Clerodendrum Floribundum R.Br

Total Page:16

File Type:pdf, Size:1020Kb

Clerodendrum Floribundum R.Br Australian Tropical Rainforest Plants - Online edition Clerodendrum floribundum R.Br. var. floribundum Family: Lamiaceae Brown, R. (1810) Prodr. : 511. Common name: Lolly Bush; Abundant Clerodendron; Thurkoo; Clerodendrum; Clerodendrum, Smooth; Clerodendron, Abundant; Smooth Clerodendrum Stem A small tree not exceeding 30 cm dbh. Blaze often conspicuously layered. Leaves Leaf bearing twigs pale brown. Leaf blades about 7-15 x 3.5-6 cm. Underside of the leaf blade marked by numerous, minute, flat or slightly depressed glands. Flowers Corolla tube glabrous externally, long and slender, several times longer than the corolla lobes. Fruit Leaves and flowers. © G. Calyx lobes persistent. Sankowsky Seedlings Features not available. Distribution and Ecology Occurs in WA, NT, CYP, NEQ, CEQ and southwards as far as north-eastern New South Wales. Altitudinal range in northern Australia from sea level to 300 m. Generally grows in open forest and woodland but occasionally found in monsoon forest and vine thickets. Also occurs in New Guinea. Natural History & Notes Queensland Herbarium does not recognise the varieties and treats them all at species level. A food plant for the larval stages of the Common Tit Butterfly. Common & Waterhouse (1981). Scale bar 10mm. © CSIRO Not commonly cultivated though this is a hardy and adaptable shrub. Large terminal clusters of long tubular flowers are followed by black fruits in the red calyx. This plant used medicinally by Aborigines, wood decoction drunk for aches and pains. Cribb (1981). RFK Code 923 Copyright © CSIRO 2020, all rights reserved. Trunk. © G. Sankowsky Web edition hosted at https://apps.lucidcentral.org/rainforest.
Recommended publications
  • Clerodendrum Floribundum Var. Angustifolium Moldenke Family: Lamiaceae Moldenke, H.N
    Australian Tropical Rainforest Plants - Online edition Clerodendrum floribundum var. angustifolium Moldenke Family: Lamiaceae Moldenke, H.N. (1977) Phytologia 37(1): 22. Type: "The type of this variety was collected by Cyril Tenison White (no. 8675) at Tarrens Creek, North Queensland, Australia, on March 19, 1933, and is deposited in the B.A. Krukoff Herbarium at the New York Botanical Garden." Stem A shrub or small tree to 7 m high. Stems with rough to flaky bark often slightly fissured. Leaves Leaves glabrous; leaf-blades narrow-lanceolate or very narrowly elliptic-lanceolate, acute, long cuneate towards base, punctate on lower surface, (30-)50-100(-150) mm long x (10-) 15-30(-45) mm wide; petioles (10-)15-30(-40) mm long, glabrous. Flowers. © R.L. Barrett Flowers Inflorescence more or less lax, glabrous; flowers white, lax; pedicels glabrous, 2-6(-10) mm long. Calyx deeply lobed, glabrous all over, glandular on inner surface, 5-6.5 mm long; lobes 3-4 mm long. Corolla creamy-white, glabrous, 25-45 mm long; tube 20-35 mm long, 1-2 mm diameter. Stamens white, much exserted, glabrous. Ovary glarous; style exserted, white, 35-65 mm long. Fruit Fruit obovoid to globose, glabrous, glossy purple-black or blue black, 7-10 x 5-8 mm; fruiting calyx red to purplish-red, 10-18 mm diamter. Inflorescence. © R.L. Barrett Seedlings Features not available. Distribution and Ecology Occurs in WA, NT, NEQ and CEQ. Altitudinal range from near sea level to 600 m. Usually grows in more inland areas in open forest but also found in riparian forest and vine thickets.
