Generic Pest Risk Analysis Import of Transgenic Soybean

Total Page:16

File Type:pdf, Size:1020Kb

Generic Pest Risk Analysis Import of Transgenic Soybean Generic Pest Risk Analysis Import of Transgenic Soybean Editors V Celia Chalam Shashi Bhalla Kavita Gupta Baleshwar Singh Z Khan SC Dubey ICAR-National Bureau of Plant Genetic Resources New Delhi 110 012, India Citation: V Celia Chalam, Shashi Bhalla, Kavita Gupta, Baleshwar Singh, Z Khan and SC Dubey (Eds) 2016 Generic Pest Risk Analysis: Import of Transgenic Soybean. ICAR-National Bureau of Plant Genetic Resources, New Delhi, India, 146 p. Published in 2016 ©All Rights Reserved ICAR-National Bureau of Plant Genetic Resources New Delhi 110 012, India Published by: The Director ICAR-National Bureau of Plant Genetic Resources New Delhi 110012, India. Email: [email protected] Website: http://www.nbpgr.ernet.in Contents Introduction 1 Table 1. Potential Quarantine Pests of Soybean for India 3 References 126 Glossary 143 Acronyms and Abbreviations 144 Other Useful References 146 Introduction Soybean [Glycine max (L.) Merr.] is the major oilseed crop in the world accounting for nearly 50% of total oilseeds acreage as well as production. It provides approximately 60% of vegetable protein and 30% of oil in the world. Soybean ranks second in vegetable oil economy of India after groundnut. Soybean is primarily utilized as a source of protein and oil. Soybean seed contains 20% oil and 40-42% quality protein. Soybean is grown in 92.99 m ha in the world to produce 221.5 m tonnes in 2006. USA tops the list in soybean acreage and production. The other major soybean-producing countries are Brazil, China, Argentina, Indonesia, Canada, Paraguay and Italy. India with 8.88 m ha of soybean-growing area and 10.97 m tonnes production ranks fifth in the world during 2007-08. It contributes 30-37% to India’s oilseeds production (Anonymous, 2009). Given its nutritional and health benefits, soybean has been gaining more prominence the world over more so, with the advent of transgenic crops. Transgenic soybean is being grown in 11 countries viz., USA, Brazil, Argentina, Canada, Paraguay, South Africa, Uruguay, Bolivia, Mexico, Chile and Costa Rica (James, 2011). The crop is susceptible to infection by several pests, which substantially reduce yield and quality. The ICAR-National Bureau of Plant Genetic Resources (NBPGR) is the nodal agency in India for management of plant genetic resources and quarantine processing of imported germplasm including that of transgenics for research purposes. Soybean germplasm including transgenics in the form of true seed is imported into India every year for crop improvement programmes. The seed not only serves as a source of valuable genes useful for crop improvement, but also as a reservoir of many seed-borne and seed-transmitted pests. Therefore, the exchange of germplasm for crop improvement programmes has the inherent risk of introducing new pests or their virulent races/ biotypes into the country. Globally there are several instances of plant disease epidemics due to movement of infected seed/other planting material. There are new records that suggest that soybean pests are moving from one area/region to another. Peronospora manshurica was reported from France by Signoret et al. (1975) and from Iran by Zad (1979). Soybean rust, Phakopsora pachyrhizi was first reported from Argentina in 2003. Like-wise, there are several new regional records of soybean pests in different parts of USA, viz. Fusarium solani f.sp. glycines (sudden death syndrome) in Minnesota, Bean pod mottle virus in soybean in Alabama, Soybean dwarf virus and Cercospora sojina (frogeye leaf spot) in Wisconsin. Records from India include P. pachyrhizi in Rajasthan and Chhattisgarh. At ICAR-NBPGR, New Delhi, adopting a workable strategy several quarantine pests viz., Peronospora manshurica, Bean mild mosaic virus, Bean pod mottle virus, Cherry leaf roll virus, Cowpea severe mosaic virus, Pea enation mosaic virus, Peanut stunt virus, Raspberry ring spot virus and Tomato ring spot virus have been intercepted in soybean germplasm imported from many countries. In addition, interceptions have also been made of viruses like Arabis mosaic virus, Grapevine fan leaf virus, Tomato black ring virus not reported from India on soybean (Khetarpal et al., 2006; Chalam and Khetarpal, 2008; Chalam et al., 2008; Chalam et al., 2014; Chalam 2016; Parakh et al., 2005, 2008). P. manshurica, a quarantine pest was intercepted in soybean including transgenic soybean from many countries (Agarwal et al., 2006a, 2006b; Agarwal and Singh, 1998; Singh et al., 2002, 2003; Khetarpal et al., 2005). It is therefore, mandatory to pay attention to the prescribed regulations to avoid the introduction of these quarantine pests into the country. The appropriate phytosanitary measures should be adopted accordingly to facilitate safe import of planting material. The Agreement on Application of Sanitary and Phytosanitary Measures, under WTO, requires member countries to have uniform phytosanitary standards. The International Plant Protection Convention (IPPC) has developed International Standards for Phytosanitary Measures (ISPM) and so far 37 standards have been brought out. Of these, the guidelines for the pest risk analysis (PRA) are given in ISPM-2, ISPM-11 and ISPM-21. The preparation of PRA is divided into three stages viz., initiation, risk assessment and risk management. A