology in general has a very “hands- on” flavor. There are very few technical prerequisites: one can draw pictures which accurately represent mathematical objects, and one can do experiments and calculations which are guided by physical and spatial intuitions. The ideal reader must enjoy doing these things, must be prepared to be guided by and to sharpen these intuitions, and must want to understand why a theorem is true, beyond being able to verify that some argument proves it. I think ideal readers of this kind must exist; I hope this book finds some of them, and I hope they find it useful. Danny Calegari. Pasadena, September 2006 ACKNOWLEDGEMENTS In my second year of graduate school, the MSRI held a special year on low- dimensional topology. During that period, a number of foliators met on a semi- regular basis for the “very informal foliations seminar”. This seminar was not advertised, and one day I basically wandered off the street into the middle of a 3-hour lecture by Bill Thurston. During the next few months, I learned as much as I could from Bill, and from other attendees at that seminar, which included Mark Brittenham, Alberto Candel, Joe Christy, S´ergio Fenley, Dave Gabai, Rachel Roberts and Ying-Qing Wu. It is a pleasure to acknowledge the extent to which this seminar and these people shaped and formed my mathe- matical development and my interest in the theory of foliations and 3-manifolds, and directly contributed to the tone, point of view and content of this volume. More recently, thanks to my students — Thomas Mack, Bob Pelayo, Ru- pert Venzke and Dongping Zhuang — who sat through some early versions of this material. Thanks to Don Knuth for TEX, and thanks to the Persistence of Vision Team for writing povray, which was used to produce most of the 3- dimensional figures. Thanks to Dale Rolfsen, Amie Wilkinson, Nick Makarov, Dave Witte-Morris, Nathan Dunfield, Joel Kramer and Toby Colding for com- ments on drafts of specific chapters. Special thanks to Benson Farb for clear-headed and penetrating comments and criticisms, and for moral support. Special thanks to Bill Thurston for being so generous with time and ideas, and for creating so much of the substance of this book. Finally, super-special thanks to Tereez, Lisa and Anna, for all their love. viii CONTENTS 1 Surfacebundles 1 1.1 Surfaces and mapping class groups 1 1.2 Geometric structures on manifolds 7 1.3 Automorphisms of tori 9 1.4 PSL(2, Z) and Euclidean structures on tori 10 1.5 Geometric structures on mapping tori 11 1.6 Hyperbolic geometry 12 1.7 Geodesic laminations 17 1.8 Train tracks 32 1.9 Singular foliations 37 1.10 Quadratic holomorphic differentials 41 1.11 Pseudo-Anosov automorphisms of surfaces 44 1.12 Geometric structures on general mapping tori 45 1.13 Peano curves 46 1.14 Laminations and pinching 48 2 The topology of S1 50 2.1 Laminations of S1 50 2.2 Monotone maps 54 2.3 Pullback of monotone maps 57 2.4 Pushforward of laminations 58 2.5 Left-invariant orders 59 2.6 Circular orders 63 2.7 Homological characterization of circular groups 68 2.8 Bounded cohomology and Milnor–Wood 74 2.9 Commutators and uniformly perfect groups 80 2.10 Rotation number and Ghys’ theorem 84 2.11 Homological characterization of laminations 87 2.12 Laminar groups 88 2.13 Groups with simple dynamics 90 2.14 Convergence groups 93 2.15 Examples 96 2.16 Analytic quality of groups acting on I and S1 105 3 Minimalsurfaces 113 3.1 Connections, curvature 113 3.2 Meancurvature 116 3.3 Minimal surfaces in R3 118 3.4 The second fundamental form 121 ix x CONTENTS 3.5 Minimal surfaces and harmonic maps 123 3.6 Stableandleastareasurfaces 124 3.7 Existence theorems 130 3.8 Compactness theorems 132 3.9 Monotonicity and barrier surfaces 134 4 Taut foliations 137 4.1 Definition of foliations 137 4.2 Foliated bundles and holonomy 140 4.3 Basic constructions and examples 144 4.4 Volume-preserving flows and dead-ends 155 4.5 Calibrations 158 4.6 Novikov’s theorem 161 4.7 Palmeira’s theorem 167 4.8 Branching and distortion
Recommended publications
  • Part III 3-Manifolds Lecture Notes C Sarah Rasmussen, 2019
