Habitat and Imperilment of the Candy Darter Etheostoma Osburni in the New River Drainage, USA

Total Page:16

File Type:pdf, Size:1020Kb

Habitat and Imperilment of the Candy Darter Etheostoma Osburni in the New River Drainage, USA Habitat and Imperilment of the Candy Darter Etheostoma osburni in the New River Drainage, USA By Corey Garland Dunn Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN FISH AND WILDIFE CONSERVATION Paul L. Angermeier, Chair C. Andrew Dolloff Emmanuel A. Frimpong 17 November 2017 Blacksburg, Virginia, United States Keywords: Endemic, Habitat Suitability, Range Dynamics, Stream Fish © Corey G. Dunn, 2017 Habitat and Imperilment of the Candy Darter Etheostoma osburni in the New River Drainage, USA Corey Garland Dunn ACADEMIC ABSTRACT The streams of the southeastern United States are both hotspots for biodiversity and centers of imperilment. The specific spatiotemporal scales at which stressors impact biota are often unknown, partly due to inadequate knowledge about many species’ life-histories. I conducted two complementary studies to investigate the habitat associations of an imperiled highland stream fish, the Candy Darter Etheostoma osburni. In Chapter 2, I asked (1) does micro-habitat suitability correlate with the “robustness” (i.e., viability) of four distinct populations? In Chapter 3, I expanded the extent of investigation, and asked (2) which environmental factors, expressed at what spatial scales, best explain in-stream conditions, and (3) do stream segments where Candy Darters persist have cooler temperatures and less fine-sediment than segments where the species is extirpated or historically went undetected? Chapter 2 revealed Candy Darters demonstrate ontogenetic habitat shifts, with age-0 individuals selecting slower water velocities than adults. Despite, clear habitat selection for multiple habitat variables, suitability attributed to fine-sediment avoidance most strongly correlated with population robustness across streams. Chapter 3 indicated Candy Darters are extirpated from most areas in Virginia and southern West Virginia. Land use and natural catchment features, including geology, elevation, and stream geomorphology, predominantly explained instream conditions. Populations persist in segments with cool stream temperatures and low embeddedness year- round. To recover Candy Darters, managers will need to remedy pervasive land-use threats and restore stream habitat, while operating within the impending context of warming air and water temperatures and the existential threat of the introduced Variegate Darter E. variatum. Habitat and Imperilment of the Candy Darter Etheostoma osburni in the New River Drainage, USA Corey Garland Dunn PUBLIC ABSTRACT The Candy Darter is a small colorful stream fish only found in the New River Valley of Virginia and West Virginia. It was historically recorded throughout much of its range, but the species has since seemingly disappeared from many historical locations. Biologists, who are tasked with conserving declining species, know very little about the Candy Darter, which makes it difficult to determine the reasons for its decline. My goal was to clarify the habitats and streams used by the Candy Darter. In Chapter 2, my team recorded the habitats that Candy Darters preferred in four different streams where the species is either abundant (two streams), rare (1 stream), or has disappeared (1 stream). I determined individuals consistently avoid areas with high levels of fine sediment. I also discovered the streams where the species still exists had lower levels of fine sediment, indicating that high levels of fine-sediment may diminish habitat quality for individuals and eventually impact populations. In Chapter 3, I asked whether the conclusions from Chapter 2 were valid for most streams where Candy Darters have ever been recorded. In addition to less fine-sediment, I suspected the streams where Candy Darters still exist, would have cooler stream temperatures than the streams where they have disappeared. I surveyed 42 locations for Candy Darters and recorded stream temperatures and fine-sediment levels at each location. I confirmed that, on average, the streams where Candy Darters still exist have much cooler stream temperatures and fewer fine-sediments. Stream temperatures and fine- sediment levels could be explained by surrounding environmental conditions including geology, altitude, stream size, and the amount of pasture beside and upstream of each location. These findings are consistent with many other studies that have found non-natural land covers, including pasture, lead to higher amounts of fine-sediment washing into streams and create warmer stream temperatures. The decline of the Candy Darter is similar to the declines of dozens of other fish species throughout the southeastern United States. To restore