Heterotrophic Bacterial Diversity in Aquatic Microbial Mat Communities from Antarctica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomy and Systematics of Plant Probiotic Bacteria in the Genomic Era
AIMS Microbiology, 3(3): 383-412. DOI: 10.3934/microbiol.2017.3.383 Received: 03 March 2017 Accepted: 22 May 2017 Published: 31 May 2017 http://www.aimspress.com/journal/microbiology Review Taxonomy and systematics of plant probiotic bacteria in the genomic era Lorena Carro * and Imen Nouioui School of Biology, Newcastle University, Newcastle upon Tyne, UK * Correspondence: Email: [email protected]. Abstract: Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics. Keywords: phylogeny; plant; probiotic; PGPR; IAA; ACC; genome; metagenomics Abbreviations: ACC 1-aminocyclopropane-1-carboxylate ANI average nucleotide identity FAO Food and Agriculture Organization DDH DNA-DNA hybridization IAA indol acetic acid JA jasmonic acid OTUs Operational taxonomic units NGS next generation sequencing PGP plant growth promoters WHO World Health Organization PGPR plant growth-promoting rhizobacteria 384 1. -
Exploring Antibiotic Resistance Genes (Args) Abundance and Distribution on TARA Oceans Samples Through Machine Learning Tools Rafael R
bioRxiv preprint doi: https://doi.org/10.1101/765446. this version posted December 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY 4.0 International license. Global ocean resistome revealed: exploring Antibiotic Resistance Genes (ARGs) abundance and distribution on TARA oceans samples through machine learning tools Rafael R. C. Cuadrat1, Maria Sorokina2, Bruno G. Andrade3, Tobias Goris4, Alberto M. R. Dávila5 1 - Molecular Epidemiology Department, German Institute of Human Nutrition Potsdam-Rehbruecke - DIfE 2 - Friedrich-Schiller University, Lessingstrasse 8, 07743 Jena, Germany, ORCID: 0000-0001-9359-7149 3 - Embrapa Southeast Livestock - EMBRAPA 4 - Department of Molecular Toxicology, Research Group Intestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke - DIfE 5 - Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ. Av Brasil 4365, Rio de Janeiro, RJ, Brasil. 21040-900. Abstract The rise of antibiotic resistance (AR) in clinical settings is one of the biggest modern global public health concerns. Therefore, the understanding of AR mechanisms, evolution and global distribution is a priority due to its impact on the treatment course and patient survivability. Besides all efforts in the elucidation of AR mechanisms in clinical strains, little is known about its prevalence and evolution in environmental uncultivable microorganisms. In this study, 293 metagenomic from the TARA Oceans project were used to detect and quantify environmental antibiotic resistance genes (ARGs) using machine learning tools. After extensive manual curation, we show the global ocean ARG abundance, distribution, taxonomy, phylogeny and their potential to be horizontally transferred by plasmids or viruses and their correlation with environmental and geographical parameters. -
Micrococcus Luteus), a Pyridine-Degrading Bacterium
UC San Diego UC San Diego Previously Published Works Title Draft Genome Sequence of Pseudarthrobacter sp. Strain ATCC 49442 (Formerly Micrococcus luteus), a Pyridine-Degrading Bacterium. Permalink https://escholarship.org/uc/item/5sw2j66q Journal Microbiology resource announcements, 9(38) ISSN 2576-098X Authors Gupta, Nidhi Skinner, Kelly A Summers, Zarath M et al. Publication Date 2020-09-17 DOI 10.1128/mra.00299-20 Peer reviewed eScholarship.org Powered by the California Digital Library University of California GENOME SEQUENCES crossm Draft Genome Sequence of Pseudarthrobacter sp. Strain ATCC 49442 (Formerly Micrococcus luteus), a Pyridine-Degrading Bacterium Nidhi Gupta,a,b Kelly A. Skinner,a Zarath M. Summers,c Janaka N. Edirisinghe,a,b Pamela B. Weisenhorn,a José P. Faria,a,b Christopher W. Marshall,a* Anukriti Sharma,b* Neil R. Gottel,b* Jack A. Gilbert,a,b* Christopher S. Henry,a,b Edward J. O’Loughlina aArgonne National Laboratory, Lemont, Illinois, USA bUniversity of Chicago, Chicago, Illinois, USA cExxonMobil Research and Engineering Company, Annandale, New Jersey, USA ABSTRACT We