    Part III 3-manifolds Lecture Notes c Sarah Rasmussen, 2019 Contents Lecture 0 (not lectured): Preliminaries2 Lecture 1: Why not ≥ 5?9 Lecture 2: Why 3-manifolds? + Intro to Knots and Embeddings 13 Lecture 3: Link Diagrams and Alexander Polynomial Skein Relations 17 Lecture 4: Handle Decompositions from Morse critical points 20 Lecture 5: Handles as Cells; Handle-bodies and Heegard splittings 24 Lecture 6: Handle-bodies and Heegaard Diagrams 28 Lecture 7: Fundamental group presentations from handles and Heegaard Diagrams 36 Lecture 8: Alexander Polynomials from Fundamental Groups 39 Lecture 9: Fox Calculus 43 Lecture 10: Dehn presentations and Kauffman states 48 Lecture 11: Mapping tori and Mapping Class Groups 54 Lecture 12: Nielsen-Thurston Classification for Mapping class groups 58 Lecture 13: Dehn filling 61 Lecture 14: Dehn Surgery 64 Lecture 15: 3-manifolds from Dehn Surgery 68 Lecture 16: Seifert fibered spaces 69 Lecture 17: Hyperbolic 3-manifolds and Mostow Rigidity 70 Lecture 18: Dehn's Lemma and Essential/Incompressible Surfaces 71 Lecture 19: Sphere Decompositions and Knot Connected Sum 74 Lecture 20: JSJ Decomposition, Geometrization, Splice Maps, and Satellites 78 Lecture 21: Turaev torsion and Alexander polynomial of unions 81 Lecture 22: Foliations 84 Lecture 23: The Thurston Norm 88 Lecture 24: Taut foliations on Seifert fibered spaces 89 References 92 1 2 Lecture 0 (not lectured): Preliminaries 0. Notation and conventions. Notation. @X { (the manifold given by) the boundary of X, for X a manifold with boundary. th @iX { the i connected component of @X. ν(X) { a tubular (or collared) neighborhood of X in Y , for an embedding X ⊂ Y .
    [Show full text]
  • 3. Closed Sets, Closures, and Density
    3. Closed sets, closures, and density 1 Motivation Up to this point, all we have done is define what topologies are, define a way of comparing two topologies, define a method for more easily specifying a topology (as a collection of sets generated by a basis), and investigated some simple properties of bases. At this point, we will start introducing some more interesting definitions and phenomena one might encounter in a topological space, starting with the notions of closed sets and closures. Thinking back to some of the motivational concepts from the first lecture, this section will start us on the road to exploring what it means for two sets to be \close" to one another, or what it means for a point to be \close" to a set. We will draw heavily on our intuition about n convergent sequences in R when discussing the basic definitions in this section, and so we begin by recalling that definition from calculus/analysis. 1 n Definition 1.1. A sequence fxngn=1 is said to converge to a point x 2 R if for every > 0 there is a number N 2 N such that xn 2 B(x) for all n > N. 1 Remark 1.2. It is common to refer to the portion of a sequence fxngn=1 after some index 1 N|that is, the sequence fxngn=N+1|as a tail of the sequence. In this language, one would phrase the above definition as \for every > 0 there is a tail of the sequence inside B(x)." n Given what we have established about the topological space Rusual and its standard basis of -balls, we can see that this is equivalent to saying that there is a tail of the sequence inside any open set containing x; this is because the collection of -balls forms a basis for the usual topology, and thus given any open set U containing x there is an such that x 2 B(x) ⊆ U.
    [Show full text]
  • Foliations of Three Dimensional Manifolds∗
    Foliations of Three Dimensional Manifolds∗ M. H. Vartanian December 17, 2007 Abstract The theory of foliations began with a question by H. Hopf in the 1930's: \Does there exist on S3 a completely integrable vector field?” By Frobenius' Theorem, this is equivalent to: \Does there exist on S3 a codimension one foliation?" A decade later, G. Reeb answered affirmatively by exhibiting a C1 foliation of S3 consisting of a single compact leaf homeomorphic to the 2-torus with the other leaves homeomorphic to R2 accumulating asymptotically on the compact leaf. Reeb's work raised the basic question: \Does every C1 codimension one foliation of S3 have a compact leaf?" This was answered by S. Novikov with a much stronger statement, one of the deepest results of foliation theory: Every C2 codimension one foliation of a compact 3-dimensional manifold with finite fundamental group has a compact leaf. The basic ideas leading to Novikov's Theorem are surveyed here.1 1 Introduction Intuitively, a foliation is a partition of a manifold M into submanifolds A of the same dimension that stack up locally like the pages of a book. Perhaps the simplest 3 nontrivial example is the foliation of R nfOg by concentric spheres induced by the 3 submersion R nfOg 3 x 7! jjxjj 2 R. Abstracting the essential aspects of this example motivates the following general ∗Survey paper written for S.N. Simic's Math 213, \Advanced Differential Geometry", San Jos´eState University, Fall 2007. 1We follow here the general outline presented in [Ca]. For a more recent and much broader survey of foliation theory, see [To].
