Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-126 Manuscript under review for journal Atmos. Meas. Tech. Discussion started: 18 June 2018 c Author(s) 2018. CC BY 4.0 License. Machine learning for improved data analysis of biological aerosol using the WIBS Simon Ruske1, David O. Topping1, Virginia E. Foot2, Andrew P. Morse3, and Martin W. Gallagher1 1Centre of Atmospheric Science, SEES, University of Manchester, Manchester, UK 2Defence, Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK 3Department of Geography and Planning, University of Liverpool, Liverpool, UK Correspondence to:
[email protected] Abstract. Primary biological aerosol including bacteria, fungal spores and pollen have important implications for public health and the environment. Such particles may have different concentrations of chemical fluorophores and will provide different responses in the presence of ultraviolet light which potentially could be used to discriminate between different types of biological aerosol. 5 Development of ultraviolet light induced fluorescence (UV-LIF) instruments such as the Wideband Integrated Bioaerosol Sen- sor (WIBS) has made is possible to collect size, morphology and fluorescence measurements in real-time. However, it is unclear without studying responses from the instrument in the laboratory, the extent to which we can discriminate between different types of particles. Collection of laboratory data is vital to validate any approach used to analyse the data and to ensure that the data available is utilised as effectively as possible. 10 In this manuscript we test a variety of methodologies on traditional reference particles and a range of laboratory generated aerosols.