Big Data and AI Strategies Machine Learning and Alternative Data Approach to Investing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Text Analytics 2014: User Perspectives on Solutions and Providers
Text Analytics 2014: User Perspectives on Solutions and Providers Seth Grimes A market study sponsored by Published July 9, 2014, © Alta Plana Corporation Text Analytics 2014: User Perspectives on Solutions and Providers Table of Contents Executive Summary .............................................................................................................. 3 Growth Drivers ...................................................................................................................................... 4 Key Study Findings ................................................................................................................................ 5 About the Study and this Report ......................................................................................................... 6 Text Analytics Basics ............................................................................................................ 7 Patterns ................................................................................................................................................. 7 Structure ............................................................................................................................................... 7 Metadata ............................................................................................................................................... 8 Beyond Text ......................................................................................................................................... -
Conceptnet 5.5: an Open Multilingual Graph of General Knowledge
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) ConceptNet 5.5: An Open Multilingual Graph of General Knowledge Robyn Speer Joshua Chin Catherine Havasi Luminoso Technologies, Inc. Union College Luminoso Technologies, Inc. 675 Massachusetts Avenue 807 Union St. 675 Massachusetts Avenue Cambridge, MA 02139 Schenectady, NY 12308 Cambridge, MA 02139 Abstract In this paper, we will concisely represent assertions such Machine learning about language can be improved by sup- as the above as triples of their start node, relation label, and plying it with specific knowledge and sources of external in- end node: the assertion that “a dog has a tail” can be repre- formation. We present here a new version of the linked open sented as (dog, HasA, tail). data resource ConceptNet that is particularly well suited to ConceptNet also represents links between knowledge re- be used with modern NLP techniques such as word embed- sources. In addition to its own knowledge about the English dings. term astronomy, for example, ConceptNet contains links to ConceptNet is a knowledge graph that connects words and URLs that define astronomy in WordNet, Wiktionary, Open- phrases of natural language with labeled edges. Its knowl- Cyc, and DBPedia. edge is collected from many sources that include expert- The graph-structured knowledge in ConceptNet can be created resources, crowd-sourcing, and games with a pur- particularly useful to NLP learning algorithms, particularly pose. It is designed to represent the general knowledge in- those based on word embeddings, such as (Mikolov et al. volved in understanding language, improving natural lan- 2013). We can use ConceptNet to build semantic spaces that guage applications by allowing the application to better un- are more effective than distributional semantics alone. -
Text Analytics 2014: User Perspectives on Solutions and Providers
Text Analytics 2014: User Perspectives on Solutions and Providers Seth Grimes A market study sponsored by Published July 9, 2014, © Alta Plana Corporation Text Analytics 2014: User Perspectives on Solutions and Providers Table of Contents Executive Summary .............................................................................................................. 3 The Survey ............................................................................................................................................................. 5 Key Study Findings ................................................................................................................................................ 5 About the Study and this Report .......................................................................................................................... 6 Text Analytics Basics .............................................................................................................7 Patterns ................................................................................................................................................................. 7 Structure ................................................................................................................................................................ 7 Metadata ............................................................................................................................................................... 8 Beyond Text .......................................................................................................................................................... -
