FAMILY of GENERALIZED TRIADIC KOCH FRACTALS: DIMENTIONS and FOURIER IMAGES 1,2 Galina V

Total Page:16

File Type:pdf, Size:1020Kb

FAMILY of GENERALIZED TRIADIC KOCH FRACTALS: DIMENTIONS and FOURIER IMAGES 1,2 Galina V FRACTALS IN PHYSICS 81 FAMILY OF GENERALIZED TRIADIC KOCH FRACTALS: DIMENTIONS AND FOURIER IMAGES 1,2 Galina V. Arzamastseva, 1 Mikhail G. Evtikhov, 1 Feodor V. Lisovsky, 1 Ekaterina G. Mansvetova 1Kotel’nikov Institute of Radio-Engineering and Electronics, Fryazino Branch, Russian Academy of Science, http://fire.relarn.ru 141120 Fryazino, Moscow region, Russian Federation [email protected], [email protected], [email protected], [email protected] 2Modern Humanitarian Academy, http://www.muh.ru 109029 Moscow, Russian Federation Abstract. Fourier images of generalized triadic Koch fractals (curves and snowflakes) with variable vertex angle of generator were obtained by digital methods. The comparison of different methods of fractal dimensions determination using Fraunhofer diffraction patterns was made. Analysis of the size ratio dependence of central (fractal) and peripheral (lattice) parts of diffraction pattern both upon vertex angle at a fixed value of prefractal generation number and upon prefractal generation number at a fixed value of vertex angle was made. The features of Koch curves and Koch snowflakes Fourier images are discussed. Keywords: annular zones method, box-counting method, digital methods, Fourier image, fractal dimension, Fraunhofer diffraction, Koch curve, Koch fractal, Koch snowflake, method of circles, scaling factor, scaling invariance, symmetry. UDC 51.74; 535.42 Bibliography – 27 references Recieved 17.11.2015 RENSIT, 8(1):81-90 DOI: 10.17725/rensit.2016.08.081 CONTENTS: 1. INTRODUCTION 1. INTRODUCTION (81) Externally similar to the snowflake outline 2. DECLARATION OF PROCEDURE FOR KOCH fractal (grandparent of fractals family which FRACTALS FOURIER IMAGES OBTAINING (82) will be discussed below) was named in honor 3. METHODS OF KOCH FRACTALS DIMENSION of Swedish mathematician Helge von Koch, DETERMINATION (83) who first described it in published in 1904 year 4. FOURIER IMAGES OF KOCH CURVES WITH article the title of which in French sounds like VARIABLE VERTEX ANGLE OF GENERATOR "Of nontangent continuous curve to obtain an (83) elementary geometric constructions" [1]. 5. DEPENDENCE OF KOCH CURVES DIMENSION The Koch fractals were quite a complicated ON VERTEX ANGLE OF GENERATOR (84) genealogy. It turned out that a year before the 6. PROPERTIES OF KOCH CURVES FOURIER Japanese mathematician Takagi Teiji published IMAGES (85) an article with almost the identical title "Simple 7. PROPERTIES OF KOCH SNOWFLAKES FOURIER example of continuous function without IMAGES (87) derivatives" [2], where he described the so- 8. PROPERTIES OF NODIFIED KOCH CURVES called "blancmange" curve (currently referred FOURIER IMAGES (88) to as Takagi-Landsberg curve), which was the 9. CONCLUSION (88) nearest relative of the Koch snowflake. Then REFERENCIES (89) the family of curves under consideration was expanded in 1933 by Hildebrandt [3] and in 1957 RENSIT | 2016 | Vol. 8 | No. 1 82 GALINA V. ARZAMASTSEVA, MIKHAIL G. EVTIKHOV, FEODOR V. LISOVSKY, EKATERINA G. MANSVETOVA FRACTALS IN PHYSICS by de Rham [4]. The last extension was the most mode. Fourier images, obtained by digitized representative: the individual cases of curves de- pictures of domain structures, correspond Frame are such wellknown classical fractals like both the results of the theoretical calculation the Koch snowflake, spacefilling Peano curves, and the experimentally observed diffraction curves of Cesaro-Faber, Takagi-Landsberg, patterns [7]. In addition, similar numerical Levi, etc., see [5]. methods have been used for a number of other In the present work we studied the properties fractal objects [8], for which the phenomenon obtained by numerical methods Fourier images of diffraction have been well studied by and Hausdorff dimension spectra of the triad other authors [9-11]. The agreement obtained geometric fractals family with generator in the Fourier images (diffraction patterns) with the form of a symmetrical four-segment broken results of these experimental and theoretical line with an arbitrary angle between the central studies was quite good. Note that numerical units and with the initiator (broken line) in methods are quite simple and do not require the form of a straight line (Koch curve) or an analytical description of fractals, that was in the form of an equilateral triangle (Koch used, for