Thesis Reference

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Reference Thesis Geochronological, structural, isotopes and fluid inclusion constraints of the polymetallic Domo de Yauli district, Peru BEUCHAT, Sebastien Abstract L'origine des gisements polymétalliques du Domo de Yauli est liée au magmatisme Miocène ayant affecté les Andes péruviennes. Cette étude met en évidence les relations géochronologiques et structurales entre les intrusions et les corps minéralisés, ainsi que les caractéristiques des fluides hydrothermaux. Les âges obtenus sur les intrusions et les minéralisations indiquent un système pulsé et répétitif durant 9 Ma, alors que les contraintes associées à la formation des gisements montrent un champ hétérogène probablement lié à l'influence de linéaments crustaux. Les rapports isotopiques de Sr, Pb, O et H associés à l'étude des inclusions fluides, par microthermométrie, spectroscopie Raman et LA-ICP-MS, révèlent l'influence d'au moins trois fluides d'origines et de caractéristiques différentes. Leur mélange a conduit à la formation des gisements, alors que les éléments économiquement intéressants ont uniquement été apportés par le fluide s'étant séparé du magma. Reference BEUCHAT, Sebastien. Geochronological, structural, isotopes and fluid inclusion constraints of the polymetallic Domo de Yauli district, Peru. Thèse de doctorat : Univ. Genève, 2003, no. Sc. 3415 URN : urn:nbn:ch:unige-979762 DOI : 10.13097/archive-ouverte/unige:97976 Available at: http://archive-ouverte.unige.ch/unige:97976 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITE DE GENEVE FACULTE DES SCIENCES Département de minéralogie Professeur L. Fontboté Docteur R. Moritz Geochronological, Structural, Isotopes and Fluid Inclusion Constraints of the Polymetallic Domo de Yauli District, Pern THE SE présentée à la Faculté des sciences de l'Université de Genève pour obtenir le grade Docteur ès sciences, mention Sciences de la Terre par Sébastien BEUCHAT de Undervelier (JU) Thèse N° 3415 GENEVE Atelier de reproduction de la Section de physique 2003 La Faculté des sciences, sur le · préavis de Messieurs L. FONTBOTÉ, professeur ordinaire (Département de minéralogie), et R. MORITZ, docteur (Département de minéralogie ) codirecteurs de thèse, U. SCHALTEGGER, professeur adjoint (Département de minéralogie), et R. TOSDAL, professeur (University of British Columbia, Department of Earth and Ocean Sciences, Vancouver - Canada), autorise l'impression de la présente thèse, sans exprimer d'opinion sur les propositions qui y sont énoncées. Genève, le 20 janvier 2003 Thèse - 3415 - Le Doyen, Jacques WEBER Beuchat S.: Geochronological, structural, isotopes and fluid inclusion constrains ofthe polymetallic Domo de Yau li district, Peru. Terre & Environnement, vol. 41 , 130 pp. (2003) ISBN 2-940153-40-X Section des Sciences de la Terre, Université de Genève, 13 rue des Maraîchers, CH-1211 Genève 4, Suisse Téléphone ++41-22-702.61 .11 -Fax ++41-22-320.57.32 http://www.unige.ch/sciences/terre/ Table of content ABSTRACT --------------------------------------------------------1 RESUMEN 5 RÉSUMÉ DES RÉSULTATS 9 Introduction ___________________________________________________ 9 Magmatisme miocène --------------------------------------------11 Métallogénie du Domo de Y auli 12 Le paléo-champs de contraintes miocènes 13 Inclusions fluides 13 Description et microthermométrie des inclusions fluides 13 Analyse des inclusions fluides par LA-ICP-MS 14 Isotopes d'oxygène et d'hydrogène 14 Discussions 15 La répétition d'événements magmatiques et hydrothermaux à Morococha, indique-t-elle la présence d'une large chambre magmatique sous-jacente? 