Modern Technologies of Bigdata Analytics: Case Study on Hadoop Platform Dharminder Yadav1, Umesh Chandra2
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS) Web Site: www.ijettcs.org Email: [email protected] Volume 6, Issue 4, July- August 2017 ISSN 2278-6856 Modern Technologies of BigData Analytics: Case study on Hadoop Platform Dharminder Yadav1, Umesh Chandra2 1Research Scholar, Computer Science Department, Glocal University, Saharanpur, UP, India 2PhD, Assistant Professor, Computer Science Department, Glocal University, Saharanpur, UP, India Abstract exchange, banking, on-line and on-site procuring [2]. Data is growing in the worldwide by daily activities, by using the Enormous Information as an examination subject from a hand-held devices, the Internet, and social media sites.This few focuses course of events, paper main discusses about data processing by using various geographic yield, disciplinary output, types of distributed tool of Hadoop.This present study cover most of the tools used papers, topical and theoretical advancement. The Big Data in Hadoop that help in parallel processing and MapReduce. challenges define in 6V's that are variety, velocity, volume, The day since BigData term introduced to database world , Hadoop act like a savior for most of the large, small value, veracity, and volatility [23]. organization. Researchers will definitely found a way through Hadoop to work huge data concept and most of the researchers are being done in the field of BigData analytics and data mining with the help of Hadoop. Keywords— Big Data, Hadoop, HDFS (Hadoop Distributed File System), NOSQL 1.INTRODUCTION Big Data provide storage and data processing facilities to Cloud computing [26]. Big data comes around 2005 but now it is used everywhere in daily life, which alludes to an expansive scope of informational collections practically difficult to manage, handle and prepare utilizing accessible Volume: Data is growing exponentially by daily activities regular apparatuses and information administration which we handle. -
Detecting Semantic Difference: a New Model Based on Knowledge and Collocational Association
DETECTING SEMANTIC DIFFERENCE: A NEW MODEL BASED ON KNOWLEDGE AND COLLOCATIONAL ASSOCIATION Shiva Taslimipoor1, Gloria Corpas2, and Omid Rohanian1 1Research Group in Computational Linguistics, University of Wolverhampton, UK 2Research Group in Computational Linguistics, University of Wolverhampton, UK and University of Malaga, Spain {shiva.taslimi, omid.rohanian}@wlv.ac.uk [email protected] Abstract Semantic discrimination among concepts is a daily exercise for humans when using natural languages. For example, given the words, airplane and car, the word flying can easily be thought and used as an attribute to differentiate them. In this study, we propose a novel automatic approach to detect whether an attribute word represents the difference between two given words. We exploit a combination of knowledge-based and co- occurrence features (collocations) to capture the semantic difference between two words in relation to an attribute. The features are scores that are defined for each pair of words and an attribute, based on association measures, n-gram counts, word similarity, and Concept-Net relations. Based on these features we designed a system that run several experiments on a SemEval-2018 dataset. The experimental results indicate that the proposed model performs better, or at least comparable with, other systems evaluated on the same data for this task. Keywords: semantic difference · collocation · association measures · n-gram counts · word2vec · Concept-Net relations · semantic modelling. 1. INTRODUCTION Semantic modelling in natural language processing requires attending to both semantic similarity and difference. While similarity is well-researched in the community (Mihalcea & Hassan, 2017), the ability of systems in discriminating between words is an under-explored area (Krebs et al., 2018). -
Text Analytics for Marketing and Customer Experience
Cold, hard numbers and bright insights from customer comments: Text analytics for marketing and customer experience. Why text analytics? Why now? Introduction When customers are freed to express their thoughts Text analytics has been around for a long time, but in their own words, they reveal more about their only recently has it become automated. In the diagram motivations: they give marketing and customer insight below, we show the broad categories of different teams the “Why” to structured data’s “What?” In the last methods. Manual coding is still taking place, of 3 years, text analytics has successfully made the leap customer satisfaction surveys for example, but it is time from university supercomputer to the office desktop consuming and its accuracy depends on the day-to- and it’s now possible to analyse 10,000 or a million day operations of the team. Automated methods are customers’ comments with full statistical reliability in quicker, more reliable and are now widely preferred. near real-time, and while maintaining enough granularity Text analytics can analyse customer comments from to provide qualitative insights. any source, including CSat surveys, social media, email In this paper, we give an overview of the market and contact centre transcriptions. A recent IBM survey today, we share knowledge from a selection of found that predictive analytics now feature most highly consultants’ work with multi-national brands over on CMOs wish list, with more than half already involved the last 3 years, and we offer advice on how to in using analytics to capture customer insight. 1 avoid expensive dead-ends. -
