Juncus Effusus ) Relevant for Natural Degradation of Contaminants

Total Page:16

File Type:pdf, Size:1020Kb

Juncus Effusus ) Relevant for Natural Degradation of Contaminants Evolutionary potential in functional traits of a wetland macrophyte ( Juncus effusus ) relevant for natural degradation of contaminants Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät I – Biowissenschaften – der Martin-Luther-Universität Halle-Wittenberg, vorgelegt von Frau Jennifer Born (MSc Biol.) geboren am 18.09.1989 in Leisnig Referees Dr. Stefan G. Michalski (Helmholtz Centre for Environmental Research – UFZ, Department Community Ecology) Prof. Dr. Helge Bruelheide (Martin-Luther-University Halle-Wittenberg, Institute of Biology / Geobotany and Botanical Garden) Prof. Dr. Frank H. Hellwig (Friedrich-Schiller-University Jena, Institute of Systematic Botany) Thesis defence 22.01.2019 TABLE OF CONTENTS SUMMARY ............................................................................................................................ 4 ZUSAMMENFASSUNG ........................................................................................................ 6 CHAPTER 1 General Introduction Wetlands and their ecological relevance ...........................................................................11 The nitrogen cycle: processes, agents and human influence ............................................12 Plant functional traits and trait variability ...........................................................................13 Evolutionary and ecological genetics ................................................................................15 Quantitative genetic diversity in functional traits ................................................................17 DNA-based marker systems to assess genetic diversity ...................................................19 Evolutionary potential, genetic diversity and local adaptation ............................................20 Juncus effusus – a representative wetland plant ...............................................................22 Objectives and thesis outline ............................................................................................24 CHAPTER 2 Strong Divergence in Quantitative Traits and Plastic Behavior in Response to Nitrogen Availability among Provenances of a Common Wetland Plant ..............................................25 CHAPTER 3 Trait Expression and Signatures of Adaptation in Response to Nitrogen Addition in the Common Wetland Plant Juncus effusus ...............................................................................46 CHAPTER 4 Genetic Analyses Reveal That Multi-Facetted Processes are Shaping the Intraspecific Differentiation Patterns of the Widespread Wetland Plant Juncus effusus in Europe ............70 CHAPTER 5 Synthesis .......................................................................................................92 Assessing the importance of intraspecific variability ..........................................................94 Evidence of selection ........................................................................................................98 Implications for applied approaches ................................................................................ 100 Lineage divergence, isolation and genetic drift in Juncus effusus ................................... 102 Coexistence of lineages .................................................................................................. 104 Concluding remarks ........................................................................................................ 106 SUPPORTING INFORMATION .......................................................................................... 108 REFERENCES ................................................................................................................... 111 DANKSAGUNG ................................................................................................................. 125 APPENDIX ......................................................................................................................... 127 SUMMARY SUMMARY Nutrients such as nitrogen and phosphorus are natural components of aquatic ecosystems and essential for plant growth. However, if progressive intensification of agriculture and urbanization cause too many nutrients to enter the ecosystem, then air and water can be polluted. Wetland ecosystems provide the important ecosystem service of natural degradation and retention of such excessive substances. The remediation potential of wetland plants and associated microorganisms has increased interest in the rehabilitation of lost and degraded wetlands. In addition, wetland constructions have frequently been used as cost-effective and sustainable biotechnologies to compensate for the loss of wetlands in the last century. Plant traits can have a direct or indirect impact on wetland ecosystems through accumulation, metabolism and microbial transformation processes in the soil. The influence of plants’ functional traits and their interaction with the soil microbiome in the reduction of wetland pollutants have been well investigated with respect to the among-species variability. However, the extent of the intraspecific variability of these functional traits may be as important as interspecific variability in relation to ecosystem functions. Understanding the