Action of Auxin on Cell Elongation* David L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Auxins and Cytokinins in Plant Development 2018
International Journal of Molecular Sciences Meeting Report Auxins and Cytokinins in Plant Development 2018 Jan Petrasek 1, Klara Hoyerova 1, Vaclav Motyka 1 , Jan Hejatko 2 , Petre Dobrev 1, Miroslav Kaminek 1 and Radomira Vankova 1,* 1 Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502 Prague 6, Czech Republic; [email protected] (J.P.); [email protected] (K.H.); [email protected] (V.M.); [email protected] (P.D.); [email protected] (M.K.) 2 CEITEC–Central European Institute of Technology and Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-225-106-427 Received: 15 February 2019; Accepted: 18 February 2019; Published: 20 February 2019 Abstract: The international symposium “Auxins and Cytokinins in Plant Development” (ACPD), which is held every 4–5 years in Prague, Czech Republic, is a meeting of scientists interested in the elucidation of the action of two important plant hormones—auxins and cytokinins. It is organized by a group of researchers from the Laboratory of Hormonal Regulations in Plants at the Institute of Experimental Botany, the Czech Academy of Sciences. The symposia already have a long tradition, having started in 1972. Thanks to the central role of auxins and cytokinins in plant development, the ACPD 2018 symposium was again attended by numerous experts who presented their results in the opening, two plenary lectures, and six regular sessions, including two poster sessions. Due to the open character of the research community, which is traditionally very well displayed during the meeting, a lot of unpublished data were presented and discussed. -
MATERIAL GROWTH and GROWTH by F. W. WENT
(From the German) (1) MATERIAL GROWTH AND GROWTH By F. W. WENT. SECTION I. INTRODUCTION. "Any direct expression of a fact in science is valuable as temporary generalities and schemes, which are at times necessary to preliminary navigate theory, but need to be always checked or corrected, when a rule which has become a scheme, proves inadequate." Julius Sachs, ‘Fabric and Shape of Plant Organs’. In this paper I will discuss on the basis of my investigations in recent years carried out some physical properties of the growth-promoting substance that is formed in the Coleoptile tip of Avena, and its role in the growth and the phototropic curvature. As was the result of some preliminary tests, I already discussed (Went 1926), the methods should be briefly mentioned again. If you cut off a certain number of Coleoptile tip on Agar, gelatin or gelatin-silica, can stand for some time as a growth-promoting substance diffused into the jelly. The tops taken off again, then the concentration of this substance in the Agar is so high that it can increase growth significantly. This can be demonstrated by the Agar-side on decapitation. (2) Seedlings sets, the growth of the flank below the Agar, is then increased compared to that of the other side, facing away from the Agar so that a curvature results. In addition, I further can show, that the curvature of the concentration of that substance is directly proportional, so it is possible to examine this material: 1.the formation in the tip. 2.transport from the apex to the growing parts. -
Cell Wall Synthesis and Cell Elongation in Oat Coleoptile Tissue!