present here the draft genome sequence of a pyridine-degrading bacterium, Micrococcus luteus ATCC 49442, which was reclassified as Pseudarthrobac- ter sp. strain ATCC 49442 based on its draft genome sequence. Its genome length is 4.98 Mbp, with 64.81% GC content. icrococcus luteus ATCC 49442 was isolated from a Chalmers silt loam soil, which Mhad not previously been exposed to pyridine, by enrichment using pyridine as a carbon, nitrogen, and energy source (1), with growth on pyridine leading to overpro- duction of riboflavin (2). To obtain material for sequencing, ATCC 49442 was cultured in tryptic soy broth at 30°C for 16 h, after which DNA was isolated using a DNeasy PowerSoil kit (Qiagen, catalog number 12888-50) following the manufacturer’s proto- col. -
Complete Genome Sequence of Arthrobacter Sp
Complete genome sequence of Arthrobacter sp. PAMC25564 and comparative genome analysis for elucidating the role of CAZymes in cold adaptation So-Ra Han Sun Moon University Byeollee Kim Sun Moon University Jong Hwa Jang Dankook University Hyun Park Korea University Tae-Jin Oh ( [email protected] ) Sun Moon University Research Article Keywords: Arthrobacter species, CAZyme, cold-adapted bacteria, genetic patterns, glycogen metabolism, trehalose pathway Posted Date: December 16th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-118769/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract Background: The Arthrobacter group is a known isolate from cold areas, the species of which are highly likely to play diverse roles in low temperatures. However, their role and survival mechanisms in cold regions such as Antarctica are not yet fully understood. In this study, we compared the genomes of sixteen strains within the Arthrobacter group, including strain PAMC25564, to identify genomic features that adapt and survive life in the cold environment. Results: The genome of Arthrobacter sp. PAMC25564 comprised 4,170,970 bp with 66.74 % GC content, a predicted genomic island, and 3,829 genes. This study provides an insight into the redundancy of CAZymes for potential cold adaptation and suggests that the isolate has glycogen, trehalose, and maltodextrin pathways associated to CAZyme genes. This strain can utilize polysaccharide or carbohydrate degradation as a source of energy. Moreover, this study provides a foundation on which to understand how the Arthrobacter strain produces energy in an extreme environment, and the genetic pattern analysis of CAZymes in cold-adapted bacteria can help to determine how bacteria adapt and survive in such environments. -
Bacterial Diversity from Benthic Mats of Antarctic Lakes As a Source of New Bioactive Metabolites
Marine Genomics 2 (2009) 33–41 Contents lists available at ScienceDirect Marine Genomics journal homepage: www.elsevier.com/locate/margen Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites Jose Luis Rojas a, Jesús Martín a,1, José Rubén Tormo a,1, Francisca Vicente a,1,MaraBrunatib,2, Ismaela Ciciliato b,3, Daniele Losi b,4, Stefanie Van Trappen c, Joris Mergaert c, Jean Swings c, Flavia Marinelli d, Olga Genilloud a,⁎,1 a CIBE, Merck Research Laboratories, Merck Sharp and Dohme de España S.A., Josefa Valcárcel 38, E-28027 Madrid, Spain b Vicuron Pharmaceuticals (formerly Biosearch Italia S.p.A), Via R. Lepetit 34, 21040 Gerenzano, Varese, Italy c Laboratorium voor Microbiologie, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium d DBSM, University of Insubria, J.H. Dunant 3, 21100 Varese, Italy article info abstract Article history: During the MICROMAT project, the bacterial diversity of microbial mats growing in the benthic environment Received 23 September 2008 of Antarctic lakes was accessed for the discovery of novel antibiotics. In all, 723 Antarctic heterotrophic Received in revised form 22 January 2009 bacteria belonging to novel and/or endemic taxa in the α-, β- and γ-subclasses of the Proteobacteria, the Accepted 2 March 2009 Bacteroidetes branch, and of the high and low percentage G+C Gram-positives, were isolated, cultivated in different media and at different temperatures, and then screened for the production of antimicrobial Keywords: activities. A total of 6348 extracts were prepared by solid phase extraction of the culture broths or by biomass Antarctic lakes Microbial mats solvent extraction. -