15 L'influence de linéaments crustaux sur les paléo-champs de contraintes et la formation de gisements 16 Modèle génétique des minéralisations polymétalliques de San Cristobal 16 Références -----------------------------------------------------17 CHAPTER 1: RESOLVING MIOCENE MAGMATIC AND MINERALISING EVENTS IN THE ZN-PB-AG-CU DOMO DE YAULI DISTRICT (PERU) BY HIGH-PRECISION GEOCHRONOLOGY 21 Abstract --------------------------------------------------------21 Introduction 22 Geological settin 23 Regional Geology ofthe Domo de Yauli district 23 Miocene igneous activity 23 Ore deposits of the Domo de Yauli district 28 Analytical techniques 31 Microprobe analysis 31 Cathodoluminescence (CL) and secondary electron (SE) images 31 Whole rock analysis 32 Whole rock isotope data 32 U/Pb age and Hf isotope determinations 32 Re/Os age determinations 33 40 ArP9 Ar age determinations 33 Results 34 Whole rock and microprobe analyses ofMiocene intrusions 34 Zircon cathodoluminescence (CL) images 34 U/Pb dating and Hfisotopic composition ofzircons ____________ 37 The Anticona diorite: TIC 39 The San Francisco and the Yantac intrusions: TOR and POR 39 The Chumpe intrusion: CHU 39 Re/Os dating of molybdenite 39 40 ArP9 Ar ages of phlogopite and sericite 41 Discussion 43 Two mining districts of different ages in the Domo de Yauli area 43 Do multiple magmato-hydrothermal events reveal the presence of a large underlying magmatic chamber? 46 Are Precambrian rocks involved in the generation ofMiocene magmatism? 48 Conclusions ------------------------------------------49 Acknowledgments ____________________________ 50 References 50 CHAPTER II: LINEAMENT CONTROL ON MIOCENE ORE FORMATION IN CENTRAL PERU, THE ZN-PB-AG-CU SAN CRISTOBAL EXAMPLE 55 Abstract ----------------------------------------------------55 Introduction 56 Regional Geology ___________________________________ 58 Stratigraphy 58 Tertiary igneous activity 59 Andean deformation 60 Ore deposits of the San Cristobal district 62 Vein ore type 62 Carbonate replacement ore type 66 Paleostress determinations 68 Methodology 68 Results 68 Discussion and conclusions ________________________________________ 69 Acknowledgments _________________________ 71 References 72 CHAPTER III: THE ZN-PB-AG SAN CRISTOBAL DISTRICT, CENTRAL PERU: ISOTOPE AND FLUID INCLUSION CONSTRAINTS 75 Abstract -------------------------------75 Introduction ___________________________ 76 Geological setting 78 Regional Geology 78 V ein ore type 8 0 Carbonate replacement ore type 82 Previous S, Sr and Pb isotopie data 84 Analytical methods 86 Fluid inclusion petrography, microthermometry and Raman spectroscopy 88 Fluid inclusion LA-ICP-MS results 97 H and 0 isotopes 97 Discussion 100 Earl y vein stages 100 Late vein tage 102 Carbonate replacement ore bodies 106 Conclusions 107 Acknowledgments 108 References 108 APPENDIX I: DESCRIPTIVE LIST OF THE STUDIED ROCKS AND CITED ANALYSES -----------------------------------------------------------113 40 39 APPENDIX II: AR/ AR DATING 121 APPENDIX III: MICROTHERMOMETRY AND RAMAN FLUID INCLUSION DATA 123 APPENDIX IV: LA-I CP-MS FLUID INCLUSION DATA 125 REMERCIEMENTS 129 Abstract The Domo de Y auli contains two of the district, there are multiple small apophyses major Zn-Pb±Cu±Ag mining districts of of the very altered Chumpe intrusion. The Peru, the Morococha and the San Cristobal northern monzogranite stocks are related to districts. They are classical intrusion the formation of four different ore deposit related ore districts with high temperature, types: Cu-porphyries, Zn-Pb skarns, Zn­ carbonate-hosted base metal deposits and Pb±Ag carbonate replacement deposits, are a typical of the Miocene metallogenic and veins. In the south, only polymetallic belt of Central Peru. This study is aimed at carbonate replacements and veins are three main topics, a geochronological, a associated to the Chumpe intrusion. structural and an isotope and fluid inclusion study. These three different U-Pb dating of zircons from the northern approaches permit us to constrain the intrusions gives concordant ages of 14.11 ± factors needed to form world-class 0.04 Ma for the Anticona diorite and close