causes and consequences of intraspecific genetic variation related to nutrient degradation processes is fundamental for predicting evolutionary responses, but it can also aid applied approaches in wetland restoration and construction. Applying a combination of quantitative and molecular genetics, the aim of the thesis is to quantify intraspecific variability in functional traits that are potentially relevant for the degradation of nitrogen compounds, and to investigate its genetic basis and response to selection. In our research, we used the wetland plant Juncus effusus , which has been established as a model plant in basic and applied research on wetland ecosystems. To understand whether and how quantitative genetic variation is expressed depending on nitrogen availability and how it is structured within and among natural European populations, we used common garden studies to evaluate and compare trait variation across multiple provenances, lineages and treatments. Microsatellites were used to study genetic diversity and population - 4 - SUMMARY structure to investigate the different environmental forces and their relative contributions to adaptation. Then we investigated possible relationships between genetic diversity and environmental factors such as climate and soil conditions. Furthermore, we asked whether trait expression shows signatures of local adaptation by comparing quantitative genetic trait divergence and neutral molecular markers (QST – FST comparisons) and relating trait variation to soil conditions of the plant’s origin. We quantified a strong plastic behavior in response to nitrogen availability in all measured traits. The genetic variation of functional mean traits was strongly pronounced among populations, but very low at population level. We could not find a significant link between nitrogen availability and genetic trait expression. Differentiation of quantitative traits was substantial but did not exceed neutral expectations, as detected in QST – FST comparisons. However, adaptive trait divergence in response to environmental soil conditions might be present, which is indicated by significant trait clines. Molecular analyses showed moderate genetic diversity and very strong genetic differentiation among populations. These findings confirmed our hypothesis, which is based on the life history of species Juncus effusus , as a successful colonizer with a predominantly selfing mating system. A Bayesian analysis of population structure across the European range showed that J. effusus comprises three genetically well-differentiated lineages that partly separate longitudinally but also co-occur sympatrically, probably as a result of glacial lineage diversification and secondary contact. The lineage Eff3 differed substantially from the other lineages by clines in population genetic diversity with environmental conditions and by a dominant occurrence at higher altitudes suggesting more particular ecological responses compared to lineages Eff1 and Eff2. In summary, however, we found only little and inconsistent evidence of selective mechanisms varying between the lineages, which supports the idea that lineages within J. effusus are the primary results of neutral divergence. - 5 - ZUSAMMENFASSUNG ZUSAMMENFASSUNG Nährstoffe wie Stickstoff und Phosphor sind natürliche Bestandteile aquatischer Ökosysteme und für das Pflanzenwachstum unerlässlich. Wenn jedoch zu viele Nährstoffe in das Ökosystem gelangen, können Luft und Wasser verschmutzt werden. Diese Verschmutzung wird hauptsächlich durch die fortschreitende Intensivierung der Landwirtschaft und Urbanisierung verursacht. Feuchtgebietsökosysteme leisten einen wichtigen Beitrag durch natürlichen Abbau und Rückhaltung solch überschüssiger Nährstoffe. Das Sanierungspotential von Feuchtgebietspflanzen und den im Boden lebenden Mikroorganismen hat das Interesse an der Sanierung von verloren gegangenen und degradierten Feuchtgebieten erhöht. Darüber hinaus werden künstlich angelegte Feuchtgebietsanlagen häufig als kostengünstige und nachhaltige Biotechnologie eingesetzt, um den Verlust von natürlichen Feuchtgebieten auszugleichen. Pflanzeneigenschaften können die Ökosystemprozesse von Feuchtgebieten
Recommended publications
  • Bulletin / New York State Museum
    Juncaceae (Rush Family) of New York State Steven E. Clemants New York Natural Heritage Program LIBRARY JUL 2 3 1990 NEW YORK BOTANICAL GARDEN Contributions to a Flora of New York State VII Richard S. Mitchell, Editor Bulletin No. 475 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 NEW YORK THE STATE OF LEARNING Digitized by the Internet Archive in 2017 with funding from IMLS LG-70-15-0138-15 https://archive.org/details/bulletinnewyorks4751 newy Juncaceae (Rush Family) of New York State Steven E. Clemants New York Natural Heritage Program Contributions to a Flora of New York State VII Richard S. Mitchell, Editor 1990 Bulletin No. 475 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I. A., LL.B Muttontown R. Carlos Carballada, Vice Chancellor , B.S Rochester Willard A. Genrich, LL.B Buffalo Emlyn 1. Griffith, A. B., J.D Rome Jorge L. Batista, B. A., J.D Bronx Laura Bradley Chodos, B.A., M.A Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D Bayside J. Edward Meyer, B.A., LL.B Chappaqua Floyd S. Linton, A.B., M.A., M.P.A Miller Place Mimi Levin Lieber, B.A., M.A Manhattan Shirley C. Brown, B.A., M.A., Ph.D Albany Norma Gluck, B.A., M.S.W Manhattan James W.