Candy Darters, biologists will need to work with landowners to improve conditions adjacent to streams, while combatting other threats, such as warming air temperatures and non-native species. DEDICATION To my 10th-grade biology teacher, Mrs. Dunn iv ACKNOWLEDGEMENTS This research progressed from an initial solo snorkeling trip to Big Stony Creek after feeling inspired in my undergraduate Fisheries Techniques course to defending this thesis, with several missteps, rabbit holes, and campfires in between. As a PhD student, I now look back with a somewhat seasoned perspective at the special opportunity that I was given as a master’s student – a chance to identify and craft a thesis topic. Naturally, there were several people who helped me along the way. First, I thank my major adviser, Dr. Paul Angermeier, who when helping brainstorm potential research projects, encouraged me to “find a good story” and “go where the fish are.” Time will tell if I succeed in the former, but I definitely accomplished the latter. Of all the lessons learned in graduate school, the most import lesson is not to be afraid to think deeply about complex issues. This is Paul’s expertise, and I’m grateful to have learned from the best. Next, I thank my committee members, Drs. Andy Dolloff and Emmanuel Frimpong – both of whom provided guidance as I developed my project, made time for me despite busy schedules, and were patient with me during this exceptionally long and circuitous process. As a new graduate student, who was also new to Natural Resources, I leaned heavily on my lab-mates. Jane Argentina and Amy Villamagna were my first mentors in this field. Jamie Roberts helped me work through conceptual models, whereas Greg Anderson helped me work through the statistical variety. I was happy and fortunate that my path and the international paths of Tiz Mogollón Gómez and Ryan Liang all converged in Blacksburg, Virginia. This research took me all over the New River Valley, and I thank the scientists who lent their time to provide direction throughout my travels. My primary contacts were Bryn Tracy (NCDEQ) in North Carolina, and Dan Cincotta (WVDNR) and Stuart Welsh (WV University) in West Virginia. I am especially grateful to Mike Pinder (VDGIF), who encouraged this research from its infancy as a hypothetical undergraduate research project. I thank all the members of my research team – many of whom have since completed graduate degrees and continue to have a presence in our field. Team members included Matt Bierlein, Joe Cline, David Crain, Daniel Dodge, Laura Heironimus, Pat Kroboth, Josh Light, Luke Longanecker, Phil Pegalow, Jordan Richard, and Chris Rowe. Finally, I thank my current major adviser, Dr. Craig Paukert (Univ. Missouri), who graciously allowed me to dedicate time towards wrapping up my master’s research back east. v ATTRIBUTION I have or intend to publish two chapters (2 and 3) of this thesis as stand-alone manuscripts. Consequently, there will be some redundancy between these two chapters. Both manuscripts were joint efforts between Dr. Paul Angermeier and myself. Dr. Angermeier secured funding and significantly contributed to these chapters’ conceptual underpinnings, study designs, and refinement through diligent editing of draft manuscripts. Accordingly, the narratives of Chapters 2 and 3 are first-person plural. Both chapters are also formatted according to journal specifications. Chapter 2, Dunn and Angermeier (2016), was published in the Transactions of the American Fisheries Society, and Chapter 3, Dunn and Angermeier (In review), has been submitted to Freshwater Biology. The narrative of the remainder of this thesis uses first-person singular, and complies with the editorial conventions of the American Fisheries Society. References Dunn, C.G. and Angermeier, P.L. 2016. Development of habitat suitability indices for the Candy Darter, with cross-scale validation across representative populations. Transactions of the American Fisheries Society, 145:1266–1281. Dunn, C.G. and Angermeier, P.L. In review. Pathway to imperilment: extirpation of a highland fish explained by fine-sediment, stream temperature, and landscape context. vi TABLE OF CONTENTS ACADEMIC ABSTRACT ............................................................................................................. ii PUBLIC ABSTRACT ...................................................................................................................iii DEDICATION............................................................................................................................... iv ACKNOWLEDGEMENTS............................................................................................................ v ATTRIBUTION............................................................................................................................
