C6000 Embedded Application Binary Interface (Rev. A)

Total Page:16

File Type:pdf, Size:1020Kb

C6000 Embedded Application Binary Interface (Rev. A) C6000 Embedded Application Binary Interface Application Report Literature Number: SPRAB89A September 2011–Revised March 2014 Contents 1 Introduction ...................................................................................................................... 10 1.1 ABIs for the C6000 .................................................................................................... 10 1.2 Scope .................................................................................................................... 11 1.3 ABI Variants ............................................................................................................ 12 1.4 Toolchains and Interoperability ....................................................................................... 13 1.5 Libraries ................................................................................................................. 13 1.6 Types of Object Files .................................................................................................. 13 1.7 Segments ............................................................................................................... 14 1.8 C6000 Architecture Overview ........................................................................................ 14 1.9 Reference Documents ................................................................................................ 15 1.10 Code Fragment Notation .............................................................................................. 15 2 Data Representation .......................................................................................................... 16 2.1 Basic Types ............................................................................................................. 16 2.2 Data in Registers ....................................................................................................... 17 2.3 Data in Memory ........................................................................................................ 17 2.4 Complex Types ......................................................................................................... 18 2.5 Structures and Unions ................................................................................................. 18 2.6 Arrays .................................................................................................................... 19 2.7 Bit Fields ................................................................................................................ 19 2.7.1 Volatile Bit Fields ........................................................................................... 20 2.8 Enumeration Types .................................................................................................... 21 3 Calling Conventions .......................................................................................................... 22 3.1 Call and Return ........................................................................................................ 22 3.1.1 Return Address Computation ............................................................................. 22 3.1.2 Call Instructions ............................................................................................ 22 3.1.3 Return Instruction .......................................................................................... 22 3.1.4 Pipeline Conventions ...................................................................................... 23 3.1.5 Weak Functions ............................................................................................ 23 3.2 Register Conventions .................................................................................................. 23 3.3 Argument Passing ..................................................................................................... 25 3.4 Return Values .......................................................................................................... 25 3.5 Structures or Unions Passed and Returned by Reference ....................................................... 26 3.6 Conventions for Compiler Helper Functions ........................................................................ 26 3.7 Scratch Registers for Inter-Section Calls ........................................................................... 26 3.8 Setting Up DP .......................................................................................................... 26 4 Data Allocation and Addressing .......................................................................................... 27 4.1 Data Sections and Segments ........................................................................................ 27 4.2 Allocation and Addressing of Static Data ........................................................................... 28 4.2.1 Addressing Methods for Static Data ..................................................................... 29 4.2.1.1 Near DP-Relative Addressing ........................................................................ 29 4.2.1.2 Far DP-Relative Addressing .......................................................................... 29 4.2.1.3 Absolute Addressing .................................................................................. 30 2 Table of Contents SPRAB89A–September 2011–Revised March 2014 Submit Documentation Feedback Copyright © 2011–2014, Texas Instruments Incorporated www.ti.com 4.2.1.4 GOT-Indirect Addressing ............................................................................. 30 4.2.1.5 PC-Relative Addressing .............................................................................. 30 4.2.2 Placement Conventions for Static Data ................................................................. 30 4.2.2.1 Abstract Conventions for Placement ................................................................ 30 4.2.2.2 Abstract Conventions for Addressing ............................................................... 31 4.2.2.3 Linker Requirements .................................................................................. 31 4.2.3 Initialization of Static Data ................................................................................ 31 4.3 Automatic Variables ................................................................................................... 32 4.4 Frame Layout ........................................................................................................... 32 4.4.1 Stack Alignment ............................................................................................ 33 4.4.2 Register Save Order ....................................................................................... 34 4.4.2.1 Big-Endian Pair Swapping ............................................................................ 34 4.4.2.2 Examples ............................................................................................... 35 4.4.3 DATA_MEM_BANK ........................................................................................ 36 4.4.4 C64x+ Specific Stack Layouts ............................................................................ 36 4.4.4.1 _ _c6xabi_push_rts Layout ........................................................................... 36 4.4.4.2 Compact Frame Layout ............................................................................... 37 4.5 Heap-Allocated Objects ............................................................................................... 38 5 Code Allocation and Addressing ......................................................................................... 39 5.1 Computing the Address of a Code Label ........................................................................... 39 5.1.1 Absolute Addressing for Code ............................................................................ 39 5.1.2 PC-Relative Addressing ................................................................................... 39 5.1.3 PC-Relative Addressing Within the Same Section .................................................... 39 5.1.4 Short-Offset PC-Relative Addressing (C64x) ........................................................... 40 5.1.5 GOT-Based Addressing for Code ........................................................................ 40 5.2 Branching ............................................................................................................... 40 5.3 Calls ..................................................................................................................... 40 5.3.1 Direct PC-Relative Call .................................................................................... 40 5.3.2 Far Call Trampoline ........................................................................................ 40 5.3.3 Indirect Calls ................................................................................................ 41 5.4 Addressing Compact Instructions .................................................................................... 41 6 Addressing Model for Dynamic Linking ................................................................................ 43 6.1 Terms and Concepts .................................................................................................. 43 6.2 Overview of Dynamic Linking Mechanisms ........................................................................ 44 6.3 DSOs and DLLs .......................................................................................................