example, the authors of the works snowflake). When constructing a fractal, at [12, 13]. each step the segments of the initial broken The first step in the implementation of used line are divided symmetrically relative to the numerical methods was to generate black-and- center into three equal (for α = 60°) or unequal white raster image of selected fractal objects (for α ≠ 60°) parts (hence "triad" in the name with the help of specially designed programs. of a family). Further images of fractals were approximated Used in the present work, the term "Fourier by a grid function on a uniform grid with image" actually refers to the 2D-graphic number of nodes n1 × n2, where the values n1 representation of distribution of the squared и n2 were chosen sufficiently large (up to 4096) modules of the component of the Fourier in order to ensure adequate approximation of transform for images of fractals (see figures in the smallest details and have the opportunity text). The resulting picture is close to that obtained to explore generation of prefractals with high by Fraunhofer diffraction of electromagnetic numbers of generations. For digitized pictures waves on fractals, which makes possible to run using fast Fourier transform we determined verification field experiments. the values of the Fourier component squared modules, i.e. the spectral distribution of 2. DECLARATION OF PROCEDURE intensity I of diffracted radiation in the zone FOR KOCH FRACTALS FOURIER of Fraunhofer. To display the intensity I of the IMAGES OBTAINING diffraction maxima on the 2D-plane, one can Used in the present work a procedure for use either a linear (or logarithmic) scale intensity determination of fractal object picture using different gray levels, or representation Fourier images (i.e., diffraction patterns in the of I values in the form of circles with radius Fraunhofer zone) using numerical methods, proportional to intensity (or logarithm of it), previously described and applied to study the where coefficient of proportionality is chosen fractallike domain structures in magnetic films for reasons of optimal illustrativity of images. [6], later was applied to the real test objects This article used the second method, modified (mono- and biperiodical domain structures), by additional Gaussian blur of circles displaying when it was possible in the visible range of the values of I. wavelengths to observe directly and photograph In the following sections, according to the diffraction pattern by the "transmission" made in the introduction comments of, No. 1 | Vol. 8 | 2016 | RENSIT FAMILY OF GENERALIZED TRIADIC KOCH FRACTALS: 83 FRACTALS IN PHYSICS DIMENTIONS AND FOURIER IMAGES − we'll use for Koch fractal with the generator I( r) = IeDf , (2) in the form of symmetrical relative to the k 0 from which it follows that the value of fractal middle fourbar broken line with an arbitrary dimension D equals the modulo of the angular angle between the central bars name "Koch f coefficient of the straight line, approximating curve", if the initiator is a line segment, and the dependence Ī(r ) in double logarithmic the name "Koch snowflake", if the initiator is k scale. an equilateral triangle (see Fig. 1). Note that to preserve the self-similarity of prefractal In the second method (hereinafter, method by iterations all the segments of generator of the annular zones) the diffraction plane in a form of broken line must have the same is divided into annular regions by concentric k length. When α → 0°, the broken line becomes system of circles with radii rk = r0m , where delta-shaped, when α → 180°, it merges with a r0 – is an initial radius and m > 1 is a constant initiator line; case α = 60° corresponds to the multiplier. Then the average resulting intensity classical Koch curve. of the diffracted radiation inside of each ring is calculated k+1 3. METHODS OF KOCH FRACTALS 2π mr0 1 Ir = Iρϕ,, ρ d ρ d ϕ DIMENSION DETERMINATION ( k ) 22k 2 ∫∫ ( ) π mr0 ( m−1) 0 mrk (3) Analysis of the diffraction pattern allows to 0 determine the Hausdorff dimension of fractals after that the dependence Ī(rk) in double studied by two different numerical methods. The logarithmic scale is built, and module of the slope first method (hereinafter, method of circles) based of the linear section of which determines the on a numerical determination of the average fractal dimension Df.. For self-similar fractals, resultant intensity of the diffracted radiation to discussed in this work fractals belong, the 2π rk value of coincides with the scaling factor of 1 