    [Show full text]
  • Este Trabalho Não Teria Sido Possível Sem O Contributo De Algumas Pessoas Para As Quais Uma Palavra De Agradecimento É Insufi
    AGRADECIMENTOS Este trabalho não teria sido possível sem o contributo de algumas pessoas para as quais uma palavra de agradecimento é insuficiente para aquilo que representaram nesta tão importante etapa. O meu mais sincero obrigado, Ao Nuno e à minha filha Constança, pelo apoio, compreensão e estímulo que sempre me deram. Aos meus pais, Gaspar e Fátima, por toda a força e apoio. Aos meus orientadores da Dissertação de Mestrado, Professor Doutor António Xavier Pereira Coutinho e Doutora Catarina Schreck Reis, a quem eu agradeço todo o empenho, paciência, disponibilidade, compreensão e dedicação que por mim revelaram ao longo destes meses. À Doutora Palmira Carvalho, do Museu Nacional de História Natural/Jardim Botânico da Universidade de Lisboa por todo o apoio prestado na identificação e reconhecimento dos líquenes recolhidos na mata. Ao Senhor Arménio de Matos, funcionário do Jardim Botânico da Universidade de Coimbra, por todas as vezes que me ajudou na identificação de alguns espécimes vegetais. Aos meus colegas e amigos, pela troca de ideias, pelas explicações, pela força, apoio logístico, etc. I ÍNDICE RESUMO V ABSTRACT VI I. INTRODUÇÃO 1.1. Enquadramento 1 1.2. O clima mediterrânico e a vegetação 1 1.3. Origens da vegetação portuguesa 3 1.4. Objetivos da tese 6 1.5. Estrutura da tese 7 II. A SANTA CASA DA MISERICÓRDIA DE ARGANIL E A MATA DO HOSPITAL 2.1. Breve perspetiva histórica 8 2.2. A Mata do Hospital 8 2.2.1. Localização, limites e vias de acesso 8 2.2.2. Fatores Edafo-Climáticos-Hidrológicos 9 2.2.3.
    [Show full text]
  • New Zealand Rushes: Juncus Factsheets
    New Zealand Rushes: Juncus factsheets K. Bodmin, P. Champion, T. James and T. Burton www.niwa.co.nz Acknowledgements: Our thanks to all those who contributed photographs, images or assisted in the formulation of the factsheets, particularly Aarti Wadhwa (graphics) at NIWA. This project was funded by TFBIS, the Terrestrial and Freshwater Biodiversity information System (TFBIS) Programme. TFBIS is funded by the Government to help New Zealand achieve the goals of the New Zealand Biodiversity Strategy and is administered by the Department of Conservation (DOC). All photographs are by Trevor James (AgResearch), Kerry A. Bodmin or Paul D. Rushes: Champion (NIWA) unless otherwise stated. Additional images and photographs were kindly provided by Allan Herbarium; Auckland Herbarium; Larry Allain (USGS, Wetland and Aquatic Research Center); Forest and Kim Starr; Donald Cameron (Go Botany Juncus website); and Tasmanian Herbarium (Threatened Species Section, Department of Primary Industries, Parks, Water and Environment, Tasmania). factsheets © 2015 - NIWA. All rights Reserved. Cite as: Bodmin KA, Champion PD, James T & Burton T (2015) New Zealand Rushes: Juncus factsheets. NIWA, Hamilton. Introduction Rushes (family Juncaceae) are a common component of New Zealand wetland vegetation and species within this family appear very similar. With over 50 species, Juncus are the largest component of the New Zealand rushes and are notoriously difficult for amateurs and professionals alike to identify to species level. This key and accompanying factsheets have been developed to enable users with a diverse range of botanical expertise to identify Juncus to species level. The best time for collection, survey or identification is usually from December to April as mature fruiting material is required to distinguish between species.