PRA should be fully documented in the event of a review or dispute. In fact, the first step is very crucial to start a PRA and requires both a list of pests reported to occur and a list of those not known to occur in the country. ICAR-NBPGR has been empowered under the Plant Quarantine (Regulation of Import into India) Order 2003 of the Destructive Insects and Pests Act, 1914 to undertake quarantine of germplasm including transgenics under exchange. The Division of Plant Quarantine in the ICAR-NBPGR has brought out publications on the potential quarantine pests (PQPs) for India in cereals (Dev et al., 2005), grain legumes (Chalam et al., 2012) and edible oilseeds (Gupta et al., 2013). In this context an attempt has been made here to prepare a document on the PQPs of soybean. Various parameters taken into account for compilation are: pests, their synonym(s), disease caused or the common name, pathway of introduction, host range, geographical distribution, economic impact and phytosanitary risk involved. The information has been collected from various sources including the Crop Protection Compendium (CAB International, 2007). PQPs were short-listed based on one or more of the facts that these pests are: (i) not reported from India, (ii) having limited distribution, (iii) present in India on other crops but not on grain legumes and (iv) having physiological races. This data has been linked with the pests listed under the Schedule VI of Plant Quarantine (Regulation of Import into India) Order, 2003. The Schedule VI of the Order deals with plant/ plant material permitted for import with additional declarations and special conditions. Ninety six pests (34 insects, three mites, four nematodes, 18 fungi, six bacteria, 14 viruses and 17 weed species) are listed as the PQPs for India in soybean (Table 1). Out of these, three viruses are not known to infect legumes including soybean in India and a bacteria is known to have races world-wide. Ninety two pests (34 insects, three mites, four nematodes, 18 fungi, five bacteria, 11 viruses and 17 weed species) are not reported to occur in India. Once introduced and established, these pests or their virulent races/ strains/ biotypes can cause severe damage to agriculture. Compilation of data on pests of quarantine significance, their global distribution and other aspects related to biology, survival and spread of these pests are essential components of risk analysis to meet international regulations. However, it may be noted that, this compilation is based on published literature and the non-availability of published literature should not be interpreted as absence of a pest in a country. This publication would, thus, facilitate smooth functioning of quarantine, benefit scientists while issuing import permit stating additional declarations required for import in addition to supplementing information for analyzing pest risk. Therefore, it is hoped that this publication would serve as a ready reckoner for the benefit of researchers, quarantine officials, students, seed certification agencies and others entrusted with the task of safe trade and exchange of germplasm of soybean including transgenics. 2 Table 1. Potential Quarantine Pests of Soybean for India S. No. Scientific Name Common Pathway of Host Range Geographical Remarks Synonyms Name Introduction Distribution Insects and Mites 1. *Acalymma vittatum Striped Seed, as Brassica oleracea, Canada, Mexico, Oviposition occurs in (Fabricius) cucumber contaminant Citrullus lanatus, USA soil near base of beetle Cucumis melo, plant. Larvae feed on Synonyms C. sativus, the roots and stem Acalymma vittata Cucurbita spp., (York, 1992). (Fabricius), C. argyrosperma, Cistela melanocephala C. maxima, Vector of Erwinia Fabricius, C. moschata, tracheiphila causing Crioceris vittata C. pepo, Glycine bacterial wilt of Fabricius, max, Helianthus cucurbits. It also Cryptocephalus (Cistela) annuus, Ligustrum transmits Cucumber americanus Gmelin, spp., Solidago mosaic virus and C. (Crioceris) stolatus spp., Taraxacum Cowpea mosaic virus Gmelin, officinale, Urtica (CAB International, Diabrotica dioica, Zea mays 2007). melanocephala (Fabricius), D. vittatae (Fabricius), Galleruca (Diabrotica) americana (Gmelin), G. cucumeris 3 Melsheimer,
Recommended publications
  • Bean Pod Mottle Virus Biology and Management in Iowa Jeffrey Donald Bradshaw Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Bean pod mottle virus biology and management in Iowa Jeffrey Donald Bradshaw Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Entomology Commons, and the Plant Pathology Commons Recommended Citation Bradshaw, Jeffrey Donald, "Bean pod mottle virus biology and management in Iowa" (2007). Retrospective Theses and Dissertations. 15938. https://lib.dr.iastate.edu/rtd/15938 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Bean pod mottle virus biology and management in Iowa by Jeffrey Donald Bradshaw A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Co-majors: Entomology; Plant Pathology Program of Study Committee: Marlin E. Rice, Co-major Professor John. H. Hill, Co-major Professor Larry P. Pedigo Matthew E. O’Neal Gary P. Munkvold Daniel S. Nettleton Iowa State University Ames, Iowa 2007 Copyright © Jeffrey Donald Bradshaw, 2007. All rights reserved. UMI Number: 3274880 Copyright 2007 by Bradshaw, Jeffrey Donald All rights reserved. UMI Microform 3274880 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O.