Ir( ) = I(ρϕ, ) ρ d ρ d ϕ the elements in the transition between adjacent k π r 2 ∫∫ (1) k 00 hierarchical levels of the fractal, and the value in the circles of variable radius r = r + kδ k 0 r of r0 must be chosen so that each of the annular centered at the position of the main diffraction zones contained only congruent fragments of maximum (ρ and φ – polar coordinates in the the dif-fraction patterns [9-13]. plane of diffraction, r and δ – are the initial 0 r The dimension of the fractals can be radius and increment of radius as well = 0, 1, k determined also by nonspectral box counting 2, ...) and then using the formula technique, which uses a built in double logarithmic scale the dependence N(εk) = f(1/ εk), where N(εk) – needed to fully cover the fractal is the number of squares with side length ε k → 0 [14-19]. The value of dimension D k→∞ f is determined with an angular coefficient of dependence N(εk). 4. FOURIER IMAGES OF KOCH CURVES WITH VARIABLE VERTEX ANGLE OF GENERATOR In Fig. 2 and Fig. 3 the Fourier images (diffraction pattern) of Koch curves with Fig.
Recommended publications
  • Infinite Perimeter of the Koch Snowflake And
    The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area Yaroslav D. Sergeyev∗ y Abstract The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Nu- merical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer patented in USA and EU. It is revealed in the paper that at infinity the snowflake is not unique, i.e., different snowflakes can be distinguished for different infinite numbers of steps executed during the process of their generation. It is then shown that for any given infinite number n of steps it becomes possible to calculate the exact infinite number, Nn, of sides of the snowflake, the exact infinitesimal length, Ln, of each side and the exact infinite perimeter, Pn, of the Koch snowflake as the result of multiplication of the infinite Nn by the infinitesimal Ln. It is established that for different infinite n and k the infinite perimeters Pn and Pk are also different and the difference can be in- finite. It is shown that the finite areas An and Ak of the snowflakes can be also calculated exactly (up to infinitesimals) for different infinite n and k and the difference An − Ak results to be infinitesimal. Finally, snowflakes con- structed starting from different initial conditions are also studied and their quantitative characteristics at infinity are computed.
    [Show full text]
  • Using Fractal Dimension for Target Detection in Clutter
    KIM T. CONSTANTIKES USING FRACTAL DIMENSION FOR TARGET DETECTION IN CLUTTER The detection of targets in natural backgrounds requires that we be able to compute some characteristic of target that is distinct from background clutter. We assume that natural objects are fractals and that the irregularity or roughness of the natural objects can be characterized with fractal dimension estimates. Since man-made objects such as aircraft or ships are comparatively regular and smooth in shape, fractal dimension estimates may be used to distinguish natural from man-made objects. INTRODUCTION Image processing associated with weapons systems is fractal. Falconer1 defines fractals as objects with some or often concerned with methods to distinguish natural ob­ all of the following properties: fine structure (i.e., detail jects from man-made objects. Infrared seekers in clut­ on arbitrarily small scales) too irregular to be described tered environments need to distinguish the clutter of with Euclidean geometry; self-similar structure, with clouds or solar sea glint from the signature of the intend­ fractal dimension greater than its topological dimension; ed target of the weapon. The discrimination of target and recursively defined. This definition extends fractal from clutter falls into a category of methods generally into a more physical and intuitive domain than the orig­ called segmentation, which derives localized parameters inal Mandelbrot definition whereby a fractal was a set (e.g.,texture) from the observed image intensity in order whose "Hausdorff-Besicovitch dimension strictly exceeds to discriminate objects from background. Essentially, one its topological dimension.,,2 The fine, irregular, and self­ wants these parameters to be insensitive, or invariant, to similar structure of fractals can be experienced firsthand the kinds of variation that the objects and background by looking at the Mandelbrot set at several locations and might naturally undergo because of changes in how they magnifications.