Recommended publications
  • Strict Protection for Virtual Function Calls in COTS C++ Binaries
    vfGuard: Strict Protection for Virtual Function Calls in COTS C++ Binaries Aravind Prakash Xunchao Hu Heng Yin Department of EECS Department of EECS Department of EECS Syracuse University Syracuse University Syracuse University [email protected] [email protected] [email protected] Abstract—Control-Flow Integrity (CFI) is an important se- these binary-only solutions are unfortunately coarse-grained curity property that needs to be enforced to prevent control- and permissive. flow hijacking attacks. Recent attacks have demonstrated that existing CFI protections for COTS binaries are too permissive, While coarse-grained CFI solutions have significantly re- and vulnerable to sophisticated code reusing attacks. Accounting duced the attack surface, recent efforts by Goktas¸¨ et al. [9] for control flow restrictions imposed at higher levels of semantics and Carlini [10] have demonstrated that coarse-grained CFI is key to increasing CFI precision. In this paper, we aim to provide solutions are too permissive, and can be bypassed by reusing more stringent protection for virtual function calls in COTS large gadgets whose starting addresses are allowed by these C++ binaries by recovering C++ level semantics. To achieve this solutions. The primary reason for such permissiveness is the goal, we recover C++ semantics, including VTables and virtual lack of higher level program semantics that introduce certain callsites. With the extracted C++ semantics, we construct a sound mandates on the control flow. For example, given a class CFI policy and further improve the policy precision by devising two filters, namely “Nested Call Filter” and “Calling Convention inheritance, target of a virtual function dispatch in C++ must Filter”.
    [Show full text]
  • Tricore Architecture Manual for a Detailed Discussion of Instruction Set Encoding and Semantics
    User’s Manual, v2.3, Feb. 2007 TriCore 32-bit Unified Processor Core Embedded Applications Binary Interface (EABI) Microcontrollers Edition 2007-02 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non- infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. User’s Manual, v2.3, Feb.
    [Show full text]
  • Majnemer-Fuzzingclang.Pdf
    Fuzzing Clang to find ABI Bugs David Majnemer What’s in an ABI? • The size, alignment, etc. of types • Layout of records, RTTI, virtual tables, etc. • The decoration of types, functions, etc. • To generalize: anything that you need N > 1 compilers to agree upon C++: A complicated language union U { int a; int b; }; ! int U::*x = &U::a; int U::*y = &U::b; ! Does ‘x’ equal ‘y’ ? We’ve got a standard How hard could it be? “[T]wo pointers to members compare equal if they would refer to the same member of the same most derived object or the same subobject if indirection with a hypothetical object of the associated class type were performed, otherwise they compare unequal.” No ABI correctly implements this. Why does any of this matter? • Data passed across ABI boundaries may be interpreted by another compiler • Unpredictable things may happen if two compilers disagree about how to interpret this data • Subtle bugs can be some of the worst bugs Finding bugs isn’t easy • ABI implementation techniques may collide with each other in unpredictable ways • One compiler permutes field order in structs if the alignment is 16 AND it has an empty virtual base AND it has at least one bitfield member AND … • Some ABIs are not documented • Even if they are, you can’t always trust the documentation What happens if we aren’t proactive • Let users find our bugs for us • This can be demoralizing for users, eroding their trust • Altruistic; we must hope that the user will file the bug • At best, the user’s time has been spent on something they probably didn’t want to do Let computers find the bugs 1.