    [Show full text]
  • Supplementary Materialsupplementary Material
    Supplementary Materials 10.1071/RJ16076_AC © CSIRO 2017 Supplementary Material: Rangeland Journal, 2017, 39(1), 85–95. Assessing the invasion threat of non-native plant species in protected areas using Herbarium specimen and ecological survey data. A case study in two rangeland bioregions in Queensland Michael R. NgugiA,B and Victor John NeldnerA AQueensland Herbarium, Department of Science Information Technology and Innovation, Mt Coot- tha Road, Toowong, Qld 4066, Australia. BCorresponding author. Email: [email protected] Table S1. List of native species in Cape York Peninsula and Desert Uplands bioregions Cape York Peninsula native Species Desert Uplands native Species Abelmoschus ficulneus Abelmoschus ficulneus Abelmoschus moschatus subsp. Tuberosus Abildgaardia ovata Abildgaardia ovata Abildgaardia vaginata Abildgaardia vaginata Abutilon arenarium Abrodictyum brassii Abutilon calliphyllum Abrodictyum obscurum Abutilon fraseri Abroma molle Abutilon hannii Abrophyllum ornans Abutilon leucopetalum Abrus precatorius L. subsp. precatorius Abutilon malvifolium Abutilon albescens Abutilon nobile Domin Abutilon auritum Abutilon otocarpum Abutilon micropetalum Abutilon oxycarpum Acacia armillata Abutilon oxycarpum Acacia armitii Abutilon oxycarpum var. incanum Acacia aulacocarpa Abutilon oxycarpum var. subsagittatum Acacia auriculiformis Acacia acradenia Acacia brassii Acacia adsurgens Acacia calyculata Acacia aneura F.Muell. ex Benth. var. aneura Acacia celsa Acacia aneura var. major Pedley Acacia chisholmii Acacia angusta Maiden
    [Show full text]
  • Eton Range Realignment Project ATTACHMENT 2 to EPBC Ref: 2015/7552 Preliminary Documentation Residual Impact Assessment and Offset Proposal - 37
    APPENDIX 3: KSAT RESULTS – PELLET COUNTS Table 5: KSAT results per habitat tree. Species Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Total Eucalyptus tereticornis 9 30 16 - 42 7 104 Eucalyptus crebra 91 16 29 2 0 25 163 Corymbia clarksoniana 11 0 0 1 4 5 21 Corymbia tessellaris 5 0 0 0 0 20 25 Corymbia dallachiana - 12 - - - - 12 Corymbia intermedia - 3 1 0 11 - 15 Corymbia erythrophloia - - 0 - 0 - 0 Eucalyptus platyphylla - - - 0 0 0 0 Lophostemon - - - 0 0 - 0 suaveolens Total 116 61 46 3 57 57 Ref: NCA15R30439 Page 22 27 November 2015 Copyright 2015 Kleinfelder APPENDIX 4: SITE PHOTOS The following images were taken from the centre of each BioCondition quadrat and represent a north east south west aspect, top left to bottom right. Ref: NCA15R30439 Page 23 27 November 2015 Copyright 2015 Kleinfelder Plate 3: BioCondition quadrat 1 (RE11.3.4/11.12.3) Ref: NCA15R30439 Page 24 27 November 2015 Copyright 2015 Kleinfelder Plate 4: BioCondition quadrat 2 (RE11.3.4/11.12.3) Ref: NCA15R30439 Page 25 27 November 2015 Copyright 2015 Kleinfelder Plate 5: BioCondition quadrat 3 (RE11.12.3) Ref: NCA15R30439 Page 26 27 November 2015 Copyright 2015 Kleinfelder Plate 6: BioCondition quadrat 4 (RE11.3.9) Ref: NCA15R30439 Page 27 27 November 2015 Copyright 2015 Kleinfelder Plate 7: BioCondition quadrat 5 (RE11.3.25) Ref: NCA15R30439 Page 28 27 November 2015 Copyright 2015 Kleinfelder Plate 8: BioCondition quadrat 6 (RE11.12.3/11.3.4/11.3.9) Ref: NCA15R30439 Page 29 27 November 2015 Copyright 2015 Kleinfelder Appendix E: Desktop Assessment for Potential
    [Show full text]
  • NSW Rainforest Trees Part
    This document has been scanned from hard-copy archives for research and study purposes. Please note not all information may be current. We have tried, in preparing this copy, to make the content accessible to the widest possible audience but in some cases we recognise that the automatic text recognition maybe inadequate and we apologise in advance for any inconvenience this may cause. N.S.W. RAINFOREST TREES PART XII FAMILIES: LONGANIACEAE APOCYNACEAE BORAGINACEAE VERBENACEAE SOLANACEAE MYOPORACEAE RUBIACEAE ASTERACEAE AUTHOR A.G. FLOYD FORESTRY COMMISSION OF N.S.W. SYDNEY, 1983 Forestry Commission ofN.SW. 95-99 York Street, Sydney, New South Wales 2000 Australia Published 1983 THE AUTHOR- Mr A. G. Floyd is a rainforest specialist on the staff of The National Parks and Wildlife Service of New South Wales based at Coffs Harbour, New South Wales. National Library of Australia card number ISSN 0085-3984 ISBN 0 7240 7608 5 2 INTRODUCTION This is the final part in a series of twelve research notes of the Forestry Commission of N.S.W. describing the rainforest trees of the state. Current publications by the same author are: Research Note No. 3 (1960) Second Edition 1979 - N.S.W. Rainforest Trees. Part 1, FamilY,Lauraceae. Research Note No. 7 (1961) Second Edition 1981 - N.S.W. Rainforest Trees. Part H, Families Capparidaceae, Escalloniaceae, Pittosporaceae, Cunoniaceae, Davidsoniaceae. Research Note No. 28 (1973) Second Edition 1979 - N.S.W. Rainforest Trees. Part Ill, Family Myrtaceae. Research Note No. 29 (1976) Second Edition 1979 - N.S.W. Rainforest Trees. Part IV, Family Rutaceae.