    [Show full text]
  • Measuring the Fractal Dimensions of Empirical Cartographic Curves
    MEASURING THE FRACTAL DIMENSIONS OF EMPIRICAL CARTOGRAPHIC CURVES Mark C. Shelberg Cartographer, Techniques Office Aerospace Cartography Department Defense Mapping Agency Aerospace Center St. Louis, AFS, Missouri 63118 Harold Moellering Associate Professor Department of Geography Ohio State University Columbus, Ohio 43210 Nina Lam Assistant Professor Department of Geography Ohio State University Columbus, Ohio 43210 Abstract The fractal dimension of a curve is a measure of its geometric complexity and can be any non-integer value between 1 and 2 depending upon the curve's level of complexity. This paper discusses an algorithm, which simulates walking a pair of dividers along a curve, used to calculate the fractal dimensions of curves. It also discusses the choice of chord length and the number of solution steps used in computing fracticality. Results demonstrate the algorithm to be stable and that a curve's fractal dimension can be closely approximated. Potential applications for this technique include a new means for curvilinear data compression, description of planimetric feature boundary texture for improved realism in scene generation and possible two-dimensional extension for description of surface feature textures. INTRODUCTION The problem of describing the forms of curves has vexed researchers over the years. For example, a coastline is neither straight, nor circular, nor elliptic and therefore Euclidean lines cannot adquately describe most real world linear features. Imagine attempting to describe the boundaries of clouds or outlines of complicated coastlines in terms of classical geometry. An intriguing concept proposed by Mandelbrot (1967, 1977) is to use fractals to fill the void caused by the absence of suitable geometric representations.
    [Show full text]
  • WHY the KOCH CURVE LIKE √ 2 1. Introduction This Essay Aims To
    p WHY THE KOCH CURVE LIKE 2 XANDA KOLESNIKOW (SID: 480393797) 1. Introduction This essay aims to elucidate a connection between fractals and irrational numbers, two seemingly unrelated math- ematical objects. The notion of self-similarity will be introduced, leading to a discussion of similarity transfor- mations which are the main mathematical tool used to show this connection. The Koch curve and Koch island (or Koch snowflake) are thep two main fractals that will be used as examples throughout the essay to explain this connection, whilst π and 2 are the two examples of irrational numbers that will be discussed. Hopefully,p by the end of this essay you will be able to explain to your friends and family why the Koch curve is like 2! 2. Self-similarity An object is self-similar if part of it is identical to the whole. That is, if you are to zoom in on a particular part of the object, it will be indistinguishable from the entire object. Many objects in nature exhibit this property. For example, cauliflower appears self-similar. If you were to take a picture of a whole cauliflower (Figure 1a) and compare it to a zoomed in picture of one of its florets, you may have a hard time picking the whole cauliflower from the floret. You can repeat this procedure again, dividing the floret into smaller florets and comparing appropriately zoomed in photos of these. However, there will come a point where you can not divide the cauliflower any more and zoomed in photos of the smaller florets will be easily distinguishable from the whole cauliflower.
    [Show full text]
  • A Gallery of De Rham Curves
    A Gallery of de Rham Curves Linas Vepstas <[email protected]> 20 August 2006 Abstract The de Rham curves are a set of fairly generic fractal curves exhibiting dyadic symmetry. Described by Georges de Rham in 1957[3], this set includes a number of the famous classical fractals, including the Koch snowflake, the Peano space- filling curve, the Cesàro-Faber curves, the Takagi-Landsberg[4] or blancmange curve, and the Lévy C-curve. This paper gives a brief review of the construction of these curves, demonstrates that the complete collection of linear affine deRham curves is a five-dimensional space, and then presents a collection of four dozen images exploring this space. These curves are interesting because they exhibit dyadic symmetry, with the dyadic symmetry monoid being an interesting subset of the group GL(2,Z). This is a companion article to several others[5][6] exploring the nature of this monoid in greater detail. 1 Introduction In a classic 1957 paper[3], Georges de Rham constructs a class of curves, and proves that these curves are everywhere continuous but are nowhere differentiable (more pre- cisely, are not differentiable at the rationals). In addition, he shows how the curves may be parameterized by a real number in the unit interval. The construction is simple. This section illustrates some of these curves. 2 2 2 2 Consider a pair of contracting maps of the plane d0 : R → R and d1 : R → R . By the Banach fixed point theorem, such contracting maps should have fixed points p0 and p1. Assume that each fixed point lies in the basin of attraction of the other map, and furthermore, that the one map applied to the fixed point of the other yields the same point, that is, d1(p0) = d0(p1) (1) These maps can then be used to construct a certain continuous curve between p0and p1.
