BIOLOGY of SEA TURTLES Volume II CRC Marine Biology SERIES Peter L

Total Page:16

File Type:pdf, Size:1020Kb

BIOLOGY of SEA TURTLES Volume II CRC Marine Biology SERIES Peter L The BIOLOGY of SEA TURTLES Volume II CRC Marine Biology SERIES Peter L. Lutz, Editor PUBLISHED TITLES Biology of Marine Birds E.A. Schreiber and Joanna Burger Biology of the Spotted Seatrout Stephen A. Bortone The BIOLOGY of SEA TURTLES Volume II Edited by Peter L. Lutz John A. Musick Jeanette Wyneken CRC PRESS Boca Raton London New York Washington, D.C. 1123 Front Matter.fm Page iv Thursday, November 14, 2002 11:25 AM Library of Congress Cataloging-in-Publication Data The biology of sea turtles / edited by Peter L. Lutz and John A. Musick. p. cm.--(CRC marine science series) Includes bibliographical references (p. ) and index. ISBN 0-8493-1123-3 1. Sea turtles. I. Lutz, Peter L. II. Musick, John A. III. Series: Marine science series. QL666.C536B56 1996 597.92—dc20 96-36432 CIP This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, may be granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-1123-3/03/$1.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com © 2003 CRC Press LLC No claim to original U.S. Government works International Standard Book Number 0-8493-1123-3 Library of Congress Card Number 96-36432 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper 1123 Front Matter.fm Page v Thursday, November 14, 2002 11:25 AM Preface The success of the first volume of The Biology of Sea Turtles revealed a need for broad but comprehensive reviews of recent major advances in sea turtle biology. At that time, book size constraints as well as the fast-paced changes in some fields dictated that this need could be only partially addressed in a single volume. Many important topics were not covered and were left for future volumes. Volume II emphasizes practical aspects of biology that relate to sea turtle management and changes in marine and coastal ecosystems. These topics include the interactions of humans and sea turtles, an introduction to sea turtle anatomy, sensory and repro- ductive biology, sea turtle habitat use and ecology, stress and health, and the main- tenance of captive animals. This volume provides both historical and up-to-press- time information. The field is growing dramatically as established scientists expand their views and fine new scientists bring their novel ideas, techniques, and perspec- tives to the understanding and application of the biology of marine turtles. 1123 Front Matter.fm Page vi Thursday, November 14, 2002 11:25 AM 1123 Front Matter.fm Page vii Thursday, November 14, 2002 11:25 AM Acknowledgments The encouragement, support, and suggestions of colleagues, especially those at the annual meetings of the International Sea Turtle Symposium, the Harbor Branch Oceanographic Institute course in sea turtle biology, and the Duke University classes in sea turtle biology and conservation inspired this volume. We are extremely grateful to Melanie Harbin for editorial assistance and to those who contributed chapters as well as those who gave their precious time as reviewers. We thank John Sulzycki, CRC Press senior editor, for his support and patience. Erika Dery, production manager and Amy Rodriguez, project editor, CRC Press, helped shepherd the book through. Steven Lutz again provided a wonderful photo to serve as the cover to this volume. This book is dedicated to sea turtle biologists worldwide who are playing vital roles in preventing these fascinating marine reptiles from vanishing into oblivion. Peter L. Lutz Florida Atlantic University John A. (Jack) Musick Virginia Institute of Marine Science, College of William and Mary Jeanette Wyneken Florida Atlantic University 1123 Front Matter.fm Page viii Thursday, November 14, 2002 11:25 AM 1123 Front Matter.fm Page ix Thursday, November 14, 2002 11:25 AM Editors Peter L. Lutz, Ph.D., holds the McGinty Eminent Scholar Chair in Marine Biology at Florida Atlantic University. Dr. Lutz received both his B.Sc. (Honors) and Ph.D. from Glasgow University, Scotland. After earning his Ph.D. in 1970 he became a research associate with Dr. Knut Schmidt-Nielsen at Duke University, with whom he