    [Show full text]
  • Juncus Conglomeratus
    Juncus conglomeratus COMMON NAME Soft rush FAMILY Juncaceae AUTHORITY Juncus conglomeratus L. FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Rushes & Allied Plants NVS CODE JUNCON BRIEF DESCRIPTION Juncus conglomeratus. Photographer: John Upright clump-forming leafless rush to 80 cm tall, with tall cylindrical Smith-Dodsworth stems, with tightly clustered spherical flowerheads near the end of each stem, made up of many red-brown flowers/capsules (fruit). DISTRIBUTION Tasman to Southland. HABITAT Lake margins, roadside drains and wet pasture. FEATURES Erect clumps; rhizomes short. Stems 30-80 cm × 1.5-3 mm, soft and easily split, grey-green, dull, prominently ridged especially just below inflorescence, pith continuous, cobwebby. Basal sheaths brownish-red, not shining. Inflorescence a ± spherical head c. 1 cm long, base of subtending floral bract conspicuously red-tinged and expanded to a wide opening through which inflorescence emerges. Flowers very crowded. Tepals 2-2.5 mm long, ± equal, acuminate. Stamens 3. Capsule c. 2 mm long, ± = tepals, ovoid-oblong, flattened at top, reddish-brown. SIMILAR TAXA Similar to other tall leafless rushes, but has a dense single flower cluster, with an expanded floral bract behind it and conspicuous ridges on the stem beneath the inflorescence. Juncus conglomeratus. Photographer: John Smith-Dodsworth FLOWERING Spring to early summer FLOWER COLOURS Brown FRUITING Summer to autumn LIFE CYCLE Seed dispersed by animals, water or contaminated machinery. YEAR NATURALISED 1930 ORIGIN Europe, Western Asia Northwestern Africa and North America REASON FOR INTRODUCTION Unknown, seed or soil contaminant. CONTROL TECHNIQUES Not controlled in New Zealand. ETYMOLOGY juncus: From the Latin jungere ‘to tie or bind’, the stems of some species being used to make cord (Johnson and Smith) NOTES ON TAXONOMY Subgenus Agathyron, Section Juncotypus (Genuini) Kirschner (2002: Juncaceae 3) ATTRIBUTION Factsheet prepared by Paul Champion and Deborah Hofstra (NIWA).
    [Show full text]
  • WETLAND PLANTS – Full Species List (English) RECORDING FORM
    WETLAND PLANTS – full species list (English) RECORDING FORM Surveyor Name(s) Pond name Date e.g. John Smith (if known) Square: 4 fig grid reference Pond: 8 fig grid ref e.g. SP1243 (see your map) e.g. SP 1235 4325 (see your map) METHOD: wetland plants (full species list) survey Survey a single Focal Pond in each 1km square Aim: To assess pond quality and conservation value using plants, by recording all wetland plant species present within the pond’s outer boundary. How: Identify the outer boundary of the pond. This is the ‘line’ marking the pond’s highest yearly water levels (usually in early spring). It will probably not be the current water level of the pond, but should be evident from the extent of wetland vegetation (for example a ring of rushes growing at the pond’s outer edge), or other clues such as water-line marks on tree trunks or stones. Within the outer boundary, search all the dry and shallow areas of the pond that are accessible. Survey deeper areas with a net or grapnel hook. Record wetland plants found by crossing through the names on this sheet. You don’t need to record terrestrial species. For each species record its approximate abundance as a percentage of the pond’s surface area. Where few plants are present, record as ‘<1%’. If you are not completely confident in your species identification put’?’ by the species name. If you are really unsure put ‘??’. After your survey please enter the results online: www.freshwaterhabitats.org.uk/projects/waternet/ Aquatic plants (submerged-leaved species) Stonewort, Bristly (Chara hispida) Bistort, Amphibious (Persicaria amphibia) Arrowhead (Sagittaria sagittifolia) Stonewort, Clustered (Tolypella glomerata) Crystalwort, Channelled (Riccia canaliculata) Arrowhead, Canadian (Sagittaria rigida) Stonewort, Common (Chara vulgaris) Crystalwort, Lizard (Riccia bifurca) Arrowhead, Narrow-leaved (Sagittaria subulata) Stonewort, Convergent (Chara connivens) Duckweed , non-native sp.