928 AMERICAN JOURNAL OF BOTANY [Vol. 49 Erianihus, N arenga, and Sclerostachya from Thailand VAARAMA, A. 1949a. Permanent effect of colchicine on and Vietnam. Cytologia 24: 342-347. Ribe« nigrum. Proc, 8th Int. Genet. Congress (Stock ROTHWELL, N. V. 1959. Aneuploidy in Claytonia holm): 680-681. virginica. Amer. Jour. Bot. 46: 353-360. 1949b. Spindle abnormalities and variation in SACHS, L. 1952. Chromosome mosaics in experimental chromosome number in Ribes nigrum. Hereditas 35: amphiploids in the Triticinae. Heredity 6: 157-170. 136--162. SAUNTE, L. H. 1958. Chromosome variation in the WITKUS, E. R. 1945. Endomitotic tapetal cell divisions Heleocharis palustris-uniglurnis complex. Nature 181: in Spinacia. Amer. Jour. Bot. 32: 326-330. 1019-1020. ---, SR. J. B. FERSCHL, Al\D C. A. BERGER. 1959. SHARMA, A. K., AND A. SHARMA. 1956. Fixity in chro The cytology of Xanthisrna texanum DC. V. Further mosome number of plants. Nature 177: 335-336. observations on cytology and breeding behavior. SNOAD, B. 1955. Somatic instability of chromosome Bull. Torrey Bot. Club 86: 300-307. number in Hymenocallis calathinum. Heredity 9: --, J. T. LOWERY, AND C. A. BERGER. 1955. The 129-134. cytology of Xanthisrna texanurn DC. II. Additional STRANDHEDE, S. 1958. Eleocharis, subseries Palustres i chromosome types. Bull. Torrey Bot. Club 82: 367 Skandinavien och Finland. Bot. Not. 111: 228-236. 376. CELL WALL SYNTHESIS AND CELL ELONGATION IN OAT COLEOPTILE TISSUE! PETER M. RAY Department of Botany, L'niversity of Michigan, Ann Arbor, Michigan ABSTRACT RAY, PETER M. (U. Michigan, Ann Arbor.) Cell wall synthesis and cell elongation in oat cok~ optile tissue. -
Auxins Cytokinins and Gibberellins TD-I Date: 3/4/2019 Cell Enlargement in Young Leaves, Tissue Differentiation, Flowering, Fruiting, and Delay of Aging in Leaves
Informational TD-I Revision 2.0 Creation Date: 7/3/2014 Revision Date: 3/4/2019 Auxins, Cytokinins and Gibberellins Isolation of the first Cytokinin Growing cells in a tissue culture medium composed in part of coconut milk led to the realization that some substance in coconut milk promotes cell division. The “milk’ of the coconut is actually a liquid endosperm containing large numbers of nuclei. It was from kernels of corn, however, that the substance was first isolated in 1964, twenty years after its presence in coconut milk was known. The substance obtained from corn is called zeatin, and it is one of many cytokinins. What is a Growth Regulator? Plant Cell Growth regulators (e.g. Auxins, Cytokinins and Gibberellins) - Plant hormones play an important role in growth and differentiation of cultured cells and tissues. There are many classes of plant growth regulators used in culture media involves namely: Auxins, Cytokinins, Gibberellins, Abscisic acid, Ethylene, 6 BAP (6 Benzyladenine), IAA (Indole Acetic Acid), IBA (Indole-3-Butyric Acid), Zeatin and trans Zeatin Riboside. The Auxins facilitate cell division and root differentiation. Auxins induce cell division, cell elongation, and formation of callus in cultures. For example, 2,4-dichlorophenoxy acetic acid is one of the most commonly added auxins in plant cell cultures. The Cytokinins induce cell division and differentiation. Cytokinins promote RNA synthesis and stimulate protein and enzyme activities in tissues. Kinetin and benzyl-aminopurine are the most frequently used cytokinins in plant cell cultures. The Gibberellins is mainly used to induce plantlet formation from adventive embryos formed in culture. -
The Relationship Between Growth and Indole-3-Acetic Acid Content of Roots of Pisum Sativum L
The Relationship between Growth and Indole-3-Acetic Acid Content of Roots of Pisum sativum L. Author(s): William L. Pengelly and John G. Torrey Reviewed work(s): Source: Botanical Gazette, Vol. 143, No. 2 (Jun., 1982), pp. 195-200 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2474706 . Accessed: 03/04/2012 15:52 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Botanical Gazette. http://www.jstor.org BOT. GAZ. 143(2):195-200. 1982. ? 1982 by The Universityof Chicago. All rightsreserved. 0006-8071/82/4302-0004$02.00 THE RELATIONSHIP BETWEEN GROWTH AND INDOLE-3-ACETIC ACID CONTENT OF ROOTS OF PISUM SATIVUM L. WILLIAM L. PENGELLY1 AND JOHN G. TORREY Cabot Foundation,Harvard University,Petersham, Massachusetts 01366 The indole-3-aceticacid (IAA) contentof roots and shoots of light-grownpea seedlings(Pisizmi sali,zim L. 'Little Marvel') growingat differentrates was studied by radioimmunoassayduring the firstweek of germination.Different growth rates were obtained by daily irrigationwith either deionized water or a dilute Hoagland's mineralnutrient solution. -