worked on avian physiology. He has held university faculty positions in Nigeria (University of Ife), England (Bath University), and the United States. In 1975 he joined the Department of Marine Biology and Fisheries at the Rosenstiel School of Marine and Atmospheric Science, University of Miami, and became chair of that department in 1983, a post he held until he took his present position in 1991. As a comparative physiologist Dr. Lutz has worked on the physiology of a wide variety of organisms, from liver flukes to duck-billed platypuses. His current interests focus on turtles, particularly stress, diving, and hypoxia. Dr. Lutz is an editor for the Journal for Experimental Biology and is series editor for the Marine Biology Series published by CRC Press. He was a governing council member of the Bahamas National Trust and a fellow of the Explorers Club. He has authored more than 150 research papers and 4 books. John A. (Jack) Musick, Ph.D., holds the Marshall Acuff Chair in Marine Science at the Virginia Institute of Marine Science (VIMS), College of William and Mary, where he has served on the faculty since 1967. He earned his B.A. in Biology from Rutgers University in 1962 and his M.A. and Ph.D. in Biology from Harvard University in 1964 and 1969, respectively. While at VIMS he has successfully mentored 32 masters and 39 Ph.D. students. Dr. Musick has been awarded the Thomas Ashley Graves Award for Sustained Excellence in Teaching from the College of William and Mary and the Outstanding Faculty Award from the State Council on Higher Education in Virginia. He has published more than 100 scientific papers and 7 books focused on the ecology of sea turtles, sharks, and other marine fishes. In 1985 he was elected a Fellow by the American Association for the Advancement of Science. He has received Distinguished Service Awards from both the American Fisheries Society and the American Elasmobranch Society, for which he has served as president. Dr. Musick also has served as president of the Annual Sea Turtle Symposium (now the International Sea Turtle Society), and as member of the World Conservation Union (IUCN) Marine Turtle Specialist Group. Dr. Musick currently serves as co-chair of the IUCN Shark Specialist Group, and on two national, five regional, and five state scientific advisory committees concerned with marine resource management and conservation. 1123 Front Matter.fm Page x Thursday, November 14, 2002 11:25 AM Jeanette Wyneken, Ph.D., is an Assistant Professor at Florida Atlantic University. Dr. Wyneken earned a B.A. from Illinois Wesleyan University and her Ph.D. from the University of Illinois in 1988. She was a research associate at the University of Illinois from 1988 through 1989, then took a position at Florida Atlantic University in 1990 where she became a research assistant professor until assuming her current position in 2000. Dr. Wyneken has successfully mentored seven masters students while at Florida Atlantic University. She developed and has taught the Biology of Sea Turtles course at Harbor Branch Oceanographic Institution since 1996. Along with Selina Heppell and Larry Crowder, she helped develop and teach Duke Uni- versity’s Biology and Conservation of Sea Turtles course. She maintains professional affiliations with Duke University Marine Laboratory and Mote Marine Laboratory. Dr. Wyneken is a former president of the Annual Symposium on Sea Turtle Biology and Conservation (now the International Sea Turtle Society). As a functional and evolutionary morphologist, Dr. Wyneken has studied a variety of lower vertebrates; much of her attention is focused on the integration of anatomy, physiology, and behavior in understanding marine turtle biology. Her work emphasizes the integral roles these play in the conservation and management of marine turtles. She has authored more than 20 research papers and one book. She is a member of a number of professional organizations, including the IUCN Marine Turtle Specialists Group, the Society for Integrative and Comparative Biology, Sigma Xi, and the Association for Reptilian and Amphibian Veterinarians. 1123 Front Matter.fm Page xi Thursday, November 14, 2002 11:25 AM Contributors Karen A.