2018-02-20-A.Globiforum FSAR-EN
Final Screening Assessment for Arthrobacter globiformis strain ATCC 8010 Environment and Climate Change Canada Health Canada February 2018 Cat. No.: En14-312/2018E-PDF ISBN 978-0-660-24723-6 Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: • Exercise due diligence in ensuring the accuracy of the materials reproduced; • Indicate both the complete title of the materials reproduced, as well as the author organization; and • Indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with or with the endorsement of the Government of Canada. Commercial reproduction and distribution is prohibited except with written permission from the author. For more information, please contact Environment and Climate Change Canada’s Inquiry Centre at 1-800-668-6767 (in Canada only) or 819-997-2800 or email to [email protected]. © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment and Climate Change, 2016. Aussi disponible en français ii Synopsis Pursuant to paragraph 74(b) of the Canadian Environmental Protection Act, 1999 (CEPA), the Minister of the Environment and the Minister of Health have conducted a screening assessment of Arthrobacter globiformis (A. globiformis) strain ATCC 8010. A. globiformis strain ATCC 8010 is a soil bacterium that has characteristics in common with other strains of the species. -
Qinghai Lake
MIAMI UNIVERSITY The Graduate School CERTIFICATE FOR APPROVING THE DISSERTATION We hereby approve the Dissertation of Hongchen Jiang Candidate for the Degree Doctor of Philosophy ________________________________________________________ Dr. Hailiang Dong, Director ________________________________________________________ Dr. Chuanlun Zhang, Reader ________________________________________________________ Dr. Yildirim Dilek, Reader ________________________________________________________ Dr. Jonathan Levy, Reader ________________________________________________________ Dr. Q. Quinn Li, Graduate School Representative ABSTRACT GEOMICROBIOLOGICAL STUDIES OF SALINE LAKES ON THE TIBETAN PLATEAU, NW CHINA: LINKING GEOLOGICAL AND MICROBIAL PROCESSES By Hongchen Jiang Lakes constitute an important part of the global ecosystem as habitats in these environments play an important role in biogeochemical cycles of life-essential elements. The cycles of carbon, nitrogen and sulfur in these ecosystems are intimately linked to global phenomena such as climate change. Microorganisms are at the base of the food chain in these environments and drive the cycling of carbon and nitrogen in water columns and the sediments. Despite many studies on microbial ecology of lake ecosystems, significant gaps exist in our knowledge of how microbial and geological processes interact with each other. In this dissertation, I have studied the ecology and biogeochemistry of lakes on the Tibetan Plateau, NW China. The Tibetan lakes are pristine and stable with multiple environmental gradients (among which are salinity, pH, and ammonia concentration). These characteristics allow an assessment of mutual interactions of microorganisms and geochemical conditions in these lakes. Two lakes were chosen for this project: Lake Chaka and Qinghai Lake. These two lakes have contrasting salinity and pH: slightly saline (12 g/L) and alkaline (9.3) for Qinghai Lake and hypersaline (325 g/L) but neutral pH (7.4) for Chaka Lake. -
Differential Impacts on Bacterial Composition and Abundance in Rhizosphere Compartments Between Al-Tolerant and Al-Sensitive Soybean Genotypes in Acidic Soil