Recommended publications
  • Endangered Species Act 2018
    ▪ Requires regulators to consider potential effects on T&E species during permitting process ▪ Must evaluate whether they are present ▪ If present, will there be any effects? ▪ Each plant or animal type has particular set of rules about when protective measures need to be placed in permit ▪ Terrestrial species typically only require protections when present within footprint of activity or within a buffer zone of habitat features (roost trees, hibernacula, etc.) ▪ Aquatic species require protections if project is within a certain distance upstream and/or if the project disturbs an upstream drainage area greater than a given size Species Scientific Name Eastern cougar Felis concolor cougar* Indiana bat Myotis sodalis Virginia big-eared bat Corynorhinus townsendii virginianus Northern long-eared bat Myotis septentrionalis Cheat Mountain salamander Plethodon nettingi Diamond darter Crystallaria cincotta Madison Cave isopod Antrolana lira Species Scientific Name Clubshell mussel Pleurobema clava Fanshell mussel Cyprogenia stegaria James spiny mussel Pleurobema collina Pink mucket mussel Lampsilis abrupta Rayed bean mussel Villosa fabalis Sheepnose mussel Plethobasus cyphyus Spectaclecase mussel Cumberlandia monodonta Species Scientific Name Snuffbox mussel Epioblasma triquetra Tubercled blossom pearly mussel Epioblasma torulosa torulosa Guyandotte River crayfish Cambarus veteranus Big Sandy crayfish Canbarus callainus Flat-spired three toothed land snail Triodopsis platysayoides Harperella Ptilimnium nodosum Northeastern bulrush Scirpus ancistrochaetus
    [Show full text]
  • Fisheries Across the Eastern Continental Divide
    Fisheries Across the Eastern Continental Divide Abstracts for oral presentations and posters, 2010 Spring Meeting of the Southern Division of the American Fisheries Society Asheville, NC 1 Contributed Paper Oral Presentation Potential for trophic competition between introduced spotted bass and native shoal bass in the Flint River Sammons, S.M.*, Auburn University. Largemouth bass, shoal bass, and spotted bass were collected from six sites over four seasons on the Flint River, Georgia to assess food habits. Diets of all three species was very broad; 10 categories of invertebrates and 15 species of fish were identified from diets. Since few large spotted bass were collected, all comparisons among species were conducted only for juvenile fish (< 200 mm) and subadult fish (200-300 mm). Juvenile largemouth bass diets were dominated by fish in all seasons, mainly sunfish. Juvenile largemouth bass rarely ate insects except in spring, when all three species consumed large numbers of insects. In contrast, juvenile shoal bass diets were dominated by insects in all seasons but winter. Juvenile spotted bass diets were more varied- highly piscivorous in the fall and winter and highly insectivorous in spring and summer. Diets of subadult largemouth bass were similar to that of juvenile fish, and heavily dominated by fish, particularly sunfish. Similar to juveniles, diets of subadult shoal bass were much less piscivorous than largemouth bass. Crayfish were important components of subadult shoal bass diets in all seasons but summer. Insects were important components of shoal bass diets in fall and summer. Diets of subadult spotted bass were generally more piscivorous than shoal bass, but less than largemouth bass.
    [Show full text]
  • 32 Annual Meeting 23-25 January 2018 UAPB & Pine Bluff
    32nd Annual Meeting 23-25 January 2018 UAPB & Pine Bluff *ON THE COVER: Artwork by Olaf Nelson. Redhorse ID cheatsheets can be downloaded from moxostoma.com. Art prints are also available. ARKANSAS CHAPTER OF THE AMERICAN FISHERIES SOCIETY EXECUTIVE COMMITTEE – 2017-2018 ERIC BRINKMAN, PRESIDENT MIKE EGGLETON, PRESIDENT-ELECT TATE WENTZ, PAST-PRESIDENT CASEY COX, TREASURER JESSIE GREEN, SECRETARY FOR ASSISTING WITH PLANNING OF THE 2018 MEETING, THE CHAPTER GREATLY APPRECIATES: ETHEL CREGGETT, UAPB FACILITIES MANAGEMENT RICHARD REDUS, UAPB TECHNICAL SUPPORT FRED FRAZER, UAPB-AQFI TECHNICAL SUPPORT ROSSIA BROUGHTON-BROWN AND AVERY SHELTON, UAPB FOOD SERVICES UAPB SCHOOL OF AGRICULTURE FISHERIES AND HUMAN SCIENCES UAPB DEPARTMENT OF AQUACULTURE AND FISHERIES UAPB AQUACULTURE/FISHERIES CLUB THE EXECUTIVE COMMITTEE WOULD LIKE TO THANK OUR SPONSORS! January 10, 2018 Dear Chapter Membership: Welcome to the 32nd Annual Meeting of the Arkansas Chapter of the American Fisheries Society. Please make full use of this opportunity to reconnect with our fisheries colleagues from around the state, network with new ones, and learn about the excellent aquatic research that is occurring throughout Arkansas. For some, this will be an opportunity to visit a part of the state you have never seen. Take time to see Bayou Bartholomew, “The World’s Longest Bayou” and one of Arkansas’s most diverse stream communities that flows through Pine Bluff. You will also have the opportunity to learn more about the Arkansas Delta at the Arkansas Game and Fish Commission’s Mike Huckabee Delta Rivers Nature Center during the Welcome Social Tuesday evening. The Chapter’s Conference Organizing Committee has planned an excellent meeting.