Recommended publications
  • Beach Dynamics and Impact of Armouring on Olive Ridley Sea Turtle (Lepidochelys Olivacea) Nesting at Gahirmatha Rookery of Odisha Coast, India
    Indian Journal of Geo-Marine Sciences Vol. 45(2), February 2016, pp. 233-238 Beach dynamics and impact of armouring on olive ridley sea turtle (Lepidochelys olivacea) nesting at Gahirmatha rookery of Odisha coast, India Satyaranjan Behera1, 2, Basudev Tripathy3*, K. Sivakumar2, B.C. Choudhury2 1Odisha Biodiversity Board, Regional Plant Resource Centre Campus, Nayapalli, Bhubaneswar-15 2Wildlife Institute of India, Dehradun, PO Box 18, Chandrabani, Dehradun – 248 001, India. 3Zoological Survey of India, Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata-700 053 (India) *[E. mail:[email protected]] Received 28 March 2014; revised 18 September 2014 Gahirmatha arribada beach are most dynamic and eroding at a faster rate over the years from 2008-09 to 2010-11, especially during the turtles breeding seasons. Impact of armouring cement tetrapod on olive ridley sea turtle nesting beach at Gahirmatha rookery of Odisha coast has also been reported in this study. This study documented the area of nesting beach has reduced from 0.07 km2to 0.06 km2. Due to a constraint of nesting space, turtles were forced to nest in the gap of cement tetrapods adjacent to the arribada beach and get entangled there, resulting into either injury or death. A total of 209 and 24 turtles were reported to be injured and dead due to placement of cement tetrapods in their nesting beach during 2008-09 and 2010-11 respectively. Olive ridley turtles in Odisha are now exposed to many problems other than fishing related casualty and precautionary measures need to be taken by the wildlife and forest authorities to safeguard the Olive ridleys and their nesting habitat at Gahirmatha.
    [Show full text]
  • The Evolutionary Significance of Temperature-Dependent Sex Determination in Reptiles
    Rollins Undergraduate Research Journal Volume 2 Article 5 Issue 1 RURJ Spring 2010 4-1-2007 The volutE ionary Significance of Temperature- Dependent Sex Determination in Reptiles Cavia Teller Rollins College, [email protected] Follow this and additional works at: http://scholarship.rollins.edu/rurj Recommended Citation Teller, Cavia (2010) "The vE olutionary Significance of Temperature-Dependent Sex Determination in Reptiles," Rollins Undergraduate Research Journal: Vol. 2: Iss. 1, Article 5. Available at: http://scholarship.rollins.edu/rurj/vol2/iss1/5 This Article is brought to you for free and open access by Rollins Scholarship Online. It has been accepted for inclusion in Rollins Undergraduate Research Journal by an authorized administrator of Rollins Scholarship Online. For more information, please contact [email protected]. Teller: Sex Determination in Reptiles The evolutionary significance of temperature-dependent sex determination in reptiles Cayla Teller Rollins College Department of Biology 1000 Holt Avenue Winter Park, FL 32789 May 23, 2007 Published by Rollins Scholarship Online, 2010 1 Rollins Undergraduate Research Journal, Vol. 2 [2010], Iss. 1, Art. 5 2 Table of Contents: Page I. Abstract 3 II. Introduction 4 III. Sex-Determining Mechanisms 5 IV. Patterns within Sex-Determination 7 V. Gonad Differentiation 10 VI. Aromatase Influence and Importance 11 VII. Estrogen and Steroid Effects 13 VIII. Sex-Ratio and Selection Effects 16 IX. Effect of Maternal Nest-Site Choice on Sex-Determination 19 X. TSD and Global Warming 21 XI. Conclusion of Evolutionary Significance 22 XII. Acknowledgements 23 XIII. Literature Cited 23 http://scholarship.rollins.edu/rurj/vol2/iss1/5 2 Teller: Sex Determination in Reptiles 3 I.