    [Show full text]
  • What Are Lyapunov Exponents, and Why Are They Interesting?
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 54, Number 1, January 2017, Pages 79–105 http://dx.doi.org/10.1090/bull/1552 Article electronically published on September 6, 2016 WHAT ARE LYAPUNOV EXPONENTS, AND WHY ARE THEY INTERESTING? AMIE WILKINSON Introduction At the 2014 International Congress of Mathematicians in Seoul, South Korea, Franco-Brazilian mathematician Artur Avila was awarded the Fields Medal for “his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle.”1 Although it is not explicitly mentioned in this citation, there is a second unify- ing concept in Avila’s work that is closely tied with renormalization: Lyapunov (or characteristic) exponents. Lyapunov exponents play a key role in three areas of Avila’s research: smooth ergodic theory, billiards and translation surfaces, and the spectral theory of 1-dimensional Schr¨odinger operators. Here we take the op- portunity to explore these areas and reveal some underlying themes connecting exponents, chaotic dynamics and renormalization. But first, what are Lyapunov exponents? Let’s begin by viewing them in one of their natural habitats: the iterated barycentric subdivision of a triangle. When the midpoint of each side of a triangle is connected to its opposite vertex by a line segment, the three resulting segments meet in a point in the interior of the triangle. The barycentric subdivision of a triangle is the collection of 6 smaller triangles determined by these segments and the edges of the original triangle: Figure 1. Barycentric subdivision. Received by the editors August 2, 2016.
    [Show full text]
  • Arxiv:1804.09519V2 [Math.GT] 16 Feb 2020 in an Irreducible 3-Manifold N with Empty Or Toroidal Boundary
    SUTURED MANIFOLDS AND `2-BETTI NUMBERS GERRIT HERRMANN Abstract. Using the virtual fibering theorem of Agol we show that a sutured 2 3-manifold (M; R+;R−; γ) is taut if and only if the ` -Betti numbers of the pair (M; R−) are zero. As an application we can characterize Thurston norm minimizing surfaces in a 3-manifold N with empty or toroidal boundary by the vanishing of certain `2-Betti numbers. 1. Introduction A sutured manifold (M; R+;R−; γ) is a compact, oriented 3-manifold M to- gether with a set of disjoint oriented annuli and tori γ on @M which decomposes @M n˚γ into two subsurfaces R− and R+. We refer to Section 2 for a precise defi- nition. We say that a sutured manifold is balanced if χ(R+) = χ(R−). Balanced sutured manifolds arise in many different contexts. For example 3-manifolds cut along non-separating surfaces can give rise to balanced sutured manifolds. Given a surface S with connected components S1 [ ::: [ Sk we define its Pk complexity to be χ−(S) = i=1 max {−χ(Si); 0g. A sutured manifold is called taut if R+ and R− have the minimal complexity among all surfaces representing [R−] = [R+] 2 H2(M; γ; Z). Theorem 1.1 (Main theorem). Let (M; R+;R−; γ) be a connected irreducible balanced sutured manifold. Assume that each component of γ and R± is incom- pressible and π1(M) is infinite, then the following are equivalent (1) the manifold (M; R+;R−; γ) is taut, 2 (2) (2) the ` -Betti numbers of (M; R−) are all zero i.e.