    [Show full text]
  • Boigu Island (Wilson 2005; Schaffer 2010)
    PROFILE FOR MANAGEMENT OF THE HABITATS AND RELATED ECOLOGICAL AND CULTURAL RESOURCE VALUES OF MER ISLAND January 2013 Prepared by 3D Environmental for Torres Strait Regional Authority Land & Sea Management Unit Cover image: 3D Environmental (2013) EXECUTIVE SUMMARY Mer (Murray) Island is located in the eastern Torres Strait. It occupies a total area of 406 ha, and is formed on a volcanic vent which rises to height of 210m. The stark vent which dominates the island landscape is known as ‘Gelam’, the creator of the dugong in Torres Strait Island mythology. The volcanic vent of Mer is unique in an Australian context, being the only known example of a volcanic vent forming a discrete island within Australian territory. The vegetation on Mer is controlled largely by variations in soil structure and fertility. The western side of the island, which is formed on extremely porous volcanic scoria or ash, is covered in grassland due to extreme soil drainage on the volcano rim. The eastern side, which supports more luxuriant rainforest vegetation and garden areas, occupies much more fertile and favourably drained basaltic soil. A total of six natural vegetation communities, within five broad vegetation groups and two regional ecosystems are recognised on the island, representing approximately 2% of regional ecosystems recorded across the broader Torres Strait Island landscape. The ecosystems recorded are however unique to the Eastern Island Group, in particular Mer and Erub, and have no representation elsewhere in Queensland. There are also a number of highly significant culturally influenced forest types on the island which provide a window into the islands past traditional agricultural practices.
    [Show full text]
  • Lower Fitzroy River Infrastructure Project Draft Environmental Impact Statement
    Not government policy Commercial in confidence Appendix 1. Vascular plant species recorded from the Lower Dawson River study area. Nomenclature according to Henderson (2002). ACANTHACEAE ARECACEAE Brunoniella australis Livistona decipiens Cabbage palm Dipteracanthus australasicus subsp. australasicus Pseuderanthemum variabile Love Flower ASCLEPIADACEAE *Asclepias curassavica Redhead cottonbush ADIANTACEAE *Cryptostegia grandiflora Rubbervine Cheilanthes sieberi Rock Fern *Gomphocarpus physocarpus Balloonbush Marsdenia viridiflora AIZOACEAE Sarcostemma viminale subsp brunonianum Caustic vine Tetragonia tetragonioides box burr Zaleya galericulata subsp. galericulata ASTERACEAE *Ageratum houstonianum Blue billygoat weed AMARANTHACEAE Bracteantha bracteata Achyranthes aspera Chaff flower *Bidens pilosa Coblers peg Alternanthera denticulata Lesser joyweed Calotis cuneata Blue burr daisy Alternanthera nana Hairy joyweed Cassinia laevis Coughbush Alternanthera nodiflora Centipeda minima var. minima Amaranthus interruptus Chrysocephalum apiculatum Yellow buttons Amaranthus viridus Green amaranth *Cirsium vulgare Spear thistle *Gomphrena celosioides Gomphrena *Conyza canadiensis Fleabane Nyssanthes diffusa Barb wire weed Cyanthillium cinereum Veronia *Emilia sonchifolia Emilia AMARYLLIDACEAE *Lactuca serriola Prickly lettuce Crinum flaccidum Murray lily Olearia sp *Parthenium hysterophorus Parthenium ANACARDIACEAE Pluchea dioscoridis Pleiogynium timorense Burdekin plum Pterocaulon redolens Toothed ragwort Pterocaulon serrulatum *Senecio lautus
    [Show full text]