    [Show full text]
  • IAR C/C++ Compiler Reference Guide for V850
    IAR Embedded Workbench® IAR C/C++ Compiler Reference Guide for the Renesas V850 Microcontroller Family CV850-9 COPYRIGHT NOTICE © 1998–2013 IAR Systems AB. No part of this document may be reproduced without the prior written consent of IAR Systems AB. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such a license. DISCLAIMER The information in this document is subject to change without notice and does not represent a commitment on any part of IAR Systems. While the information contained herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors or omissions. In no event shall IAR Systems, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind. TRADEMARKS IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, The Code to Success, IAR KickStart Kit, I-jet, I-scope, IAR and the logotype of IAR Systems are trademarks or registered trademarks owned by IAR Systems AB. Microsoft and Windows are registered trademarks of Microsoft Corporation. Renesas is a registered trademark of Renesas Electronics Corporation. V850 is a trademark of Renesas Electronics Corporation. Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated. All other product names are trademarks or registered trademarks of their respective owners. EDITION NOTICE Ninth edition: May 2013 Part number: CV850-9 This guide applies to version 4.x of IAR Embedded Workbench® for the Renesas V850 microcontroller family.
    [Show full text]
  • ILE C/C++ Language Reference, SC09-7852
    IBM IBM i Websphere Development Studio ILE C/C++ Language Reference 7.1 SC09-7852-02 IBM IBM i Websphere Development Studio ILE C/C++ Language Reference 7.1 SC09-7852-02 Note! Before using this information and the product it supports, be sure to read the general information under “Notices” on page 355. This edition applies to IBM i 7.1, (program 5770-WDS), ILE C/C++ compilers, and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. © Copyright IBM Corporation 1998, 2010. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About ILE C/C++ Language Reference Digraph characters ........... 27 (SC09-7852-01) ........... ix Trigraph sequences ........... 28 Who should read this book ......... ix Comments............... 28 Highlighting Conventions .......... x How to Read the Syntax Diagrams ....... x Chapter 3. Data objects and Prerequisite and related information ...... xii declarations ............ 31 How to send your comments ........ xii Overview of data objects and declarations .... 31 Overview of data objects ......... 31 What's new for IBM i 7.1 ....... xv Incomplete types .......... 32 Compatible and composite types ..... 32 Chapter 1. Scope and linkage ..... 1 Overview of data declarations and definitions .. 33 Tentative definitions ......... 34 Scope ................. 1 Storage class specifiers........... 35 Block/local scope ............ 2 The auto storage class specifier ....... 35 Function scope ............ 2 Storage duration of automatic variables ... 35 Function prototype scope ......... 3 Linkage of automatic variables ...... 36 File/global scope ...........
    [Show full text]
  • Assessment of the Technical Feasibility of ICT and Charging Solutions
    Assessment of the technical feasibility of ICT and charging solutions Deliverable No. D4.2.1 Workpackage No. WP4.2 Workpackage Title Technical feasibility of ICT and charging solutions Authors ENIDE, ICCS, CEA, CIRCE, CRF, TECNO, UNIGE, VEDE Status (Final; Draft) Final Dissemination level (Public; Public Restricted; Confidential) Project start date and duration 01 January 2014, 48 Months Revision date 2014 – 10 – 31 Submission date 2014 – 10 – 31 This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 605405 Copyright FABRIC <D4.2.1> Public Contract N. 605405 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................ 12 1. INTRODUCTION ............................................................................................................................... 17 1.1 GENERAL .................................................................................................................................... 17 1.2 CONTRIBUTION TO FABRIC OBJECTIVES ...................................................................................... 17 1.3 DELIVERABLE STRUCTURE ........................................................................................................... 17 2. METHODOLOGY .............................................................................................................................. 19 2.1 GENERAL
    [Show full text]
  • Application Binary Interface for the ARM Architecture
    ABI for the ARM Architecture (Base Standard) Application Binary Interface for the ARM® Architecture The Base Standard Document number: ARM IHI 0036B, current through ABI release 2.10 Date of Issue: 10th October 2008, reissued 24th November 2015 Abstract This document describes the structure of the Application Binary Interface (ABI) for the ARM architecture, and links to the documents that define the base standard for the ABI for the ARM Architecture. The base standard governs inter-operation between independently generated binary files and sets standards common to ARM- based execution environments. Keywords ABI for the ARM architecture, ABI base standard, embedded ABI How to find the latest release of this specification or report a defect in it Please check the ARM Information Center (http://infocenter.arm.com/) for a later release if your copy is more than one year old (navigate to the ARM Software development tools section, ABI for the ARM Architecture subsection). Please report defects in this specification to arm dot eabi at arm dot com. Licence THE TERMS OF YOUR ROYALTY FREE LIMITED LICENCE TO USE THIS ABI SPECIFICATION ARE GIVEN IN SECTION 1.4, Your licence to use this specification (ARM contract reference LEC-ELA-00081 V2.0). PLEASE READ THEM CAREFULLY. BY DOWNLOADING OR OTHERWISE USING THIS SPECIFICATION, YOU AGREE TO BE BOUND BY ALL OF ITS TERMS. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR USE THIS SPECIFICATION. THIS ABI SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES (SEE SECTION 1.4 FOR DETAILS). Proprietary notice ARM, Thumb, RealView, ARM7TDMI and ARM9TDMI are registered trademarks of ARM Limited.