J. Microbiol. Biotechnol. 2020. 30(8): 1169–1179 https://doi.org/10.4014/jmb.2003.03018 Differential Impacts on Bacterial Composition and Abundance in Rhizosphere Compartments between Al-Tolerant and Al-Sensitive Soybean Genotypes in Acidic Soil Zhong-Ling Wen1†, Min-Kai Yang1†, Aliya Fazal1†, Yong-Hui Liao1, Lin-Run Cheng2, Xiao-Mei Hua3, Dong-Qing Hu1, Ji-Sen Shi 4, Rong-Wu Yang1, Gui-Hua Lu1,4, Jin-Liang Qi1,4*, Zhi Hong1*, Qiu-Ping Qian2*, and Yong-Hua Yang1,4* 1Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China 2Jinhua Academy of Agricultural Sciences, Jinhua 321017, P.R. China 3Research Center for Soil Pollution Prevention and Control, Nanjing Institute of Environmental Sciences, MEE, Nanjing 210042, P.R. China 4Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P.R. China In this study, two soybean genotypes, i.e., aluminum-tolerant Baxi 10 (BX10) and aluminum- sensitive Bendi 2 (BD2), were used as plant materials and acidic red soil was used as growth medium. The soil layers from the inside to the outside of the root are: rhizospheric soil after washing (WRH), rhizospheric soil after brushing (BRH) and rhizospheric soil at two sides (SRH), respectively. The rhizosphere bacterial communities were analyzed by high-throughput sequencing of V4 Received: March 11, 2020 hypervariable regions of 16S rRNA gene amplicons via Illumina MiSeq. The results of alpha diversity Accepted: May 15, 2020 analysis showed that the BRH and SRH of BX10 were significantly lower in community richness than that of BD2, while the WRH exhibited no significant difference between BX10 and BD2. -
Characterization of Aerobic Bacterial and Fungal Microbiota on Surfaces of Historic Scottish Monuments
ARTICLE IN PRESS Systematic and Applied Microbiology 30 (2007) 494–508 www.elsevier.de/syapm Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments$ Maija-Liisa Suihkoa,Ã, Hanna-Leena Alakomia, Anna Gorbushinab, Irene Fortunec, Ju¨rgen Marquardtb, Maria Saarelaa aVTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland bInstitute for Chemistry and Biology of the Marine Environment (ICBM) Geomicrobiology, Material Ecology, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany cHistoric Scotland, 7 South Gyle Crescent, Edinburgh EH12 9EB, Scotland, UK Received 22 November 2006 Abstract Twenty samples were taken from the inner or outer surfaces of stone monuments of six historic Scottish buildings and ruins. Biofilms developing on mineral substrates were analysed by in situ scanning electron microscopy and cultivation. Various methods were used to characterize the isolates including automated ribotyping, RAPD and sequencing of the 16S rRNA gene for bacteria, and stereomicroscopy and sequencing of the Internal Transcribed Spacers (ITS) for fungi. Most samples contained microbes between 105 and 107 cfu gÀ1 substrate. Actinobacteria belonging to the genus Streptomyces (17 samples/5 monuments) or Arthrobacter (12/3) and Pseudomonas (9/3) were frequently detected. Most streptomycetes were in terms of their 16S rRNA gene sequence most closely related to S. microflavus (10/3) or to the undescribed species S. ‘‘vulgaris’’ (8/3). Indoor and outdoor biofilms exhibited significant differences in their microbiota, as shown by both microscopy and isolation studies. Pigmented coccoid Arthrobacter species were typical for the outdoor samples, whereas Pseudomonas species were common in the indoor samples. -
Exploring Antibiotic Resistance Genes (Args) Abundance and Distribution on TARA Oceans Samples Through Machine Learning Tools Rafael R
bioRxiv preprint doi: https://doi.org/10.1101/765446; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Global ocean resistome revealed: exploring Antibiotic Resistance Genes (ARGs) abundance and distribution on TARA oceans samples through machine learning tools Rafael R. C. Cuadrat1, Maria Sorokina2, Bruno G. Andrade3, Alberto M. R. Dávila4 1 - Molecular Epidemiology Department, German Institute of Human Nutrition - DIfE 2 - Friedrich-Schiller University, Lessingstrasse 8, 07743 Jena, Germany, ORCID: 0000-0001-9359-7149 3 - Embrapa Southeast Livestock - EMBRAPA 4 - Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ. Av Brasil 4365, Rio de Janeiro, RJ, Brasil. 21040-900. Abstract The rise of antibiotic resistance (AR) in clinical settings is one of the biggest modern global public health concerns, therefore, the understanding of its mechanisms, evolution and global distribution is a priority due to its impact on the treatment course and patient survivability. Besides all efforts in the elucidation of AR mechanisms in clinical strains, little is known about its prevalence and evolution in environmental uncultivable microorganisms. In this study, 293 metagenomic and 10 metatranscriptomic samples from the TARA oceans project were used to detect and quantify environmental Antibiotic Resistance Genes (ARGs) using modern machine learning tools. After extensive manual curation, we show their global distribution, abundance, taxonomy and phylogeny, their potential to be horizontally transferred by plasmids or viruses and their correlation with environmental and geographical parameters. -