    [Show full text]
  • Vasa's New Climate-Control System
    Maintaining a Stable Environment: Vasa’s New Climate-Control System EMMA HOCKER An extensive upgrade to the air- Introduction ship is not open to the general public, museum staff regularly go onboard for conditioning system of the Vasa The Vasa Museum in Stockholm, research or maintenance purposes. Museum in Stockholm is playing an Sweden, houses the seventeenth-century Although the largely anoxic (oxygen- warship Vasa, the largest and best pre- instrumental role in preserving the deficient) burial conditions in the Stock- served wooden ship ever salvaged from seventeenth-century Swedish holm harbor had generally favored the seabed and conserved. The warship, wood preservation, there was sufficient warship Vasa. adorned with hundreds of painted oxygen available in the murky waters of sculptures, was commissioned by King the harbor immediately after the sinking Gustav II Adolf, who had ambitions to to allow micro-organism degradation of dominate the Baltic region. It was thus the outer 3/4 in. (2 cm) of wood. In order a huge embarrassment when the ship to prevent shrinkage and collapse of sank unceremoniously in Stockholm these weakened wood cells once the ship harbor on its maiden voyage in 1628. was raised, a material that would diffuse Salvaged in 1961, the ship underwent a into the wood and take the place of the pioneering conservation program for 26 water in the cells was needed. The mate- years.1 In late 1988 the conserved ship rial chosen was a water-soluble wax, was floated on its pontoon into a dry polyethylene glycol (PEG), which was dock through the open wall of the pur- sprayed over the hull in increasing con- pose-built Vasa Museum, which has centrations over a 17-year period, fol- since become the most visited maritime lowed by a 9-year period of slow air museum in the world.
    [Show full text]
  • Zootaxa, Grania (Annelida: Clitellata: Enchytraeidae) of the Great Barrier
    Zootaxa 2165: 16–38 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) Grania (Annelida: Clitellata: Enchytraeidae) of the Great Barrier Reef, Australia, including four new species and a re-description of Grania trichaeta Jamieson, 1977 PIERRE DE WIT1,3, EMILIA ROTA2 & CHRISTER ERSÉUS1 1Department of Zoology, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden 2Department of Environmental Sciences, University of Siena, Via T. Pendola 62, IT-53100 Siena, Italy 3Corresponding author. E-mail: [email protected] Abstract This study describes the fauna of the marine enchytraeid genus Grania at two locations on the Australian Great Barrier Reef: Lizard and Heron Islands. Collections were made from 1979 to 2006, yielding four new species: Grania breviductus sp. n., Grania regina sp. n., Grania homochaeta sp. n. and Grania colorata sp. n.. A re-description of Grania trichaeta Jamieson, 1977 based on new material is also included, along with notes and amendments on G. hyperoadenia Coates, 1990 and G. integra Coates & Stacey, 1997, the two latter being recorded for the first time from eastern Australia. COI barcode sequences were obtained from G. trichaeta and G. colorata and deposited with information on voucher specimens in the Barcode of Life database and GenBank; the mean intraspecific variation is 1.66 % in both species, while the mean interspecific divergence is 25.54 %. There seem to be two phylogeographic elements represented in the Great Barrier Grania fauna; one tropical with phylogenetic affinities to species found in New Caledonia and Hong Kong, and one southern (manifested at the more southerly located Heron Island) with affinities to species found in Southern Australia, Tasmania and Antarctica.
    [Show full text]
  • 'J'rjjj®; 'Jry^,-; T 'R ' 4-:' -A " « \ ^ * -Ok ' «») "
    - " *7 ' >.. k' 4-rVi r ^ '! M; + „ - . - 1 ,i , i -V -'j'rjjj®; 'jry^,-; t 'r ' 4-:' -A " « \ ^ j "WS-li * r.y, .. • J. - r * -ok ' «») " - 2*1 i J " ."»•• •• „ , ; ; ' "" \ "Sri ' is****. '".-v.-/ : • . ' 'r • 'H , !• ,-rs 'V V « W iv U , , t.t J^fi. - , -J. -r^ ~ t . THE SERGESTIDAE OF THE GREAT BARRIER REEF EXPEDITION BY ISABELLA GORDON, D.Sc., Ph.D. SYNOPSIS. The paper gives the occurrence of two species of the genus Lucifer in the Ureat Barrier Reef area during the year July 1928 July 1929. L. penicillifer Hansen is by far the commoner species : it occurred with fair regularity throughout the year, the month of September excepted. Spermatophores were present, in the distal portion of one vas deferens only, practically throughout the year, suggesting that there is ,110 fixed breeding period. L. typus H. M.-Edw. occurred in small numbers between the end of July and the- end of November 192S but the two species were seldom present at the same time. INTRODUCTION THK Sergestidae of the Ureat Barrier Reef Expedition all belong- to the subfamily Luciferinae which, comprises the single aberrant genus Lucifer V. Thompson (---- Leucifer H. Milne-Edwards). This genus was revised by Hansen (1919, pp. 48-6o, pis. iv and v) who reduced the number of known species to three, adding that " all the remaining names in the literature must be cancelled for ever either as synonyms or as quite unrecognizable " (p. 50). in addition, he described three new species from the " Siboga material. These six species fall into two groups, one with long eye-stalks comprising L.