deposits. Indeed, formation of such large to 9 Ma for different monzogranite stocks districts are linked to the conjunction and related to Cu-porphyry style and skarn the right timing among magmatic activity deposits. V eins of the Cu-porphyry deposit providing heat and fluids, structural stress have been dated at 7.9 ± 0.1 Ma by Re-Os permitting large fluid circulation and on molybdenite and phlogopite from a Zn­ available fluids and elements sources. Pb skarn gives a 40 Ar/39 Ar plateau age of 7.2 ± 0.2 Ma. U-Pb analyses ofzircons The Domo de Y auli is located 100 km east from the southern Chumpe intrusion result of Lima in the Western Cordillera of Peru. in discordant points defining a lower The area is mainly composed of Paleozoic intercept age about 6.6 (+1;-3.6) Ma, in phyllites of the Excelsior Group, Permo­ agreement with 40Ar/39Ar ages of 4.90 ± Triassic volcanic and sedimentary rocks of 0.15 Ma ·and 4.78 ± 0.16 Ma obtained on the Mitu Group, Triassic-Jurassic sericite from wall rock alteration selvages. limestones of the Pucara Group, and U-Pb, Re-Os and 40Ar/39 Ar Cretaceous sedimentary rocks. Incaic age determinations reveal the existence of compression events of Eocene age have three distinct magmatic events at 14.1, 9.1 produced isoclinal folds, ramp thrusts in and 6.6 Ma, with the two later ones related the sedimentary cover rocks and a NE-SW to a phase of mineralisation. We therefore fracture system which crosscuts the entire conclude that the northern and southem ore Domo de Yauli. Major N 120° W oriented deposits bear a different age and that the lineaments are present in the basement and particularly large abundance of economie affect the morphology of the whole area. ore bodies at Domo de Y auli is the result The positions of these lineaments
Recommended publications
  • The Miocene Morococha District, Central Peru – Large-Scale Epithermal Polymetallic Overprint on Multiple Intrusion-Centred Porphyry Systems
    The Miocene Morococha District, Central Peru – Large-Scale Epithermal Polymetallic Overprint on Multiple Intrusion-Centred Porphyry Systems K Kouzmanov1, A Bendezú2, H Catchpole3, M Ageneau4, J Pérez5 and L Fontboté6 ABSTRACT In the world-class mining district of Morococha, epithermal polymetallic replacement bodies and veins overprint porphyry mineralisation and skarns related to subvolcanic intrusions of Miocene age, thus indicating ore formation in two different environments, separated in time or forming a continuum. The district covers an area of about 70 km2 in the north-western part of the Domo de Yauli complex in the Western Cordillera of central Peru and is part of the Miocene polymetallic belt, also hosting the deposits of Colquijirca (Bendezú et al, 2008b) and Cerro de Pasco (Baumgartner, Fontboté and Vennemann, 2008). Multiple late-Miocene porphyry stocks intruded Permian, Triassic-Jurassic and late-Cretaceous sedimentary carbonate and volcano-sedimentary formations, as well as large mid-Miocene barren intrusions (Figure 1). Extensive field work and detailed mapping of different styles of orebodies suggest that ore formation in the area was related to the late-Miocene magmatism. Good outcrop conditions and superimposing of different mineralisation styles make Morococha an ideal location for studying ore-forming processes in a complex porphyry-related magmatic-hydrothermal system in which porphyry-to-epithermal transition occurred. Miocene magmatic activity in the area was started by the emplacement of the Anticona diorite intrusive of mid-Miocene age (14 Ma), dominating the north-western part of the district. There is no indication of mineralisation genetically related to it. In late-Miocene times (7 to 9 Ma) a series of porphyry intrusions (diorites, granodiorites to quartz-monzonites, normal calc-alkaline, medium to high-K in composition) intruded into the different sedimentary sequences as well as the Anticona diorite.