  • Biodiversity Summary: Cape York, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Indigenous Plants of Greater Taree
    Indigenous Plants of Greater Taree Copyright & Acknowledgements Images are all copyright of Andrew Paget (1981-) and are provided for use in this booklet on the basis that this publication is not for commercial sale. Thanks to all the community groups and individuals who commented on drafts of this booklet, and to the Hunter-Central Rivers Catchment Management Authority who funded the production of this booklet through the Australian Natural Heritage Trust. Third edition published in 2010 by Greater Taree City Council‟s Strategic Planning Department. NOTE: This booklet includes only a small range of the 1800 plants known to be indigenous to the Greater Taree Local Government Area. It provides information and photos on 127 species, which are more commonly used in horticulture, attractive for cultivation and widespread across the region. The summary table in the rear of the booklet provides further information on these species and an additional 198 species, including species suitable for bushland revegetation and others less common to the region. Page 1 Indigenous Plants of Greater Taree Contents Introduction ..................................................................... p3 What are Indigenous Plants? ........................................... P4 Why use Indigenous Plants? ........................................... p4 Genetic Purity Issues ....................................................... p5 Which plants are Suitable for Cultivation? ...................... p6 Where do you obtain Indigenous Plants? ........................
    [Show full text]
  • Clerodendrum Plant Genus (Lamiaceae)
    Open Access Austin Journal of Computational Biology and Bioinformatics Research Article A Comparative Phylogenetic Evaluation of Chloroplast ITS Sequences to Analyze the Bioactivity in Medicinal Plants: A Case Study of Clerodendrum Plant Genus (Lamiaceae) Melapu VK1, Joginipelli S1, Naidu BVA2 and Darsey J3* Abstract 1Department of Bioinformatics, University of Arkansas at According to World Health Organization (WHO) approximately 47% of drugs Little Rock, USA used today to cure many diseases were derived from natural products such as 2Department of Botany, Andhra University, India plants. Although many approved and clinical-trial drugs have been derived from 3Department of Chemistry, University of Arkansas at natural products, the last 20 years have shifted emphasis from natural products Little Rock, USA to less expensive synthetic products. Due to the paucity of traditional medicinal *Corresponding author: Darsey J, Department of knowledge and lack of ethnobotanical information about most of the medicinal Chemistry, University of Arkansas at Little Rock, 2801 plants, the emphasis has shifted to synthetic products. Multidisciplinary research S. University Ave, Little Rock, AR 72204, Tel: 501-569- with phylogeny to incorporate ethnobotanical knowledge as well as traditional 8828; Email: [email protected] medicinal knowledge will facilitate researchers to identify new drug molecules. In this paper, we use phylogeny inferred from ITS sequence of chloroplast Received: March 17, 2015; Accepted: April 01, 2015; DNA of thirty eight different species of Clerodendrum plant to predict chemical Published: April 08, 2015 diversity and potential medicinal activity of plants from Lamiaceae family. Phylogenetic signal in medicinal properties in plants is used to identify nodes on phylogeny with high bioscreeing potential.