    [Show full text]
  • 127179758.23.Pdf
    —>4/ PUBLICATIONS OF THE SCOTTISH HISTORY SOCIETY THIRD SERIES VOLUME II DIARY OF GEORGE RIDPATH 1755-1761 im DIARY OF GEORGE RIDPATH MINISTER OF STITCHEL 1755-1761 Edited with Notes and Introduction by SIR JAMES BALFOUR PAUL, C.V.O., LL.D. EDINBURGH Printed at the University Press by T. A. Constable Ltd. for the Scottish History Society 1922 CONTENTS INTRODUCTION DIARY—Vol. I. DIARY—You II. INDEX INTRODUCTION Of the two MS. volumes containing the Diary, of which the following pages are an abstract, it was the second which first came into my hands. It had found its way by some unknown means into the archives in the Offices of the Church of Scotland, Edinburgh ; it had been lent about 1899 to Colonel Milne Home of Wedderburn, who was interested in the district where Ridpath lived, but he died shortly after receiving it. The volume remained in possession of his widow, who transcribed a large portion with the ultimate view of publication, but this was never carried out, and Mrs. Milne Home kindly handed over the volume to me. It was suggested that the Scottish History Society might publish the work as throwing light on the manners and customs of the period, supplementing and where necessary correcting the Autobiography of Alexander Carlyle, the Life and Times of Thomas Somerville, and the brilliant, if prejudiced, sketch of the ecclesiastical and religious life in Scotland in the eighteenth century by Henry Gray Graham in his well-known work. When this proposal was considered it was found that the Treasurer of the Society, Mr.
    [Show full text]
  • Download Book (PDF)
    HANDBOOK INDIAN TESTUDINES HANDBOOK INDIAN TESTUDINES B. K. TIKADER Zoological Survey of India, Calcutta R. C. SHARMA Desert Regional Station, Zoological Survey of India, Jodhpur Edited by the Director ZOOLOGICAL SURVEY OF INDIA, CALCUTTA © Government of India, 1985 Published: November, 1985 Price: Indian Rs. 150/00 Foreign : £ 20/00 $ 30/00 Printed at The Radiant Process Private Limited, Calcutta, India and Published by the Director, Zoological Survey of India, Calcutta FOREWORD One of the objectives of Zoological Survey of India is to provide comprehensive systematic accounts on various groups of the Indian fauna. To achieve this objective, the Zoological Survey of India undertakes faunistic survey programmes and publishes the results in the form of research papers and reports and under the series "Fauna of India", "The Handbooks" and "Technical Monographs" The present contribution on the Turtles and Tortoises is the sixth in the series of "Handbooks" This is a very primitive group of animals which have a role in the conservation of Nature and are an important protein source. While studies on this group of animals began at the turn of this century, intensive studies were taken up only recently. The present "Handbook" gives a comprehensive taxonomic account of all the marine, freshwater and land turtles and tortoises of India, along with their phylogeny, distribution and keys for easy identification. It includes other information, wherever known, about their biology, ecology, conservation and captive breeding. A total of 32 species and subspecies distributed over sixteen genera and five families are dealt with here. I congratulate the authors for undertaking this work which I am sure will prove useful to students and researchers in the field of Herpetology both in India and abroad.