Provisioning Guide Version 2.3.0 Table of Contents
Provisioning Guide Version 2.3.0 Table of Contents 1. About This Document . 3 1.1. Intended Audience . 3 1.2. New and Changed Information . 3 1.3. Notation Conventions . 4 1.4. Comments Encouraged . 6 2. Quick Start . 8 2.1. Download Binaries . 8 2.2. Unpack Installer and Server package . 9 2.3. Collect Information . 10 2.3.1. Java Location . 10 2.3.2. Data Nodes . 11 2.3.3. Distribution Manager URL . 11 2.4. Run Installer . 12 3. Introduction . 13 3.1. Security Considerations . 13 3.2. Provisioning Options . 14 3.3. Provisioning Activities . 14 3.4. Provisioning Master Node . 15 3.5. Trafodion Installer . 15 3.5.1. Usage . 16 3.5.2. Install vs. Upgrade . 17 3.5.3. Guided Setup . 17 3.5.4. Automated Setup . 17 3.6. Trafodion Provisioning Directories . 20 4. Requirements . 22 4.1. General Cluster and OS Requirements and Recommendations . 22 4.1.1. Hardware Requirements and Recommendations . 22 4.1.2. OS Requirements and Recommendations . 23 4.1.3. IP Ports . 24 4.2. Prerequisite Software . 25 4.2.1. Hadoop Software . 25 4.2.2. Software Packages . 25 4.3. Trafodion User IDs and Their Privileges . 26 4.3.1. Trafodion Runtime User . 26 4.3.2. Trafodion Provisioning User . 26 4.4. Recommended Configuration Changes . 28 4.4.1. Recommended Security Changes . 29 4.4.2. Recommended HDFS Configuration Changes . 29 4.4.3. Recommended HBase Configuration Changes . 29 5. Prepare . 31 5.1. Install Optional Workstation Software . 31 5.2. Configure Installation User ID . -
IBM Big SQL (With Hbase), Splice Major Contributor to the Apache Be a Major Determinant“ Machine (Which Incorporates Hbase Madlib Project
MarketReport Market Report Paper by Bloor Author Philip Howard Publish date December 2017 SQL Engines on Hadoop It is clear that“ Impala, LLAP, Hive, Spark and so on, perform significantly worse than products from vendors with a history in database technology. Author Philip Howard” Executive summary adoop is used for a lot of these are discussed in detail in this different purposes and one paper it is worth briefly explaining H major subset of the overall that SQL support has two aspects: the Hadoop market is to run SQL against version supported (ANSI standard 1992, Hadoop. This might seem contrary 1999, 2003, 2011 and so on) plus the to Hadoop’s NoSQL roots, but the robustness of the engine at supporting truth is that there are lots of existing SQL queries running with multiple investments in SQL applications that concurrent thread and at scale. companies want to preserve; all the Figure 1 illustrates an abbreviated leading business intelligence and version of the results of our research. analytics platforms run using SQL; and This shows various leading vendors, SQL skills, capabilities and developers and our estimates of their product’s are readily available, which is often not positioning relative to performance and The key the case for other languages. SQL support. Use cases are shown by the differentiators“ However, the market for SQL engines on colour of each bubble but for practical between products Hadoop is not mono-cultural. There are reasons this means that no vendor/ multiple use cases for deploying SQL on product is shown for more than two use are the use cases Hadoop and there are more than twenty cases, which is why we describe Figure they support, their different SQL on Hadoop platforms. -
Building a Classification Model Using Affinity Propagation
Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Spring 2019 Building A Classification Model Using ffinityA Propagation Christopher R. Klecker Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Other Computer Engineering Commons Recommended Citation Klecker, Christopher R., "Building A Classification Model Using ffinityA Propagation" (2019). Electronic Theses and Dissertations. 1917. https://digitalcommons.georgiasouthern.edu/etd/1917 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. BUILDING A CLASSIFICATION MODEL USING AFFINITY PROPAGATION by CHRISTOPHER KLECKER (Under the Direction of Ashraf Saad) ABSTRACT Regular classification of data includes a training set and test set. For example for Naïve Bayes, Artificial Neural Networks, and Support Vector Machines, each classifier employs the whole training set to train itself. This thesis will explore the possibility of using a condensed form of the training set in order to get a comparable classification accuracy. The technique explored in this thesis will use a clustering algorithm to explore which data records can be labeled as exemplar, or a quality of multiple records. For example, is it possible to compress say 50 records into one single record? Can a single record represent all 50 records and train a classifier similarly? This thesis aims to explore the idea of what can label a data record as exemplar, what are the concepts that extract the qualities of a dataset, and how to check the information gain of one set of compressed data over another set of compressed data. -
Esgyndb 版本说明2.4.2