    [Show full text]
  • Lecture 21: Calling Conventions Menu Calling Convention Calling Convention X86 C Calling Convention
    CS216: Program and Data Representation University of Virginia Computer Science Spring 2006 David Evans Menu Lecture 21: Calling Conventions • x86 C Calling Convention • Java Byte Code Wizards http://www.cs.virginia.edu/cs216 UVa CS216 Spring 2006 - Lecture 21: Calling Conventions 2 Calling Convention Calling Convention • Rules for how the caller and the Caller Callee callee make subroutine calls • Where to put • Where to find • Caller needs to know: params params • What registers can I • What registers – How to pass parameters assume are same must I not bash – What registers might be bashed by • Where to find result • Where to put result called function • State of stack • State of stack – What is state of stack after return – Where to get result UVa CS216 Spring 2006 - Lecture 21: Calling Conventions 3 UVa CS216 Spring 2006 - Lecture 21: Calling Conventions 4 Calling Convention: x86 C Calling Convention Easiest for Caller Caller Callee Caller Callee • Where to put • Where to find • Params on stack in • Find params on stack params params reverse order in reverse order • What registers can I • What registers • Can assume EBX, • Must not bash EBX, assume are same must I not bash EDI and ESI are EDI or ESI – All of them – None of them same • Put result in EAX • Where to find result • Where to put result • Find result in EAX • Stack rules next • State of stack • State of stack • Stack rules next Need to save and Need to save and restore restore EBX, EDI (EAX), ECX, EDX and ESI UVa CS216 Spring 2006 - Lecture 21: Calling Conventions 5 UVa CS216
    [Show full text]
  • Application Binary Interface Compatability Through A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital Library APPLICATION BINARY INTERFACE COMPATIBILITY THROUGH A CUSTOMIZABLE LANGUAGE by Kevin Jay Atkinson A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science School of Computing The University of Utah December 2011 Copyright c Kevin Jay Atkinson 2011 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Kevin Jay Atkinson has been approved by the following supervisory committee members: Matthew Flatt , Chair 11/3/2011 Date Approved Gary Lindstrom , Member 11/17/2011 Date Approved Eric Eide , Member 11/3/2011 Date Approved Robert Kessler , Member 11/3/2011 Date Approved Olin Shivers , Member 11/29/2011 Date Approved and by Al Davis , Chair of the Department of School of Computing and by Charles A. Wight, Dean of The Graduate School. ABSTRACT ZL is a C++-compatible language in which high-level constructs, such as classes, are defined using macros over a C-like core language. This approach is similar in spirit to Scheme and makes many parts of the language easily customizable. For example, since the class construct can be defined using macros, a programmer can have complete control over the memory layout of objects. Using this capability, a programmer can mitigate certain problems in software evolution such as fragile ABIs (Application Binary Interfaces) due to software changes and incompatible ABIs due to compiler changes.