    [Show full text]
  • Nomadic Behaviour of the Highly Migratory Olive Ridley Sea Turtle Lepidochelys Olivacea in the Eastern Tropical Pacific Ocean
    Vol. 13: 33–40, 2010 ENDANGERED SPECIES RESEARCH Published online December 3 doi: 10.3354/esr00314 Endang Species Res OPENPEN ACCESSCCESS Nomadic behaviour of the highly migratory olive ridley sea turtle Lepidochelys olivacea in the eastern tropical Pacific Ocean Pamela T. Plotkin* Cornell University, Office of Sponsored Programs, 373 Pine Tree Road, Ithaca, New York 14850, USA ABSTRACT: I studied the post-reproductive migrations of 30 male and female olive ridley sea turtles Lepidochelys olivacea in the eastern tropical Pacific Ocean (ETP) using satellite telemetry. Long-term data revealed that turtles were widely distributed in the pelagic zone from Mexico to Peru and lacked migratory corridors. Turtles migrated long distances, swam continuously, displayed no fidelity to spe- cific feeding habitats, and were nomadic. An El Niño occurred in the middle of the study, and turtle migration patterns changed in response. ETP olive ridleys likely evolved migratory flexibility to adapt to the frequent and unpredictable environmental change characteristic of their large dynamic marine ecosystem. This suggests that ETP olive ridleys may be less vulnerable to the impacts of cli- mate change than other sea turtle species. KEY WORDS: Lepidochelys olivacea · Eastern tropical Pacific · Satellite telemetry · Nomadic · Highly migratory · El Niño Resale or republication not permitted without written consent of the publisher INTRODUCTION tiles (Plotkin 2003), birds (Dean 1997) and mammals (McCullough 1985). Long-distance animal migrations are generally Sea turtles are long-distance migrants that inhabit resource-driven, with migrants travelling between or dynamic ocean environments and predictably should among established locations at regular or seasonal display migratory flexibility. Most species undertake intervals.
    [Show full text]
  • Molecular Approaches Underlying the Oogenic Cycle of the Scleractinian
    www.nature.com/scientificreports OPEN Molecular approaches underlying the oogenic cycle of the scleractinian coral, Acropora tenuis Ee Suan Tan1, Ryotaro Izumi1, Yuki Takeuchi 2,3, Naoko Isomura4 & Akihiro Takemura2 ✉ This study aimed to elucidate the physiological processes of oogenesis in Acropora tenuis. Genes/ proteins related to oogenesis were investigated: Vasa, a germ cell marker, vitellogenin (VG), a major yolk protein precursor, and its receptor (LDLR). Coral branches were collected monthly from coral reefs around Sesoko Island (Okinawa, Japan) for histological observation by in situ hybridisation (ISH) of the Vasa (AtVasa) and Low Density Lipoprotein Receptor (AtLDLR) genes and immunohistochemistry (IHC) of AtVasa and AtVG. AtVasa immunoreactivity was detected in germline cells and ooplasm, whereas AtVG immunoreactivity was detected in ooplasm and putative ovarian tissues. AtVasa was localised in germline cells located in the retractor muscles of the mesentery, whereas AtLDLR was localised in the putative ovarian and mesentery tissues. AtLDLR was detected in coral tissues during the vitellogenic phase, whereas AtVG immunoreactivity was found in primary oocytes. Germline cells expressing AtVasa are present throughout the year. In conclusion, Vasa has physiological and molecular roles throughout the oogenic cycle, as it determines gonadal germline cells and ensures normal oocyte development, whereas the roles of VG and LDLR are limited to the vitellogenic stages because they act in coordination with lipoprotein transport, vitellogenin synthesis, and yolk incorporation into oocytes. Approximately 70% of scleractinian corals are hermaphroditic broadcast spawners and have both male and female gonads developing within the polyp of the same colony1. Tey engage in a multispecifc spawning event around the designated moon phase once a year2–4.