    [Show full text]
  • Report Seeks to Demonstrate the Evolution of Chinese FDI Practices
    Acknowledgments First and foremost, we would like to thank our helpful and patient professor and research partner, Dr. Judith Shapiro of American University. Dr. Shapiro’s guidance and expertise were indispensable throughout the course of this investigation. We are also incredibly grateful for the opportunity to work with the World Resources Institute (WRI) on this project, and particularly with Denise Leung of WRI’s Sustainable Finance Team, whose advice was integral to our research process. Our team is also indebted to the following individuals: Victoria Chonn Ching, Universidad del Pacífico Kim Claes, Belgian Development Agency Dr. Ken Conca, American University Luis Gonzales, The Nature Conservancy Dr. Barbara Kotschwar, Peterson Institute for International Economics Dr. Stephen MacAvoy, American University Dr. Carlos Monge, Revenue Watch Institute Margaret Myers, Inter-American Dialogue Rachel Nadelman, American University Alejandro Neyra, Peruvian Ministry of Foreign Affairs Dr. Cynthia Sanborn, Universidad del Pacífico Michael Shifter, Inter-American Dialogue Sijin Xian, American University Shougang Case Study Acknowledgments: Departamento del Medio Ambiente de la Municipalidad de Marcona María De Los Angeles Zapata Rodriguez, Pontificia Universidad Católica del Perú Sindicato de Obreros Mineros de Shougang Hierro Peru, S.A.A. Chinalco Case Study Acknowledgments: Ing. Juan Aste Daffós, Adviser to Congresswoman Verónika Mendoza (Cusco) Julio Casas, Social Capital Group Ing. Marlene Cerrón Ruiz, Regional Government of Junin Paul Chachi, Social Capital Group Arq. Pedro Montoya Torres, Regional Government of Junin Ing. Rosi Rojas Cruzatti, Regional Government of Junin Dr. Luis Alberto Salgado Jorge Sanchez, Social Capital Group Mario Villavicensio, Knight Piésold Consulting Jinzhao Case Study Acknowledgments: Xiaohuan Tang, General Manager, Jinzhao Mining Peru SA Catherine Cardich, Deutsche Gesellschaft für Internationale Zusammenarbeit Dr.
    [Show full text]
  • Competent Persons Report for Toromocho Copper Project
    January 2017 CHINALCO MINING CORPORATION INTERNATIONAL Competent Persons Report for Toromocho Copper Project Submitted to: Chinalco Mining Corporation International Report Number. 1660234-001-R-Rev2b Distribution: REPORT 1 electronic copy – Chinalco 1 electronic copy – Golder Associates Pty Ltd – II-2 – TOROMOCHO COMPETENT PERSONS REPORT Executive Summary Golder Associates (“Golder”) was commissioned by Chinalco Mining Corporation International (Chinalco) to prepare a Competent Persons Report to assist Chinalco in its Independent technical review of the principal assets of Minera Chinalco Perú (MCP). The project is located in Peruvian Andes approximately 140 km east of Lima. In August 2007 Chinalco acquired all the shares of Peru Copper Inc., owner of Minera Peru Copper, which is now Minera Chinalco Peru S.A, and on 5 May of the following year (2008) signed the transfer of concessions and mining assets contract of the Toromocho Copper Project. The information, observations, and conclusions in this Competent Persons Report (CPR) that relate to Mineral Resource and Ore Reserve estimation and classification are provided in accordance with, and conform to the conventions of, the Australasian Code for Reporting of Exploration results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition). Dr Sia Khosrowshai reviewed the Mineral Resources for the Toromocho Copper Project. Mr Glenn Turnbull reviewed the Ore Reserves and applied modifying factors. Both Dr Khosrowshahi and Mr Turnbull are current Members of the Australasian Institute of Mining and Metallurgy (The AusIMM) and are competent persons in their respective fields under the JORC 2012 code. Mr Damian Connelly is a Principal Consulting Engineer with over 28 years’ experience as a Consultant Metallurgist.
    [Show full text]
  • Technical Report for the Morococha Property, Yauli, Peru
    Pan American Silver Corp. Technical Report for the Morococha Property, Yauli, Peru Effective date: June 30 2014 Prepared by: Martin Wafforn, P. Eng. Vice President, Technical Services Michael Steinmann, P. Geo. Executive Vice President, Corporate Development and Geology Americo Delgado, P. Eng. Director, Metallurgy November 2014 1 of 71 Pan American Silver Corp. Contents 1 Summary ............................................................................................................................................... 6 1.1 Property description and ownership ............................................................................................ 6 1.2 Geology and mineralization .......................................................................................................... 6 1.3 Status of exploration, development, and operations ................................................................... 7 1.4 Mineral resource and reserve estimates ...................................................................................... 8 1.5 Conclusions and recommendations ............................................................................................ 10 2 Introduction ........................................................................................................................................ 12 3 Reliance on other experts ................................................................................................................... 14 4 Property description and location .....................................................................................................
    [Show full text]