    [Show full text]
  • Fractals, Self-Similarity & Structures
    © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 9 (2002): 1–7 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Fractals, self-similarity & structures Dmitry D. Sokoloff Summary: We present a critical discussion of a quite new mathematical theory, namely fractal geometry, to isolate its possible applications to plant morphology and plant systematics. In particular, fractal geometry deals with sets with ill-defined numbers of elements. We believe that this concept could be useful to describe biodiversity in some groups that have a complicated taxonomical structure. Zusammenfassung: In dieser Arbeit präsentieren wir eine kritische Diskussion einer völlig neuen mathematischen Theorie, der fraktalen Geometrie, um mögliche Anwendungen in der Pflanzen- morphologie und Planzensystematik aufzuzeigen. Fraktale Geometrie behandelt insbesondere Reihen mit ungenügend definierten Anzahlen von Elementen. Wir meinen, dass dieses Konzept in einigen Gruppen mit komplizierter taxonomischer Struktur zur Beschreibung der Biodiversität verwendbar ist. Keywords: mathematical theory, fractal geometry, self-similarity, plant morphology, plant systematics Critical editions of Dean Swift’s Gulliver’s Travels (see e.g. SWIFT 1926) recognize a precise scale invariance with a factor 12 between the world of Lilliputians, our world and that one of Brobdingnag’s giants. Swift sarcastically followed the development of contemporary science and possibly knew that even in the previous century GALILEO (1953) noted that the physical laws are not scale invariant. In fact, the mass of a body is proportional to L3, where L is the size of the body, whilst its skeletal rigidity is proportional to L2. Correspondingly, giant’s skeleton would be 122=144 times less rigid than that of a Lilliputian and would be destroyed by its own weight if L were large enough (cf.
    [Show full text]
  • Lasalle Academy Fractal Workshop – October 2006
    LaSalle Academy Fractal Workshop – October 2006 Fractals Generated by Geometric Replacement Rules Sierpinski’s Gasket • Press ‘t’ • Choose ‘lsystem’ from the menu • Choose ‘sierpinski2’ from the menu • Make the order ‘0’, press ‘enter’ • Press ‘F4’ (This selects the video mode. This mode usually works well. Fractint will offer other options if you press the delete key. ‘Shift-F6’ gives more colors and better resolution, but doesn’t work on every computer.) You should see a triangle. • Press ‘z’, make the order ‘1’, ‘enter’ • Press ‘z’, make the order ‘2’, ‘enter’ • Repeat with some other orders. (Orders 8 and higher will take a LONG time, so don’t choose numbers that high unless you want to wait.) Things to Ponder Fractint repeats a simple rule many times to generate Sierpin- ski’s Gasket. The repetition of a rule is called an iteration. The order 5 image, for example, is created by performing 5 iterations. The Gasket is only complete after an infinite number of iterations of the rule. Can you figure out what the rule is? One of the characteristics of fractals is that they exhibit self-similarity on different scales. For example, consider one of the filled triangles inside of Sierpinski’s Gasket. If you zoomed in on this triangle it would look identical to the entire Gasket. You could then find a smaller triangle inside this triangle that would also look identical to the whole fractal. Sierpinski imagined the original triangle like a piece of paper. At each step, he cut out the middle triangle. How much of the piece of paper would be left if Sierpinski repeated this procedure an infinite number of times? Von Koch Snowflake • Press ‘t’, choose ‘lsystem’ from the menu, choose ‘koch1’ • Make the order ‘0’, press ‘enter’ • Press ‘z’, make the order ‘1’, ‘enter’ • Repeat for order 2 • Look at some other orders that are less than 8 (8 and higher orders take more time) Things to Ponder What is the rule that generates the von Koch snowflake? Is the von Koch snowflake self-similar in any way? Describe how.