    [Show full text]
  • Specification of Compiler Abstraction
    Specification of Compiler Abstraction V2.2.1 R3.2 Rev 3 Document Title Specification of Compiler Abstraction Document Owner AUTOSAR Document Responsibility AUTOSAR Document Identification No 051 Document Classification Standard Document Version 2.2.1 Document Status Final Part of Release 3.2 Revision 3 Document Change History Date Version Changed by Change Description 28.02.2014 2.2.1 AUTOSAR Editorial changes Release Management 17.05.2012 2.2.0 AUTOSAR Added pointer class ‘REGSPACE’ (for Administration register access) 07.04.2011 2.1.0 AUTOSAR Addtition of the macros Administration FUNC_P2CONST(COMPILER061, COMPILER062) and FUNC_P2VAR(COMPILER063, COMPILER064) (see bug #43874) Rework of COMPILER058 to be compatible to the added macros 23.06.2008 2.0.1 AUTOSAR Legal disclaimer revised Administration 27.11.2007 2.0.0 AUTOSAR Keyword "_STATIC_" has been renamed Administration to "STATIC" Keyword "_INLINE_" has been renamed to "INLINE" Keyword "TYPEDEF" has been added as empty memory qualifier for use in type definitions Document meta information extended Small layout adaptations made 31.01.2007 1.1.0 AUTOSAR Add: COMPILER058 Administration Add: COMPILER057 Change: COMPILER040 Legal disclaimer revised Release Notes added “Advice for users” revised “Revision Information” added 1 of 44 Document ID 051: AUTOSAR_SWS_CompilerAbstraction - AUTOSAR confidential - Specification of Compiler Abstraction V2.2.1 R3.2 Rev 3 Document Change History Date Version Changed by Change Description 27.04.2006 1.0.0 AUTOSAR Initial Release Administration 2 of 44 Document ID 051: AUTOSAR_SWS_CompilerAbstraction - AUTOSAR confidential - Specification of Compiler Abstraction V2.2.1 R3.2 Rev 3 Disclaimer This specification and the material contained in it, as released by AUTOSAR is for the purpose of information only.
    [Show full text]
  • EECS 373 Design of Microprocessor-Based Systems
    Procedures Procedures are very important for writing reusable and maintainable code in assembly and high-level languages. How are they implemented? · Application Binary Interfaces · Calling Conventions · Recursive Calls · Examples Reference: PowerPC Embedded ABI General Concepts · Caller: The calling procedure Callee: The procedure called by the caller ¼ int mult(x, y) prod = mult (a, b) ¼ ¼ return (x * y) · Caller and callee must agree on: · How to pass parameters · How to return the return value(s), if any · How to maintain relevant information across calls · PowerPC architecture does not define ªagreementº. Instead, common policies are defined by convention. PowerPC Features The PowerPC ISA provides the following features to support procedure/function calls: · link register (p. 2-11) · bl: branch and link (p. 4-41) · blr: branch to link register (Table F-4) A Very Simple Calling Convention · Passing arguments · Use GPRs r3 to r10 in order · Use stack in main memory if more than 8 arguments · Passing return value · Leave result in r3 Example int func(int a, int b) { return (a + b); } main { ¼ func(5,6); ¼ } Another Example int func2(int a, int b) { return func(a , b); } main { ¼ func2(5,6); ¼ } The Stack · Information for each function invocation (e.g. link register) is saved on the call stack or simply stack. · Each function invocation has its own stack frame (a.k.a. activation record ). high address func2 stack frame func stack frame stack pointer low address Using the Stack main ¼ Describe the stack and LR contents ¼ · right before
    [Show full text]
  • Linkers and Loaders Do?
    Linkers & Loaders by John R. Levine Table of Contents 1 Table of Contents Chapter 0: Front Matter ........................................................ 1 Dedication .............................................................................................. 1 Introduction ............................................................................................ 1 Who is this book for? ......................................................................... 2 Chapter summaries ............................................................................. 3 The project ......................................................................................... 4 Acknowledgements ............................................................................ 5 Contact us ........................................................................................... 6 Chapter 1: Linking and Loading ........................................... 7 What do linkers and loaders do? ............................................................ 7 Address binding: a historical perspective .............................................. 7 Linking vs. loading .............................................................................. 10 Tw o-pass linking .............................................................................. 12 Object code libraries ........................................................................ 15 Relocation and code modification .................................................... 17 Compiler Drivers .................................................................................
    [Show full text]