    [Show full text]
  • OLIVE RIDLEY SEA TURTLE (Lepidochelys Olivacea)
    OLIVE RIDLEY SEA TURTLE (Lepidochelys olivacea) General Characteristics The name of the olive ridley originates from the olive color of the adult’s carapace. Its head is triangular in shape, measuring up to 13 cm (5.1 in.) wide, with two pairs of prefrontal scales. Their carapace is circular and flat with a uniquely high and variable number (six to nine pairs) of costal scutes, and ranges from olive green to dark grey in color. The plastron is cream colored and has a small and distinct pore close to the rear margin of each of the four inframarginal scutes. Its body is deeper than the Kemp’s Ridley (L. kempii), which is found primarily in the Gulf of Mexico and along the eastern coast of the USA. Size The olive ridley is one of the smallest sea turtles; the length of the carapaces is approximately 65 cm (2 ft.) and reaches up to 50 kg. (110 lbs.). Both the front and rear flippers have one, or sometimes two, claws. Habitat Olive ridleys are found throughout the tropical waters of the Pacific, Indian and southern Atlantic Oceans. In the eastern Pacific they range from Mexico to Colombia and are sometimes found off the southwestern coast of the United States. Non-nesting individuals are often found in Isla de Margarita (Venezuela) and Trinidad & Tobago; however, they rarely go deeper into the Caribbean. They typically forage offshore in surface waters, primarily in bays and estuaries. They may dive to depths of 150 meters (500 ft.) to feed on bottom- dwelling crustaceans. Diet Their large and powerful jaws are adapted to their diet of mostly fish, mussels and crustaceans, particularly shrimp.
    [Show full text]
  • Olive Ridley Turtle)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Lepidochelys olivacea (Olive Ridley Turtle) Family: Cheloniidae (Sea Turtles) Order: Testudines (Turtles and Tortoises) Class: Reptilia (Reptiles) Fig. 1. Olive ridley turtle, Lepidochelys olivacea. [http://www.nathab.com/central-america/mexico-sea-turtle-tour/, downloaded 9 March 2016] TRAITS. Lepidochelys olivacea or the olive ridley turtle is named due to the greenish coloration of its skin and carapace, and is one of the smallest sea turtles (Fig. 1). Mature turtles typically weigh around 30-50 kg and grow to be around 60-75cm in length (Eckert, 1999). The carapace or protective shell of Lepidochelys olivacea has a short but wide structure that has high vertebral projections in juvenile turtles, and is smooth with an elevated tectiform (roof-like) shape in adult turtles. The carapace is also known to have an inconstant amount of lateral scutes, ranging between six to ten pairs. In addition to this, eight pores are found on the scutes of the ventral surface of the shell (Marcovaldi, 1999). The head of Lepidochelys olivacea is relatively larger than most turtles, with an average width of 13cm, and has two pairs of prefrontal scales. Male olive ridleys can be distinguished from females by their long tails, relatively soft and concave plastron, as well as sturdy talons found on their anterior limbs (Wibbels et al., 1991). DISTRIBUTION. Olive ridleys are found only in warm waters such as the southern Atlantic Ocean, Pacific Ocean and Indian Ocean (Fig. 2). There are a few records of Lepidochelys olivacea being found in areas of the western Atlantic Ocean such as off the coast of Trinidad and Tobago, Brazil, Venezuela and Suriname (Schulz, 1975).
    [Show full text]
  • Unique Finds from the Early 17Th-Century Swedish Warship Vasa
    Common people’s clothing in a military context - Unique finds from the early 17th-century Swedish warship Vasa. Anna Silwerulv Vasa Museum, Sweden Abstract Soldiers in the Thirty Years War (1618 – 1648) commonly wore their everyday clothing as uniforms in the modern sense were still rare. Little is known about their gear, since garments from common people are rarely preserved or detailed in paintings and historical sources. The Swedish warship Vasa sank 1628 in Stockholm harbour. The ship was raised in 1961 and about 12,000 fragments of textiles and leather from clothing, shoes, accessories and personal possessions were recovered. The Swedish navy had not yet issued uniforms to their conscripted crews, which makes the finds unique as the largest collection of everyday clothing in a use context from its time. This paper will present preliminary results from the initial phase of a new research project focusing on these find groups, in which we seek knowledge about the objects themselves and what they can tell us about the social structures of both military and civilian society. Content The role of clothing in the military and the idea of uniforms in early 17th-century Europe The unique clothing finds on board the Swedish warship Vasa The Dress Project Methodology Preliminary results References The role of clothing in the military and the idea of uniforms in early 17th-century Europe. Clothes have always had a very important role to play in society. Their powerful visual languages have been used for centuries to express the wearer's personality and way of life as well as social and economic status in society.
    [Show full text]