Synthetic Auxin Resistant Weeds
Synthetic Auxin Resistant Weeds Available from the HRAC website: hracglobal.com Synthetic Auxin biochemical mechanism of resistance in Mustard. Synthetic auxin resistance in two these cases appears to differ from other other species, tall waterhemp and common Resistant Weeds auxin resistance. Sixteen of the 27 species lambsquarters, are not widespread yet, but Despite synthetic auxin herbicides being have documented resistance to have the potential to become serious used longer and on a greater area than any 2,4-D, seven to MCPA, and six to dicamba. problems in the United States if they are other herbicide mechanism of action the In the United States six weed species have not managed properly. evolved resistance to synthetic auxin area infested with synthetic auxin resistant This fact sheet is an introduction to a series herbicides, with only one, Kochia scoparia, weeds is low in comparison to many other of fact sheets on auxin resistant weeds, being widespread and a serious economic herbicide mechanisms of action. Twenty covering kochia, wild radish, corn poppy, problem. Globally the most important seven weeds have evolved resistance to wild mustard, tall waterhemp, and common synthetic auxin resistant weeds are Kochia, synthetic auxins. This excludes grasses lambsquarters. resistant to quinclorac since the Wild Radish, Corn poppy, and Wild Table 1. The occurrence of synthetic auxin resistant weeds worldwide. Species First Year Herbicides Country Amaranthus tuberculatus 2009 2,4-D United States Carduus nutans 1981 2,4-D New Zealand Carduus -
Regulation of the Gravitropic Response and Ethylene Biosynthesis in Gravistimulated Snapdragon Spikes by Calcium Chelators and Ethylene Lnhibitors’
Plant Physiol. (1996) 110: 301-310 Regulation of the Gravitropic Response and Ethylene Biosynthesis in Gravistimulated Snapdragon Spikes by Calcium Chelators and Ethylene lnhibitors’ Sonia Philosoph-Hadas*, Shimon Meir, Ida Rosenberger, and Abraham H. Halevy Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel (S.P.-H., S.M., I.R.); and Department of Horticulture, The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot 761 00, Israel (A.H.H.) vireacting organ; this causes the growth asymmetry that The possible involvement of Ca2+ as a second messenger in leads to coleoptile reorientation. Originally devised for snapdragon (Antirrhinum majus L.) shoot gravitropism, as well as grass coleoptiles, this theory was soon generalized to ex- the role of ethylene in this bending response, were analyzed in plain the manifold gravitropic reactions of stems and roots terms of stem curvature and gravity-induced asymmetric ethylene as well. Evidence in favor of the Cholodny-Went hypoth- production rates, ethylene-related metabolites, and invertase esis has emerged from various studies showing an asym- activity across the stem. Application of CaZ+ chelators (ethylenedia- metric distribution of auxin, specifically IAA, in gravi- minetetraacetic acid, trans-1,2-cyclohexane dinitro-N,N,N’,N’- stimulated grass coleoptiles (McClure and Guilfoyle, 1989; tetraacetic acid, 1,2-bis(2-aminophenoxy)ethane-N,N,N’,Nf,-tet- Li et al., 1991). However, it appears that changes in sensi- raacetic acid) or a CaZ+ antagonist (LaCI,) to the spikes caused a significant loss of their gravitropic response following horizontal tivity of the gravity receptor and time-dependent gravity- placement. -
Five Components of the Ethylene-Response Pathway Identified in a Screen for Weak Ethylene-Insensitive Mutants in Arabidopsis
Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis Jose M. Alonso*†‡, Anna N. Stepanova*†‡, Roberto Solano*§, Ellen Wisman¶, Simone Ferrariʈ, Frederick M. Ausubelʈ, and Joseph R. Ecker*,** *Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037; ¶Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824; and ʈDepartment of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 Communicated by Joanne Chory, The Salk Institute for Biological Studies, La Jolla, CA, December 31, 2002 (received for review November 22, 2002) Five ethylene-insensitive loci (wei1–wei5) were identified by using shown to be required for the normal ethylene response, as a low-dose screen for ‘‘weak’’ ethylene-insensitive mutants. wei1, inferred from the hormone insensitivity of the ein3 loss-of- wei2, and wei3 seedlings showed hormone insensitivity only in function mutant (15). Transgenic studies suggest that the EIN3- roots, whereas wei4 and wei5 displayed insensitivity in both roots like proteins EIL1 and EIL2 may also be involved in ethylene and hypocotyls. The genes corresponding to wei1, wei4, and wei5 signal transduction (15). However, mutations in these genes have were isolated using a positional cloning approach. The wei1 not been identified. EIN3 and possibly other members of the mutant harbored a recessive mutation in TIR1, which encodes a EIN3 family bind to a DNA element in the promoter of the ERF1 component of the SCF protein ubiquitin ligase involved in the auxin gene, an ethylene-responsive element binding protein-type tran- response. -
Identification of Auxin Metabolites in Brassicaceae by Ultra-Performance
molecules Article Identification of Auxin Metabolites in Brassicaceae by Ultra-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry Panagiota-Kyriaki Revelou , Maroula G. Kokotou and Violetta Constantinou-Kokotou * Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece * Correspondence: [email protected]; Tel.: +30-210-5294261; Fax: +30-210-5294265 Academic Editors: Carlo Siciliano and Anna Napoli Received: 24 June 2019; Accepted: 16 July 2019; Published: 18 July 2019 Abstract: Auxins are signaling molecules involved in multiple stages of plant growth and development. The levels of the most important auxin, indole-3-acetic acid (IAA), are regulated by the formation of amide and ester conjugates with amino acids and sugars. In this work, IAA and IAA amide conjugates with amino acids bearing a free carboxylic group or a methyl ester group, along with some selected IAA metabolites, were studied in positive and negative electrospray ionization (ESI) modes, utilizing high-resolution mass spectrometry (HRMS) as a tool for their structural analysis. HRMS/MS spectra revealed the fragmentation patterns that enable us to identify IAA metabolites in plant extracts from eight vegetables of the Brassicaceae family using a fast and reliable ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) method. The accurate m/z (mass to charge) ratio and abundance of the molecular and fragment ions of the studied compounds in plant extracts matched those obtained from commercially available or synthesized compounds and confirmed the presence of IAA metabolites. Keywords: UPLC-QToF-MS; Brassica oleracea; Raphanus raphanistrum; Eruca sativa; Brassica rapa; Brassicaceae; auxin; amino acid conjugates 1. -
High Temperature Promotes Auxin-Mediated Hypocotyl Elongation in Arabidopsis
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 7197–7202, June 1998 Plant Biology High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis WILLIAM M. GRAY*, ANDERS O¨ STIN†,GO¨RAN SANDBERG†,CHARLES P. ROMANO‡, AND MARK ESTELLE*§ *Department of Biology, Indiana University Bloomington, IN 47405; †Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, S-901 83 Umeå, Sweden; and ‡Cereon Genomics LLC, Cambridge, MA 02139 Edited by Bernard O. Phinney, University of California, Los Angeles, CA, and approved April 9, 1998 (received for review September 24, 1997) ABSTRACT Physiological studies with excised stem seg- Ethylene both positively and negatively regulates hypocotyl ments have implicated the plant hormone indole-3-acetic acid elongation. In darkness, ethylene inhibits elongation, but at (IAA or auxin) in the regulation of cell