    [Show full text]
  • Botanical Inventory Report
    Botanical Inventory Mason Quarry Conservation Area Mason, New Hampshire Erin Schaeffer New England Wild Flower Society © 2013 Prepared by 180 Hemenway Road Framingham, MA 01701 508-877-7630 www.newfs.org Amanda Weise John Burns Conducted in 2013 This report was produced for the Town of Mason, Conservation Commission This project was made possible by a generous donation from Catherine Schwenk TABLE OF CONTENTS INTRODUCTION ........................................................................................................................... 4 METHODS ...................................................................................................................................... 6 RESULTS ........................................................................................................................................ 7 PLANT SPECIES ............................................................................................................... 7 PLANT IDENTIFICATIONS ............................................................................................ 7 NATURAL COMMUNITIES ............................................................................................ 8 DISCUSSION .................................................................................................................................. 8 COUNTY RECORDS ........................................................................................................ 9 RARE PLANTS .................................................................................................................
    [Show full text]
  • Juncus Effusus Var. Effusus
    Juncus effusus var. effusus COMMON NAME Soft rush FAMILY Juncaceae AUTHORITY Juncus effusus L. FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Rushes & Allied Plants NVS CODE JUNEVE BRIEF DESCRIPTION Upright clump-forming leafless rush to 1.2 tall, with tall, soft*, cylindrical stems, with continuous pith. The open clustered flowerheads near the end of each stem are made up of many light brown flowers/capsules (fruit). *Stems squash much more easily between thumb and fingers than most other ‘leafless’ rushes. DISTRIBUTION Widespread and common throughout. Juncus effusus. Photographer: John Smith- HABITAT Dodsworth Wet pasture and a wide range of wet habitats, including peaty areas. FEATURES Dense tuft-forming rush with short rhizomes. Stems 30-120 cm x 1.5-3 mm, cylindrical, bright or yellow-green, softer than most similar spp, easily split or compressed, smooth, shining; with continuous, cobwebby pith. No true leaves, only reddish-brown basal sheaths, closely held to stem. Seedhead not at end of stem, with many tiny green flowers along short, downward-curving branchlets. Seed capsule 2-3 mm long, oval, light brown. SIMILAR TAXA Similar to other tall leafless rushes, but has an open inflorescence with the lower branches decumbent and cobwebby continuous pith in the stem. The soft, easily compressed and broken stems are distinct. FLOWERING Spring to early summer FLOWER COLOURS Brown FRUITING Lake Wiritoa. Jan 2009. Photographer: Colin Ogle Summer to autumn LIFE CYCLE Seed dispersed by animals, water or contaminated machinery. YEAR NATURALISED 1864 ORIGIN Europe, Asia and Africa REASON FOR INTRODUCTION Unknown, seed or soil contaminant. CONTROL TECHNIQUES Rarely controlled, but can be controlled manually, mechanically or herbicidally depending on situation, susceptible to grazing.
    [Show full text]
  • Microscopic Features of Monocotyledonous Plants Features of Culms, Flower Stalks, Stems and Rhizomes
    Microscopic features of monocotyledonous plants Features of culms, flower stalks, stems and rhizomes Vol. IV Fritz H. Schweingruber Hugo Berger 1 Coverphoto Eriophorum scheuchzeri Species on the cover Top: Agropyron cristatum Middle (left to right): Luzula alpina-pilosa, Potamogeton pectinatus Base (left to right): Carex acutiformis, Carex pseudocyperus, Carex appropinquata Prof. Dr. Fritz H. Schweingruber Swiss Federal Research Institute WSL Zürichstrasse 111 8903 Birmensdorf Switzerland Email: [email protected] Hugo Berger Email: [email protected] Barbara Berger Design and layout Email: [email protected] Verlag Dr. Kessel Eifelweg 37 D-53424 Remagen Tel.: 0049-2228-493 www.forestrybooks.com www.forstbuch.de ISBN: 978-3-945941-52-2 2 Content 1 Introduction. 5 2 Material .............................................................. 6 3 Preparation ........................................................... 6 4 Features of culms, flower stalks and stems .................... 7 5 Rhizome features of Cyperaceae ............................... 41 6 References ......................................................... 60 7 Index ............................................................... 62 3 4 1. Introduction The list of monocotyledonous culms, flower stalks, rhizomes and stem-features is a result of the studies published in tree volumes: - Vol.I Anatomy of grass culms (Schweingruber and Berger 2017) - Vol. II Anatomy of culms and rhizomes of sedges (Schweingruber and Berger 2018) - Vol. III Anatomy of culms and flower stalks of monocotyledonous plants (Schweingruber and Berger 2018) Here we present the first time a list of features which is applicable on the whole spectrum of monocotyledonous plants in temperate zones of the northern hemisphere. The definition of features is primarily based on double stained microscopic slides from recently collected material. The origin of some feature-characterization originates from monographs of Schenk 1886 and Evans 2003, Seago et al.