Heterotrophic Bacterial Diversity in Aquatic Microbial Mat Communities from Antarctica
biblio.ugent.be The UGent Institutional Repository is the electronic archiving and dissemination platform for all UGent research publications. Ghent University has implemented a mandate stipulating that all academic publications of UGent researchers should be deposited and archived in this repository. Except for items where current copyright restrictions apply, these papers are available in Open Access. This item is the archived peer‐reviewed author‐version of: Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica Karolien Peeters, Elie Verleyen, Dominic A. Hodgson, Peter Convey, Damien Ertz , Wim Vyverman, Anne Willems In: Polar Biol (2012) 35:543‐554 DOI 10.1007/s00300‐011‐1100‐4 To refer to or to cite this work, please use the citation to the published version: K. Peeters, E. Verleyen, D. A. Hodgson, P. Convey, D. Ertz , W. Vyverman, A. Willems (2012). Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol (2012) 35:543‐554. DOI: 10.1007/s00300‐011‐1100‐4 1 1 Heterotrophic bacterial diversity in aquatic microbial mat 2 communities from Antarctica. 3 4 Karolien Peeters1, Elie Verleyen², Dominic A. Hodgson3, Peter Convey3, Damien Ertz4, Wim Vyverman², 5 Anne Willems1* 6 7 1Laboratory of Microbiology, Department of Biochemistry and Microbiology, Fac. Science, Ghent 8 University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium 9 2Protistology & Aquatic Ecology, Department of Biology, Fac. Science, Ghent University, Krijgslaan 281 - 10 S8, B-9000 Ghent, Belgium 11 3British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, 12 Cambridge, CB3 0ET, UK 13 4National Botanic Garden of Belgium, Department Bryophytes-Thallophytes, B-1860 Meise, Belgium 14 15 16 17 Keywords: microbial diversity, cultivation, 16S rRNA gene sequencing, ASPA, PCA. -
Pontificia Universidad Javeriana Facultad De Ciencias Doctorado En Ciencias Biológicas Análisis Comparativo De La Expresión D
PONTIFICIA UNIVERSIDAD JAVERIANA FACULTAD DE CIENCIAS DOCTORADO EN CIENCIAS BIOLÓGICAS ANÁLISIS COMPARATIVO DE LA EXPRESIÓN DE PROTEÍNAS DE Tistlia consotensis EN RESPUESTA A CAMBIOS EN LA SALINIDAD EXTERNA CAROLINA RUBIANO LABRADOR TESIS Presentada como requisito parcial para optar por el titulo de DOCTOR EN CIENCIAS BIOLÓGICAS Bogotá D.C., Colombia Junio 09 de 2014 NOTA DE ADVERTENCIA "La Universidad no se hace responsable por los conceptos emitidos por sus alumnos en sus trabajos de tesis. Solo velará por que no se publique nada contrario al dogma y a la moral católica y por que las tesis no contengan ataques personales contra persona alguna, antes bien se vea en ellas el anhelo de buscar la verdad y la justicia". Artículo 23 de la Resolución No13 de Julio de 1946. ANÁLISIS COMPARATIVO DE LA EXPRESIÓN DE PROTEÍNAS DE Tistlia consotensis EN RESPUESTA A CAMBIOS EN LA SALINIDAD EXTERNA CAROLINA RUBIANO LABRADOR APROBADO: ANÁLISIS COMPARATIVO DE LA EXPRESIÓN DE PROTEÍNAS DE Tistlia consotensis EN RESPUESTA A CAMBIOS EN LA SALINIDAD EXTERNA CAROLINA RUBIANO LABRADOR Concepción Judith Puerta Bula, Ph.D Alba Alicia Trespalacios Rangel, Ph.D Decana Director de Posgrado Facultad de Ciencias Facultad de Ciencias El mundo no es perfecto, y la ley está incompleta. El intercambio equivalente no abarca todo lo que ocurre aquí, pero todavía quiero creer en su principio: Que todas las cosas llegan a un precio, que hay un flujo, un ciclo. Que el dolor que hemos pasado tendrá una recompensa y que cualquiera que sea perseverante obtendrá algo hermoso a cambio, aunque no sea lo esperado AGRADECIMIENTOS A la Unidad de Saneamiento y Biotecnología Ambiental (USBA) de la Pontifica Universidad Javeriana que permitió el desarrollo de este proyecto.