    [Show full text]
  • Fractal Initialization for High-Quality Mapping with Self-Organizing Maps
    Neural Comput & Applic DOI 10.1007/s00521-010-0413-5 ORIGINAL ARTICLE Fractal initialization for high-quality mapping with self-organizing maps Iren Valova • Derek Beaton • Alexandre Buer • Daniel MacLean Received: 15 July 2008 / Accepted: 4 June 2010 Ó Springer-Verlag London Limited 2010 Abstract Initialization of self-organizing maps is typi- 1.1 Biological foundations cally based on random vectors within the given input space. The implicit problem with random initialization is Progress in neurophysiology and the understanding of brain the overlap (entanglement) of connections between neu- mechanisms prompted an argument by Changeux [5], that rons. In this paper, we present a new method of initiali- man and his thought process can be reduced to the physics zation based on a set of self-similar curves known as and chemistry of the brain. One logical consequence is that Hilbert curves. Hilbert curves can be scaled in network size a replication of the functions of neurons in silicon would for the number of neurons based on a simple recursive allow for a replication of man’s intelligence. Artificial (fractal) technique, implicit in the properties of Hilbert neural networks (ANN) form a class of computation sys- curves. We have shown that when using Hilbert curve tems that were inspired by early simplified model of vector (HCV) initialization in both classical SOM algo- neurons. rithm and in a parallel-growing algorithm (ParaSOM), Neurons are the basic biological cells that make up the the neural network reaches better coverage and faster brain. They form highly interconnected communication organization. networks that are the seat of thought, memory, con- sciousness, and learning [4, 6, 15].
    [Show full text]
  • FRACTAL CURVES 1. Introduction “Hike Into a Forest and You Are Surrounded by Fractals. the In- Exhaustible Detail of the Livin
    FRACTAL CURVES CHELLE RITZENTHALER Abstract. Fractal curves are employed in many different disci- plines to describe anything from the growth of a tree to measuring the length of a coastline. We define a fractal curve, and as a con- sequence a rectifiable curve. We explore two well known fractals: the Koch Snowflake and the space-filling Peano Curve. Addition- ally we describe a modified version of the Snowflake that is not a fractal itself. 1. Introduction \Hike into a forest and you are surrounded by fractals. The in- exhaustible detail of the living world (with its worlds within worlds) provides inspiration for photographers, painters, and seekers of spiri- tual solace; the rugged whorls of bark, the recurring branching of trees, the erratic path of a rabbit bursting from the underfoot into the brush, and the fractal pattern in the cacophonous call of peepers on a spring night." Figure 1. The Koch Snowflake, a fractal curve, taken to the 3rd iteration. 1 2 CHELLE RITZENTHALER In his book \Fractals," John Briggs gives a wonderful introduction to fractals as they are found in nature. Figure 1 shows the first three iterations of the Koch Snowflake. When the number of iterations ap- proaches infinity this figure becomes a fractal curve. It is named for its creator Helge von Koch (1904) and the interior is also known as the Koch Island. This is just one of thousands of fractal curves studied by mathematicians today. This project explores curves in the context of the definition of a fractal. In Section 3 we define what is meant when a curve is fractal.
    [Show full text]
  • Riemann-Liouville Fractional Calculus of Blancmange Curve and Cantor Functions
    Journal of Applied Mathematics and Computation, 2020, 4(4), 123-129 https://www.hillpublisher.com/journals/JAMC/ ISSN Online: 2576-0653 ISSN Print: 2576-0645 Riemann-Liouville Fractional Calculus of Blancmange Curve and Cantor Functions Srijanani Anurag Prasad Department of Mathematics and Statistics, Indian Institute of Technology Tirupati, India. How to cite this paper: Srijanani Anurag Prasad. (2020) Riemann-Liouville Frac- Abstract tional Calculus of Blancmange Curve and Riemann-Liouville fractional calculus of Blancmange Curve and Cantor Func- Cantor Functions. Journal of Applied Ma- thematics and Computation, 4(4), 123-129. tions are studied in this paper. In this paper, Blancmange Curve and Cantor func- DOI: 10.26855/jamc.2020.12.003 tion defined on the interval is shown to be Fractal Interpolation Functions with appropriate interpolation points and parameters. Then, using the properties of Received: September 15, 2020 Fractal Interpolation Function, the Riemann-Liouville fractional integral of Accepted: October 10, 2020 Published: October 22, 2020 Blancmange Curve and Cantor function are described to be Fractal Interpolation Function passing through a different set of points. Finally, using the conditions for *Corresponding author: Srijanani the fractional derivative of order ν of a FIF, it is shown that the fractional deriva- Anurag Prasad, Department of Mathe- tive of Blancmange Curve and Cantor function is not a FIF for any value of ν. matics, Indian Institute of Technology Tirupati, India. Email: [email protected] Keywords Fractal, Interpolation, Iterated Function System, fractional integral, fractional de- rivative, Blancmange Curve, Cantor function 1. Introduction Fractal geometry is a subject in which irregular and complex functions and structures are researched.