    [Show full text]
  • The Boundary Manifold of a Complex Line Arrangement
    Geometry & Topology Monographs 13 (2008) 105–146 105 The boundary manifold of a complex line arrangement DANIEL CCOHEN ALEXANDER ISUCIU We study the topology of the boundary manifold of a line arrangement in CP2 , with emphasis on the fundamental group G and associated invariants. We determine the Alexander polynomial .G/, and more generally, the twisted Alexander polynomial associated to the abelianization of G and an arbitrary complex representation. We give an explicit description of the unit ball in the Alexander norm, and use it to analyze certain Bieri–Neumann–Strebel invariants of G . From the Alexander polynomial, we also obtain a complete description of the first characteristic variety of G . Comparing this with the corresponding resonance variety of the cohomology ring of G enables us to characterize those arrangements for which the boundary manifold is formal. 32S22; 57M27 For Fred Cohen on the occasion of his sixtieth birthday 1 Introduction 1.1 The boundary manifold Let A be an arrangement of hyperplanes in the complex projective space CPm , m > 1. Denote by V S H the corresponding hypersurface, and by X CPm V its D H A D n complement. Among2 the origins of the topological study of arrangements are seminal results of Arnol’d[2] and Cohen[8], who independently computed the cohomology of the configuration space of n ordered points in C, the complement of the braid arrangement. The cohomology ring of the complement of an arbitrary arrangement A is by now well known. It is isomorphic to the Orlik–Solomon algebra of A, see Orlik and Terao[34] as a general reference.
    [Show full text]
  • TRANSVERSE STRUCTURE of LIE FOLIATIONS 0. Introduction This
    TRANSVERSE STRUCTURE OF LIE FOLIATIONS BLAS HERRERA, MIQUEL LLABRES´ AND A. REVENTOS´ Abstract. We study if two non isomorphic Lie algebras can appear as trans- verse algebras to the same Lie foliation. In particular we prove a quite sur- prising result: every Lie G-flow of codimension 3 on a compact manifold, with basic dimension 1, is transversely modeled on one, two or countable many Lie algebras. We also solve an open question stated in [GR91] about the realiza- tion of the three dimensional Lie algebras as transverse algebras to Lie flows on a compact manifold. 0. Introduction This paper deals with the problem of the realization of a given Lie algebra as transverse algebra to a Lie foliation on a compact manifold. Lie foliations have been studied by several authors (cf. [KAH86], [KAN91], [Fed71], [Mas], [Ton88]). The importance of this study was increased by the fact that they arise naturally in Molino’s classification of Riemannian foliations (cf. [Mol82]). To each Lie foliation are associated two Lie algebras, the Lie algebra G of the Lie group on which the foliation is modeled and the structural Lie algebra H. The latter algebra is the Lie algebra of the Lie foliation F restricted to the clousure of any one of its leaves. In particular, it is a subalgebra of G. We remark that although H is canonically associated to F, G is not. Thus two interesting problems are naturally posed: the realization problem and the change problem. The realization problem is to know which pairs of Lie algebras (G, H), with H subalgebra of G, can arise as transverse and structural Lie algebras, respectively, of a Lie foliation F on a compact manifold M.
    [Show full text]
  • Foliations Transverse to Fibers of a Bundle
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 42, Number 2, February 1974 FOLIATIONS TRANSVERSE TO FIBERS OF A BUNDLE J. F. PLANTE Abstract. Consider a fiber bundle where the base space and total space are compact, connected, oriented smooth manifolds and the projection map is smooth. It is shown that if the fiber is null-homologous in the total space, then the existence of a foliation of the total space which is transverse to each fiber and such that each leaf has the same dimension as the base implies that the fundamental group of the base space has exponential growth. Introduction. Let (E, p, B) be a locally trivial fiber bundle where /»:£-*-/? is the projection, E and B are compact, connected, oriented smooth manifolds and p is a smooth map. (By smooth we mean C for some r^l and, henceforth, all maps are assumed smooth.) Let b denote the dimension of B and k denote the dimension of the fiber (thus, dim E= b+k). By a section of the fibration we mean a smooth map a:B-+E such that p o a=idB. It is well known that if a section exists then the fiber over any point in B represents a nontrivial element in Hk(E; Z) since the image of a section is a compact orientable manifold which has intersection number one with the fiber over any point in B. The notion of a section may be generalized as follows. Definition. A polysection of (E,p,B) is a covering projection tr:B-*B together with a map Ç:B-*E such that the following diagram commutes.