elongation. Supporting least under some conditions in the light, ethylene promotes evidence from intact plants has been somewhat more difficult elongation (8). Precisely how this complex array of hormonal to obtain, however. Here, we report the identification and controls is integrated with regulation by light and other characterization of an auxin-mediated cell elongation growth environmental factors is poorly understood. We have identi- response in Arabidopsis thaliana. When grown in the light at fied an additional environmental control of hypocotyl growth. high temperature (29°C), Arabidopsis seedlings exhibit dra- We find that high temperature promotes dramatic hypocotyl matic hypocotyl elongation compared with seedlings grown at elongation in light-grown Arabidopsis seedlings. This temper- 20°C. This temperature-dependent growth response is sharply ature-induced growth response depends on indole-3-acetic reduced by mutations in the auxin response or transport acid (IAA or auxin). -
Effects of the Indole-3-Acetic Acid (IAA) Transport Inhibitors N-1
Plant Physiol. (1994) 106: 469-476 Effects of the Indole-3-Acetic Acid (IAA) Transport Inhibitors N-1 -Naphthylphthalamic Acid and Morphactin on Endogenous IAA Dynamics in Relation to Compression Wood Formation in 1-Year-Old Pinus sylvestris (1.) Shoots' Bjorn Sundberg*, Hannele Tuominen, and C. H. Anthony little Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 UmeA, Sweden (B.S., H.T.); and Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, Fredericton, New Brunswick, E3B 5P7, Canada (C.H.A.L.) and coleoptile segments, as measured by the donor-receiver Both N-1-naphthylphthalamic acid (NPA) and methyl-2-chloro- block method (Hertel and Leopold, 1963; Krelle and Libbert, 9-hydroxyfluorene-9-carboxylic acid (CF) inhibit the polar trans- 1968; Parups, 1970; Bridges and Wilkins, 1973; Thomson et port of indole-%acetic acid (IAA) and, therefore, are attractive al., 1973; Thomson and Leopold, 1974; Gagianas and Berg, tools for investigating IAA's role in the regulation of plant growth. 1977; Katekar and Geissler, 1980). In intact plants it has been Ringing an intact conifer shoot with lanolin containing NPA or CF demonstrated that ringing a stem with NPA or CF inhibits induces the formation of compression wood above the ring. This the transport of radiolabeled IAA and that the label accu- induction has been attributed to a postulated accumulation of IAA above the application site of the IAA transport inhibitor, but the mulates above the ring (Cruz and Audus, 1978; Johnson and validity of this postulation has never been confirmed. -
The Role of Auxin and Ethylene in Adventitious Root Formation in Arabidopsis and Tomato
THE ROLE OF AUXIN AND ETHYLENE IN ADVENTITIOUS ROOT FORMATION IN ARABIDOPSIS AND TOMATO BY POORNIMA SUKUMAR A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY In the Department of Biology May 2010 Winston-Salem, North Carolina Approved By: Gloria K. Muday, Ph.D., Advisor Examining Committee: Brenda S. J. Winkel, Ph.D., Chair Susan E. Fahrbach, Ph.D. Anita K. McCauley, Ph.D. Brian W. Tague, Ph.D. ACKNOWLEDGMENTS “Live as if you were to die tomorrow. Learn as if you were to live forever.” Mohandas Gandhi First and foremost, I would like to thank my advisor Dr Gloria Muday for all her help with scientific as well as several aspects of my graduate student life. I appreciate your constant encouragement, support, and advice throughout my graduate studies. I owe my passion for science and teaching to your incessant enthusiasm and challenges. I am grateful to my committee members, Dr Brian Tague, Dr Susan Fahrbach, Dr Anita McCauley, and Dr Brenda Winkel for their encouragement, and assistance. I am indebted to you for providing valuable suggestions and ideas for making this project possible. I appreciate the friendship and technical assistance by all my lab mates. In particular, I like to thank Sangeeta Negi for helping me with tomato research and making the lab more fun. I am grateful to Dan Lewis for his advice and help with figuring out imaging and molecular techniques, and Mary Beth Lovin for her sincere friendship and positive thoughts.