    [Show full text]
  • Queenslandregion
    Society for Growing Australian Plants (Queensland Region) Inc. Cairns Branch PO Box 199 Earlville Qld 4870 Newsletter No. 100 June 20 10 Society Office Bearers Chairperson Tony Roberts 40 551 292 Vice Chairperson Mary Gandini 40 542 190 Secretary David Warmington 40 443 398 Treasurer Robert Jago 40 552 266 Membership Subscriptions- Qld Region - Renewal $30.00, New Members $35, each additional member of household $2.00 Student - Renewal $20 New Members $25.00, Cairns Branch Fees - $10.00 Full Year To access our Library for the loan of publications, please contact David Warmington Newsletter Editor: Tony Roberts [email protected] Dates to remember Cairns Branch Meetings and Excursions – third Saturday of each month. NEXT MEETING AND EXCURSION 19/20 June 2010 at Cooktown. Tablelands Branch Excursion– Sunday following the meeting on the fourth Wednesday of the month. Any queries please contact Chris Jaminon 4095 2882 or [email protected] Townsville Branch General Meeting Please contact John Elliot: [email protected] for more information Crystal Ball Cooktown June - Cooktown The next outing is to Cooktown. The routine July - White Mountains will follow the established format for Cooktown Aug - Redden Island visits: Work 8.30 till 4 Saturday and 8.30 till Sept – Upper Harvey Ck midday Sunday. Could members attending Oct - Barron Falls’ boardwalk/Kuranda please contact Pauline on 4047 1577 for further Nov - Ellie Point details and so that she can provide numbers before hand . June 2010 Page 1 of 29 May Excursion Report The walk began in open woodland with Corymbia citriodora, Eucalyptus crebra & Eucalyptus portuensis.
    [Show full text]
  • Sphagneticola Trilobata Singapore Daisy
    KEY TO GROUP 5 Leaves opposite, includes both simple and compound leaves. stipule scar A. compound B. simple C. interpetiolar leaf leaves stipule & scar 1 Leaves compound (see sketch A), i.e., divided into leaflets go to Group 5.A 1* Leaves simple (B) i.e., undivided, each leaf has a bud in the axil go to 2 2 Herbs and subshrubs usually less than 1 m tall go to 3 2* Shrubs and trees, sometimes sprawling and scrambling, rarely less than 1 m high go to 4 3 Flowers usually coloured, rarely purely white go to Group 5.B 3* Flowers white, or white with a yellow centre go to Group 5.C 4 Stems with an interpetiolar scar or persistent stipule extending between the bases of the petioles (see sketch C) (Mainly Gardenia family-Rubiaceae) go to 5 4* Stems without an interpetiolar stipular scar go to 6 5 Leaves hairy, and/or flowers in globular heads go to Group 5.D 5* Leaves without hairs, flowers not in globular heads go to Group 5.E 5 Petals fused to form a short tube, 4-5-lobed, more or less irregular in shape; stems often squarish (Mainly Mint family – Lamiaceae) go to Group 5.F 6* Petals free from one another, not fused to form a tube; stems rounded go to 7 7 Leaves with oil dots, aromatic smell when crushed, smell of eucalyptus oil or citrus (Eucalypt and Citrus families – Myrtaceae and Rutaceae) go to Group 5.G Large oil dots as seen through a good hand lens 7* Leaves lacking oil dots, leaves lack a distinctive smell when crushed (crush leaf in a cupped hand to smell it) go to Group 5.H 1 Sphagneticola trilobata Singapore Daisy Ray floret (female) Disc floret (hermaphrodite) 2 GROUP 5.A Leaves opposite and compound.
    [Show full text]
  • Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific
    Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific Craig Costion School of Earth and Environmental Sciences Department of Ecology and Evolutionary Biology University of Adelaide Adelaide, SA 5005 Thesis by publication submitted for the degree of Doctor of Philosophy in Ecology and Evolutionary Biology July 2011 ABSTRACT This thesis advances plant biodiversity knowledge in three separate bioregions, Micronesia, the Queensland Wet Tropics, and South Australia. A systematic treatment of the endemic flora of Micronesia is presented for the first time thus advancing alpha taxonomy for the Micronesia-Polynesia biodiversity hotspot region. The recognized species boundaries are used in combination with all known botanical collections as a basis for assessing the degree of threat for the endemic plants of the Palau archipelago located at the western most edge of Micronesia’s Caroline Islands. A preliminary assessment is conducted utilizing the IUCN red list Criteria followed by a new proposed alternative methodology that enables a degree of threat to be established utilizing existing data. Historical records and archaeological evidence are reviewed to establish the minimum extent of deforestation on the islands of Palau since the arrival of humans. This enabled a quantification of population declines of the majority of plants endemic to the archipelago. In the state of South Australia, the importance of establishing concepts of endemism is emphasized even further. A thorough scientific assessment is presented on the state’s proposed biological corridor reserve network. The report highlights the exclusion from the reserve system of one of the state’s most important hotspots of plant endemism that is highly threatened from habitat fragmentation and promotes the use of biodiversity indices to guide conservation priorities in setting up reserve networks.
    [Show full text]