    [Show full text]
  • Field Guide to Intermountain Rushes
    United States Department of Field Guide to Agriculture Forest Service Intermountain Intermountain Research Station Rushes General Technical Report INT-306 Emerenciana G. Hurd Sherel Goodrich May 1994 Revised January 1997 Nancy L. Shaw THE AUTHORS Idaho, an M.S. degree in botany at Idaho State University, and a Ph.D. EMERENCIANA G. HURD is bota- degree in crop science at Oregon nist with the Intermountain Re- State University. search Station at the Forestry Sci- ences Laboratory in Boise, ID. ACKNOWLEDGMENTS Originally from the Phillipines, she holds a B.S. degree in biology from Warren Clary, Project Leader of Whitman College, Walla Walla, WA, the Intermountain Research and M.S. and Ph.D. degrees in Station’s Riparian/Stream Ecology botany from Northern Arizona and Management Research Work University. Unit, suggested the idea of devel- SHEREL GOODRICH is range con- oping field guides for grasslike spe- servationist for the Ashley National cies of Intermountain riparian areas. Forest, Vernal, UT. He received a We appreciate his helpful advise B.S. degree in range management and leadership in the accomplish- from Utah State University in 1971 ment of this work. We offer special and an M.S. degree in botany from thanks to Joy Mastrogiuseppe, cu- Brigham Young University in 1981. rator of the Marion Ownbey Her- He worked extensively in Utah and barium, Washington State Univer- central Nevada when he was with sity, for her taxonomic assistance; the Intermountain Research Sta- Lynda Smithman, Intermountain tion, Provo, UT. Research Station, for her helpful suggestions and encouragement; NANCY L. SHAW is botanist with Joe Duft for his assistance with the Intermountain Research Station photography; and Gary Hurd for his at the Forestry Sciences Laboratory willingness to drive long distances in Boise, ID.
    [Show full text]
  • Friends of Pallisters Reserve Inc
    FRIENDS OF PALLISTERS RESERVE INC. FLORA OF PALLISTERS RESERVE PTERIDOPHYTA Lepidosperma laterale var. majus Adiantaceae Variable Sword-sedge Adiantum aethiopicum - Common Maidenhair Lepidosperma longitudinale - Pithy Sword-sedge Schoenus apogon - Common Bog-rush Azollaceae Azolla filiculoides - Pacific Azolla Hypoxidaceae Hypoxis glabella—Tiny Star Dennstaedtiaceae Hypoxis vaginata - Yellow Star Pteridium esculentum - Austral Bracken Juncaceae Lindsaeceae Isolepis marginata - Little Club-sedge Lindsaea linearis - Screw Fern * Juncus articulatus - Jointed rush Juncus bufonius - Toad Rush GYMNOSPERMS * Juncus bulbosus - Rush Pinaceae *Juncus capitatus - Capitate Rush *Pinus radiata - Monterey Pine Juncus holoschoenus - Joint-leaf Rush MONOCOTYLEDONAE Juncus ingens - Giant Rush Centrolepidaceae Juncus pallidus - Pale Rush Aphelia gracilis - Slender Aphelia Juncus planifolius - Broad-leaf rush Aphelia pumilio - Dwarf Aphelia Juncus procerus - Rush Centrolepis aristata - Pointed Centrolepis Juncus subsecundus - Finger rush Centrolepis strigosa -Hairy Centrolepis Luzula meridionalis - Field Woodrush Convolvulaceae Juncaginaceae Dichondra repens - Kidney Weed Triglochin procera sens.lat. - Water Ribbons Cyperaceae Lemnaceae Baumea articulata - Jointed Twig-rush Lemma disperma - Duckweed Baumea rubiginosa - Soft Twig-rush Lemma trisulca - Ivy-leaf Duckweed Carex appressa - Tall Sedge Wolffia australiana - Tiny Duckweed Carex breviculmis - Common Sedge Liliaceae *Cyperus tenellus - Tiny Sedge Arthropodium strictum - Chocolate Lily Eleocharis
    [Show full text]
  • Aquatic Plant Profiles: Soft Rush (Juncus Effusus Var. Effusus, Juncus