    [Show full text]
  • North Carolina Wildlife Resources Commission Gordon Myers, Executive Director
    North Carolina Wildlife Resources Commission Gordon Myers, Executive Director March 1, 2016 Honorable Jimmy Dixon Honorable Chuck McGrady N.C. House of Representatives N.C. House of Representatives 300 N. Salisbury Street, Room 416B 300 N. Salisbury Street, Room 304 Raleigh, NC 27603-5925 Raleigh, NC 27603-5925 Senator Trudy Wade N.C. Senate 300 N. Salisbury Street, Room 521 Raleigh, NC 27603-5925 Dear Honorables: I am submitting this report to the Environmental Review Committee in fulfillment of the requirements of Section 4.33 of Session Law 2015-286 (H765). As directed, this report includes a review of methods and criteria used by the NC Wildlife Resources Commission on the State protected animal list as defined in G.S. 113-331 and compares them to federal and state agencies in the region. This report also reviews North Carolina policies specific to introduced species along with determining recommendations for improvements to these policies among state and federally listed species as well as nonlisted animals. If you have questions or need additional information, please contact me by phone at (919) 707-0151 or via email at [email protected]. Sincerely, Gordon Myers Executive Director North Carolina Wildlife Resources Commission Report on Study Conducted Pursuant to S.L. 2015-286 To the Environmental Review Commission March 1, 2016 Section 4.33 of Session Law 2015-286 (H765) directed the N.C. Wildlife Resources Commission (WRC) to “review the methods and criteria by which it adds, removes, or changes the status of animals on the state protected animal list as defined in G.S.
    [Show full text]
  • Fish of Greatest Conservation Need
    APPENDIX G. FISH OF GREATEST CONSERVATION NEED Taxa Common Name Scientific Name Tier Opportunity Ranking Fish Alewife Alosa pseudoharengus IV a Fish Allegheny pearl dace Margariscus margarita IV b Fish American brook lamprey Lampetra appendix IV c Fish American eel Anguilla rostrata III a Fish American shad Alosa sapidissima IV a Fish Appalachia darter Percina gymnocephala IV c Fish Ashy darter Etheostoma cinereum I b Fish Atlantic sturgeon Acipenser oxyrinchus I b Fish Banded sunfish Enneacanthus obesus IV c Fish Bigeye jumprock Moxostoma ariommum III c Fish Black sculpin Cottus baileyi IV c Fish Blackbanded sunfish Enneacanthus chaetodon I a Fish Blackside darter Percina maculata IV c Fish Blotched chub Erimystax insignis IV c Fish Blotchside logperch Percina burtoni II a Fish Blueback Herring Alosa aestivalis IV a Fish Bluebreast darter Etheostoma camurum IV c Fish Blueside darter Etheostoma jessiae IV c Fish Bluestone sculpin Cottus sp. 1 III c Fish Brassy Jumprock Moxostoma sp. IV c Fish Bridle shiner Notropis bifrenatus I a Fish Brook silverside Labidesthes sicculus IV c Fish Brook Trout Salvelinus fontinalis IV a Fish Bullhead minnow Pimephales vigilax IV c Fish Candy darter Etheostoma osburni I b Fish Carolina darter Etheostoma collis II c Virginia Wildlife Action Plan 2015 APPENDIX G. FISH OF GREATEST CONSERVATION NEED Fish Carolina fantail darter Etheostoma brevispinum IV c Fish Channel darter Percina copelandi III c Fish Clinch dace Chrosomus sp. cf. saylori I a Fish Clinch sculpin Cottus sp. 4 III c Fish Dusky darter Percina sciera IV c Fish Duskytail darter Etheostoma percnurum I a Fish Emerald shiner Notropis atherinoides IV c Fish Fatlips minnow Phenacobius crassilabrum II c Fish Freshwater drum Aplodinotus grunniens III c Fish Golden Darter Etheostoma denoncourti II b Fish Greenfin darter Etheostoma chlorobranchium I b Fish Highback chub Hybopsis hypsinotus IV c Fish Highfin Shiner Notropis altipinnis IV c Fish Holston sculpin Cottus sp.