    [Show full text]
  • Graph Manifolds and Taut Foliations Mark Brittenham1, Ramin Naimi, and Rachel Roberts2 Introduction
    Graph manifolds and taut foliations 1 2 Mark Brittenham , Ramin Naimi, and Rachel Roberts UniversityofTexas at Austin Abstract. We examine the existence of foliations without Reeb comp onents, taut 1 1 foliations, and foliations with no S S -leaves, among graph manifolds. We show that each condition is strictly stronger than its predecessors, in the strongest p os- sible sense; there are manifolds admitting foliations of eachtyp e which do not admit foliations of the succeeding typ es. x0 Introduction Taut foliations have b een increasingly useful in understanding the top ology of 3-manifolds, thanks largely to the work of David Gabai [Ga1]. Many 3-manifolds admit taut foliations [Ro1],[De],[Na1], although some do not [Br1],[Cl]. To date, however, there are no adequate necessary or sucient conditions for a manifold to admit a taut foliation. This pap er seeks to add to this confusion. In this pap er we study the existence of taut foliations and various re nements, among graph manifolds. What we show is that there are many graph manifolds which admit foliations that are as re ned as wecho ose, but which do not admit foliations admitting any further re nements. For example, we nd manifolds which admit foliations without Reeb comp onents, but no taut foliations. We also nd 0 manifolds admitting C foliations with no compact leaves, but which do not admit 2 any C such foliations. These results p oint to the subtle nature b ehind b oth top ological and analytical assumptions when dealing with foliations. A principal motivation for this work came from a particularly interesting exam- ple; the manifold M obtained by 37/2 Dehn surgery on the 2,3,7 pretzel knot K .
    [Show full text]
  • A TEXTBOOK of TOPOLOGY Lltld
    SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY lltld SEI FER T: 7'0PO 1.OG 1' 0 I.' 3- Dl M E N SI 0 N A I. FIRERED SPACES This is a volume in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: SAMUELEILENBERG AND HYMANBASS A list of recent titles in this series appears at the end of this volunie. SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY H. SEIFERT and W. THRELFALL Translated by Michael A. Goldman und S E I FE R T: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES H. SEIFERT Translated by Wolfgang Heil Edited by Joan S. Birman and Julian Eisner @ 1980 ACADEMIC PRESS A Subsidiary of Harcourr Brace Jovanovich, Publishers NEW YORK LONDON TORONTO SYDNEY SAN FRANCISCO COPYRIGHT@ 1980, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 11 1 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWI 7DX Mit Genehmigung des Verlager B. G. Teubner, Stuttgart, veranstaltete, akin autorisierte englische Ubersetzung, der deutschen Originalausgdbe. Library of Congress Cataloging in Publication Data Seifert, Herbert, 1897- Seifert and Threlfall: A textbook of topology. Seifert: Topology of 3-dimensional fibered spaces. (Pure and applied mathematics, a series of mono- graphs and textbooks ; ) Translation of Lehrbuch der Topologic. Bibliography: p. Includes index. 1.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Singular Hyperbolic Structures on Pseudo-Anosov Mapping Tori
    SINGULAR HYPERBOLIC STRUCTURES ON PSEUDO-ANOSOV MAPPING TORI A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Kenji Kozai June 2013 iv Abstract We study three-manifolds that are constructed as mapping tori of surfaces with pseudo-Anosov monodromy. Such three-manifolds are endowed with natural sin- gular Sol structures coming from the stable and unstable foliations of the pseudo- Anosov homeomorphism. We use Danciger’s half-pipe geometry [6] to extend results of Heusener, Porti, and Suarez [13] and Hodgson [15] to construct singular hyperbolic structures when the monodromy has orientable invariant foliations and its induced action on cohomology does not have 1 as an eigenvalue. We also discuss a combina- torial method for deforming the Sol structure to a singular hyperbolic structure using the veering triangulation construction of Agol [1] when the surface is a punctured torus. v Preface As a result of Perelman’s Geometrization Theorem, every 3-manifold decomposes into pieces so that each piece admits one of eight model geometries. Most 3-manifolds ad- mit hyperbolic structures, and outstanding questions in the field mostly center around these manifolds. Having an effective method for describing the hyperbolic structure would help with understanding topology and geometry in dimension three. The recent resolution of the Virtual Fibering Conjecture also means that every closed, irreducible, atoroidal 3-manifold can be constructed, up to a finite cover, from a homeomorphism of a surface by taking the mapping torus for the homeomorphism [2].
    [Show full text]