EsgynDB 版本说明 2.4.2 2018 年 7 月 版权 © Copyright 2018 Esgyn 公告 本文档包含的信息如有更改,恕不另行通知。 保留所有权利。除非版权法允许,否则在未经 Esgyn 预先书面许可的情况下, 严禁改编或翻译本手册的内容。Esgyn 对于本文中所包含的技术或编辑错误、遗 漏概不负责。 Esgyn 产品和服务附带的正式担保声明中规定的担保是该产品和服务享有的唯 一担保。本文中的任何信息均不构成额外的保修条款。 声明 Microsoft® 和 Windows® 是美国微软公司的注册商标。Java® 和 MySQL® 是 Oracle 及其子公司的注册商标。Bosun 是 Stack Exchange 的商标。Apache®、 Hadoop®、HBase®、Hive®、openTSDB®、Sqoop® 和 Trafodion® 是 Apache 软 件基金会的商标。Esgyn 和 EsgynDB 是 Esgyn 的商标。 目 录 1. 功能 ........................................................................................................ 2 EsgynDB 2.4.2 ................................................................................................... 2 EsgynDB 2.4.1 ................................................................................................... 2 EsgynDB 2.4.0 ................................................................................................... 2 2. 迁移要点................................................................................................ 3 2.1 在 EsgynDB 2.3.0 的基础上升级 ..................................................................... 3 2.1.1 系统 .......................................................................................................... 3 2.1.2 应用程序 .................................................................................................. 4 2.2 在 EsgynDB 2.2.0 或更早版本的基础上升级 ................................................. 5 2.2.1 系统 .......................................................................................................... 5 2.2.2 TRAF_HOME .......................................................................................... -
Diplomová Práce
Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Komparace distribucí frameworku Apache Hadoop DIPLOMOVÁ PRÁCE Studijní program: Aplikovaná informatika Studijní obor: Podniková informatika Autor: Mgr. Petr Todorov Vedoucí diplomové práce: doc. Ing. Ota Novotný, Ph.D. Praha, duben 2020 Prohlášení Prohlašuji, že jsem diplomovou práci Komparace distribucí frameworku Apache Hadoop vypracoval samostatně za použití v práci uvedených pramenů a literatury. V Praze dne 27. dubna 2020 ........................................................ Petr Todorov Poděkování Na tomto místě bych rád poděkoval především doc. Ing. Otovi Novotnému, Ph.D., za cenné rady, konzultace a metodické vedení při tvorbě této diplomové práce. Současně bych chtěl poděkovat své rodině za podporu nejen při tvorbě této práce, ale po celou dobu studia na Vysoké škole ekonomické. Abstrakt Práce se zaměřuje na komparaci distribucí frameworku pro zpracování big data Apache Hadoop. Teoretická část přináší stručný vhled do oblasti big data, detailní popis frameworku a ekosystému Apache Hadoop. Práce rovněž poskytuje přehled o situaci na trhu distribucí frameworku pro zpracování big data Apache Hadoop. Praktická část práce představuje možnosti zpracování big data v reálném čase v rámci vybraných distribucí frameworku Apache Hadoop formou realizace typové úlohy příjmu a zpracování příspěvků ze sociální sítě Twitter. Na základě zjištěných informací a výsledků provedení příjmu a zpracování big data je následně provedena komparace vybraných distribucí frameworku Apache Hadoop. Informace, které práce přináší, lze využít pro rychlou orientaci na trhu distribucí frameworku Apache Hadoop a výběr distribuce frameworku Apache Hadoop vhodné pro zpracování big data v reálném čase. Klíčová slova Big data, Apache Hadoop, Cloudera, Hortonworks, MapR, zpracování big data v reálném čase. JEL klasifikace C88 Other Computer Software, L86 Information and Internet Services • Computer Software, M15 IT Management. -
A Robust Density-Based Clustering Algorithm for Multi-Manifold Structure
A Robust Density-based Clustering Algorithm for Multi-Manifold Structure Jianpeng Zhang, Mykola Pechenizkiy, Yulong Pei, Julia Efremova Department of Mathematics and Computer Science Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands {j.zhang.4, m.pechenizkiy, y.pei.1, i.efremova}@tue.nl ABSTRACT ing methods is K-means [8] algorithm. It attempts to cluster In real-world pattern recognition tasks, the data with mul- data by minimizing the distance between cluster centers and tiple manifolds structure is ubiquitous and unpredictable. other data points. However, K-means is known to be sensi- Performing an effective clustering on such data is a challeng- tive to the selection of the initial cluster centers and is easy ing problem. In particular, it is not obvious how to design to fall into the local optimum. K-means is also not good a similarity measure for multiple manifolds. In this paper, at detecting non-spherical clusters which has poor ability to we address this problem proposing a new manifold distance represent the manifold structure. Another clustering algo- measure, which can better capture both local and global s- rithm is Affinity propagation (AP) [6]. It does not require to patial manifold information. We define a new way of local specify the initial cluster centers and the number of clusters density estimation accounting for the density characteristic. but the AP algorithm is not suitable for the datasets with ar- It represents local density more accurately. Meanwhile, it is bitrary shape or multiple scales. Other density-based meth- less sensitive to the parameter settings. Besides, in order to ods, such as DBSCAN [5], are able to detect non-spherical select the cluster centers automatically, a two-phase exem- clusters using a predefined density threshold.