    [Show full text]
  • Turtlefractalsl2 Old
    Lecture 2: Fractals from Recursive Turtle Programs use not vain repetitions... Matthew 6: 7 1. Fractals Pictured in Figure 1 are four fractal curves. What makes these shapes different from most of the curves we encountered in the previous lecture is their amazing amount of fine detail. In fact, if we were to magnify a small region of a fractal curve, what we would typically see is the entire fractal in the large. In Lecture 1, we showed how to generate complex shapes like the rosette by applying iteration to repeat over and over again a simple sequence of turtle commands. Fractals, however, by their very nature cannot be generated simply by repeating even an arbitrarily complicated sequence of turtle commands. This observation is a consequence of the Looping Lemmas for Turtle Graphics. Sierpinski Triangle Fractal Swiss Flag Koch Snowflake C-Curve Figure 1: Four fractal curves. 2. The Looping Lemmas Two of the simplest, most basic turtle programs are the iterative procedures in Table 1 for generating polygons and spirals. The looping lemmas assert that all iterative turtle programs, no matter how many turtle commands appear inside the loop, generate shapes with the same general symmetries as these basic programs. (There is one caveat here, that the iterating index is not used inside the loop; otherwise any turtle program can be simulated by iteration.) POLY (Length, Angle) SPIRAL (Length, Angle, Scalefactor) Repeat Forever Repeat Forever FORWARD Length FORWARD Length TURN Angle TURN Angle RESIZE Scalefactor Table 1: Basic procedures for generating polygons and spirals via iteration. Circle Looping Lemma Any procedure that is a repetition of the same collection of FORWARD and TURN commands has the structure of POLY(Length, Angle), where Angle = Total Turtle Turning within the Loop Length = Distance from Turtle’s Initial Position to Turtle’s Final Position within the Loop That is, the two programs have the same boundedness, closing, and symmetry.
    [Show full text]
  • Introduction to Fractal Geometry: Definition, Concept, and Applications
    University of Northern Iowa UNI ScholarWorks Presidential Scholars Theses (1990 – 2006) Honors Program 1992 Introduction to fractal geometry: Definition, concept, and applications Mary Bond University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©1992 - Mary Bond Follow this and additional works at: https://scholarworks.uni.edu/pst Part of the Geometry and Topology Commons Recommended Citation Bond, Mary, "Introduction to fractal geometry: Definition, concept, and applications" (1992). Presidential Scholars Theses (1990 – 2006). 42. https://scholarworks.uni.edu/pst/42 This Open Access Presidential Scholars Thesis is brought to you for free and open access by the Honors Program at UNI ScholarWorks. It has been accepted for inclusion in Presidential Scholars Theses (1990 – 2006) by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. INTRODUCTION TO FRACTAL GEOMETRY: DEFINITI0N7 CONCEPT 7 AND APP LI CA TIO NS MAY 1992 BY MARY BOND UNIVERSITY OF NORTHERN IOWA CEDAR F ALLS7 IOWA • . clouds are not spheres, mountains are not cones~ coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line, . • Benoit B. Mandelbrot For centuries, geometers have utilized Euclidean geometry to describe, measure, and study the world around them. The quote from Mandelbrot poses an interesting problem when one tries to apply Euclidean geometry to the natural world. In 1975, Mandelbrot coined the term ·tractal. • He had been studying several individual ·mathematical monsters.· At a young age, Mandelbrot had read famous papers by G. Julia and P . Fatou concerning some examples of these monsters. When Mandelbrot was a student at Polytechnique, Julia happened to be one of his teachers.
    [Show full text]