    [Show full text]
  • Information on the NCWRC's Scientific Council of Fishes Rare
    A Summary of the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina Submitted by Bryn H. Tracy North Carolina Division of Water Resources North Carolina Department of Environment and Natural Resources Raleigh, NC On behalf of the NCWRC’s Scientific Council of Fishes November 01, 2014 Bigeye Jumprock, Scartomyzon (Moxostoma) ariommum, State Threatened Photograph by Noel Burkhead and Robert Jenkins, courtesy of the Virginia Division of Game and Inland Fisheries and the Southeastern Fishes Council (http://www.sefishescouncil.org/). Table of Contents Page Introduction......................................................................................................................................... 3 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes In North Carolina ........... 4 Summaries from the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina .......................................................................................................................... 12 Recent Activities of NCWRC’s Scientific Council of Fishes .................................................. 13 North Carolina’s Imperiled Fish Fauna, Part I, Ohio Lamprey .............................................. 14 North Carolina’s Imperiled Fish Fauna, Part II, “Atlantic” Highfin Carpsucker ...................... 17 North Carolina’s Imperiled Fish Fauna, Part III, Tennessee Darter ...................................... 20 North Carolina’s Imperiled Fish Fauna, Part
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • A Case Study of Carolina Bays and Ditched Streams at Risk Under the Proposed WOTUS Definition
    CAPE FEAR RIVER WATERSHED: A Case Study of Carolina Bays and Ditched Streams at Risk under the Proposed WOTUS Definition The Cape Fear River. Photo by Kemp Burdette The Cape Fear River Basin is North Carolina’s largest watershed, with an area of over 9,000 square miles. Major tributaries include the Deep River, the Haw River, the Northeast Cape Fear River, the Black River, and the South River. These rivers converge to form a thirty-mile-long estuary before flowing into the Atlantic Ocean at Cape Fear.1 The Cape Fear supplies water to some of the fastest ​ growing counties in the United States;2 roughly one in five North Carolinians gets their drinking ​ water from the Cape Fear, including residents of Greensboro, Fayetteville, and Wilmington.3 ​ The Cape Fear Basin is a popular watershed for a variety of recreation activities. State parks along the river include Haw River State Park, Raven Rock State Park, and Carolina Beach State Park. The faster-flowing water of the upper basin is popular with paddlers, as are the slow meandering blackwater rivers and streams of the lower Cape Fear and estuary. Fishing is very popular; the Cape Fear supports a number of freshwater species, saltwater species, and even anadromous (migratory) species like the endangered sturgeon, striped bass, and shad. Cape Fear River Watershed: Case Study Page 2 of 8 The Cape Fear is North Carolina’s most ecologically diverse watershed; the Lower Cape Fear is notable because it is part of a biodiversity “hotspot,” recording the largest degree of biodiversity on the eastern seaboard of the United States.