    Soft Rush (Juncus effusus var. effusus) : Extension : Clemson University : South Carolina Page 1 of 2 http://www.clemson.edu/extension/horticulture/nursery/constructed_wetlands/plant_ Go MAY JUN JU 1 captures 6 6 Jun 10 - 6 Jun 10 2009 2010 20 Horticulture Soft Rush Juncus effusus var. effusus Juncus effusus var. solutus Additional species: Juncus acuminatus (Taper-tip rush) Juncus diffusissimus (Slimpod rush) Family: Juncaceae Lifecycle: Perennial Native or Introduced: Native Nutrient Removal Rating: High Wildlife Value: High Invasiveness Medium Rooted or Floating: Rooted Site Requirements: Full sun Maximum Water Depth: 3 inches Plant Description: Soft rushes are herbaceous perennials that grow to be 1-4 feet in height. They produce heavily branched rhizomes that aid in formation of large colonies. Culms measure approximately 1/8 inch at sheath tips. Flowering occurs in summer with fruiting stretching into the late summer and fall. Plants are found in and along the edges of swamps, marshes, and shallow bodies of water. They can also live in any area with frequently moist soils. The species Juncus effuses is quite complex taxonomically. Many varieties have been recognized within the species. Juncus effusus var. effusus is a shorter variety of the southeastern US while Juncus effusus var. solutus is taller. Sources: Flora of North America (see link below) Additional reading: USDA Flora of North America Juncus acuminatus (Taper-tip rush) - closeup of infloresence (R) and habit (L). https://web.archive.org/web/20100606011205/http://www.clemson.edu/extension/horticult... 3/18/2015 Soft Rush (Juncus effusus var. effusus) : Extension : Clemson University : South Carolina Page 2 of 2 http://www.clemson.edu/extension/horticulture/nursery/constructed_wetlands/plant_ Go MAY JUN JU 1 captures 6 6 Jun 10 - 6 Jun 10 2009 2010 20 Page maintained by: Sarah White, [email protected] Web Site Information|Contact Information University Index: ABCDEFGHIJKLMNOPQRSTUVWXYZ Produced by PSA CAFLS Web Team | Extension Employees © 2009 Clemson University, Clemson, S.C.
    [Show full text]
  • Appendix 1. Locality Map Appendix 2
    Appendix 1. Locality map Appendix 2. Species of conservation significance recorded within the site. Table 1. Threatened Flora species Common Name Scientific Name National NSW Victoria Threatened Threatened Threatened Species Species Species Boree Acacia pendula e Common Joyweed Alternanthera nodiflora k Swamp Wallaby Amphibromus fluitans vvk Grass Emu-foot Cullen tenax e Western Boobialla Myoporum montanum r Austral Pillwort Pilularia novae-hollandiae e Sandalwood Santalum lanceolatum e Lilac Darling Pea Swainsona phacoides e Key: e, endangered; v, vulnerable; r, rare; k, poorly known in Victoria 1 Other noteworthy flora may occur in the NSW Murray Central State Forests but their presence has not been positively determined. Potentially occurring threatened species include Brachycome muelleroides, Callitriche cyclocarpa, Cullen parvum, Lepidium monoplocoides, Rhodanthe stricta and Sclerolaena napiformis; National Threatened Species: listed under the Environment Protection and Biodiversity Conservation Act 1999; NSW Threatened Species: listed under the NSW Threatened Species Conservation Act 1995; Victorian Threatened Species: listed under the Victorian Flora and Fauna Guarantee Act 1988. Table 2. Threatened Fauna Species Common Name Scientific NameIUCN Threatened Species Act JAMBA/ Red Nationa NSW Victoria CAMBA List l BIRDS Australasian Shoveler4 (a) Anas rhynchotis v Forked-tailed Swift5 Apus pacificus J,C Great Egret3 (a) Ardea alba eJ,C Little Egret3 (a) Egretta garzetta ce Cattle Egret4 (a) Ardea ibis J,C Intermediate Egret3 (a) Ardea
    [Show full text]