    [Show full text]
  • Aquatic Fish Report
    Aquatic Fish Report Acipenser fulvescens Lake St urgeon Class: Actinopterygii Order: Acipenseriformes Family: Acipenseridae Priority Score: 27 out of 100 Population Trend: Unknown Gobal Rank: G3G4 — Vulnerable (uncertain rank) State Rank: S2 — Imperiled in Arkansas Distribution Occurrence Records Ecoregions where the species occurs: Ozark Highlands Boston Mountains Ouachita Mountains Arkansas Valley South Central Plains Mississippi Alluvial Plain Mississippi Valley Loess Plains Acipenser fulvescens Lake Sturgeon 362 Aquatic Fish Report Ecobasins Mississippi River Alluvial Plain - Arkansas River Mississippi River Alluvial Plain - St. Francis River Mississippi River Alluvial Plain - White River Mississippi River Alluvial Plain (Lake Chicot) - Mississippi River Habitats Weight Natural Littoral: - Large Suitable Natural Pool: - Medium - Large Optimal Natural Shoal: - Medium - Large Obligate Problems Faced Threat: Biological alteration Source: Commercial harvest Threat: Biological alteration Source: Exotic species Threat: Biological alteration Source: Incidental take Threat: Habitat destruction Source: Channel alteration Threat: Hydrological alteration Source: Dam Data Gaps/Research Needs Continue to track incidental catches. Conservation Actions Importance Category Restore fish passage in dammed rivers. High Habitat Restoration/Improvement Restrict commercial harvest (Mississippi River High Population Management closed to harvest). Monitoring Strategies Monitor population distribution and abundance in large river faunal surveys in cooperation
    [Show full text]
  • As Assessment of Stream Fish Vulnerability and an Evaluation Of
    AN ASSESSMENT OF STREAM FISH VULNERABILITY AND AN EVALUATION OF CONSERVATION NETWORKS IN MISSOURI ___________________________________________________________ A Thesis Presented to the Faculty of the Graduate School at the University of Missouri ___________________________________________________________ In Partial Fulfillment Of the Requirements for the Degree Master of Science ___________________________________________________________ by NICHOLAS A. SIEVERT DR. CRAIG P. PAUKERT, THESIS SUPERVISOR DECEMBER 2014 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled: AN ASSESSMENT OF STREAM FISH VULNERABILITY AND AN EVALUATION OF CONSERVATION NETWORKS IN MISSOURI Presented by Nicholas A. Sievert A candidate for the degree of Master of Science And hereby certify that, in their opinion, it is worthy of acceptance. ______________________________________ Dr. Craig Paukert ______________________________________ Dr. Joanna Whittier ______________________________________ Dr. Timothy Matisziw ______________________________________ Dr. Michelle Staudinger ACKNOWLEDGMENTS I would first like to thank the United States Geological Service National Climate Change and Wildlife Science Center for funding this project. I would also like to thank the Missouri Department of Conservation (MDC) for providing the fish community data which served as the foundation upon which this project was completed. Specifically, I would like to thank Matt Combes and Dr. Doug Novinger, who not only provided me with tremendous sources of data for Missouri’s stream fish communities, but also shared with me their expertise and knowledge by reviewing my work and offering invaluable insights. Dorothy Butler of MDC also generously provided fish records from the Missouri Natural Heritage Database. I would also like to thank Gust Annis and the Missouri Resource Assessment Partnership for providing me with GIS data without which this project would not have been possible.
    [Show full text]
  • DISTRIBUTION, ECOLOGY, and REPRODUCTIVE BIOLOGY of the ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson
    DISTRIBUTION, ECOLOGY, AND REPRODUCTIVE BIOLOGY OF THE ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Fisheries and Wildlife Sciences APPROVED: Richard J. Neves, Chair Dona:;[d J. Orth Johm J. Ney Louis A. Hel:frich April 1987 Blacksburg, Virginia DISTRIBUTION, ECOLOGY, AND REPRODUCTIVE BIOLOGY OF THE ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson Richard J. Neves, Chair Fisheries and Wildlife Sciences (ABSTRACT) Distribution of the orangefin madtom (Noturus gilberti) was determined from 347 sites sampled in Virginia and North Carolina. This species inhabited 264 stream kilometers, over twice the reported range, in the following systems: Craig Creek, Roanoke River, Dan River, Big Chestnut Creek, South Mayo River, Pigg River, and Smith River. The orangefin madtom was somewhat common; 33% (Dan River) to 70% (Craig Creek) of the sites sampled were occupied. Negative interspecific associates of orangefin madtoms included chubs, mountain redbelly dace, rosyside dace, crescent shiners, and crayfish; only Roanoke darters were considered positive associates. Sand and silt levels were significantly lower at sites with !L. gilberti, while per- centage of small cobble, local gradient, and depth were sig- nificantly higher. Discriminant function analysis identified large gravel, local gradient, silt, and occurrence of rosyside dace and crayfish, as significant predictors of the occurrence of the orangefin madtom. Seasonal samples from Craig Creek consisted of three age groups. The smallest individual captured was 33 mm total length (TL) and the largest was 111 mm TL.
    [Show full text]
  • A List of Common and Scientific Names of Fishes from the United States And
    t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature.
    [Show full text]