    [Show full text]
  • Morphology, Taxonomy, and Biology of Larval Scarabaeoidea
    Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/morphologytaxono12haye ' / ILLINOIS BIOLOGICAL MONOGRAPHS Volume XII PUBLISHED BY THE UNIVERSITY OF ILLINOIS *, URBANA, ILLINOIS I EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny, Chairman S70.S~ XLL '• / IL cop TABLE OF CONTENTS Nos. Pages 1. Morphological Studies of the Genus Cercospora. By Wilhelm Gerhard Solheim 1 2. Morphology, Taxonomy, and Biology of Larval Scarabaeoidea. By William Patrick Hayes 85 3. Sawflies of the Sub-family Dolerinae of America North of Mexico. By Herbert H. Ross 205 4. A Study of Fresh-water Plankton Communities. By Samuel Eddy 321 LIBRARY OF THE UNIVERSITY OF ILLINOIS ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XII April, 1929 No. 2 Editorial Committee Stephen Alfred Forbes Fred Wilbur Tanner Henry Baldwin Ward Published by the University of Illinois under the auspices of the graduate school Distributed June 18. 1930 MORPHOLOGY, TAXONOMY, AND BIOLOGY OF LARVAL SCARABAEOIDEA WITH FIFTEEN PLATES BY WILLIAM PATRICK HAYES Associate Professor of Entomology in the University of Illinois Contribution No. 137 from the Entomological Laboratories of the University of Illinois . T U .V- TABLE OF CONTENTS 7 Introduction Q Economic importance Historical review 11 Taxonomic literature 12 Biological and ecological literature Materials and methods 1%i Acknowledgments Morphology ]* 1 ' The head and its appendages Antennae. 18 Clypeus and labrum ™ 22 EpipharynxEpipharyru Mandibles. Maxillae 37 Hypopharynx <w Labium 40 Thorax and abdomen 40 Segmentation « 41 Setation Radula 41 42 Legs £ Spiracles 43 Anal orifice 44 Organs of stridulation 47 Postembryonic development and biology of the Scarabaeidae Eggs f*' Oviposition preferences 48 Description and length of egg stage 48 Egg burster and hatching Larval development Molting 50 Postembryonic changes ^4 54 Food habits 58 Relative abundance.
    [Show full text]
  • Coleoptera: Scarabaeidae)
    Systematic Entomology (2005), 31, 113–144 DOI: 10.1111/j.1365-3113.2005.00307.x The phylogeny of Sericini and their position within the Scarabaeidae based on morphological characters (Coleoptera: Scarabaeidae) DIRK AHRENS Deutsches Entomologisches Institut im Zentrum fu¨r Agrarlandschafts- und Landnutzungsforschung Mu¨ncheberg, Germany Abstract. To reconstruct the phylogeny of the Sericini and their systematic position among the scarabaeid beetles, cladistic analyses were performed using 107 morphological characters from the adults and larvae of forty-nine extant scarabaeid genera. Taxa represent most ‘traditional’ subfamilies of coprophagous and phytophagous Scarabaeidae, with emphasis on the Sericini and other melo- lonthine lineages. Several poorly studied exoskeletal features have been examined, including the elytral base, posterior wing venation, mouth parts, endosternites, coxal articulation, and genitalia. The results of the analysis strongly support the monophyly of the ‘orphnine group’ þ ‘melolonthine group’ including phytopha- gous scarabs such as Dynastinae, Hopliinae, Melolonthinae, Rutelinae, and Cetoniinae. This clade was identified as the sister group to the ‘dung beetle line’ represented by Aphodius þ Copris. The ‘melolonthine group’ is comprised in the strict consensus tree by two major clades and two minor lineages, with the included taxa of Euchirinae, Rutelinae, and Dynastinae nested together in one of the major clades (‘melolonthine group I’). Melolonthini, Cetoniinae, and Rutelinae are strongly supported, whereas Melolonthinae and Pachydemini appear to be paraphyletic. Sericini þ Ablaberini were identified to be sister taxa nested within the second major melolonthine clade (‘melolonthine group II’). As this clade is distributed primarily in the southern continents, one could assume that Sericini þ Ablaberini are derived from a southern lineage.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Oregon Invasive Species Action Plan
    Oregon Invasive Species Action Plan June 2005 Martin Nugent, Chair Wildlife Diversity Coordinator Oregon Department of Fish & Wildlife PO Box 59 Portland, OR 97207 (503) 872-5260 x5346 FAX: (503) 872-5269 [email protected] Kev Alexanian Dan Hilburn Sam Chan Bill Reynolds Suzanne Cudd Eric Schwamberger Risa Demasi Mark Systma Chris Guntermann Mandy Tu Randy Henry 7/15/05 Table of Contents Chapter 1........................................................................................................................3 Introduction ..................................................................................................................................... 3 What’s Going On?........................................................................................................................................ 3 Oregon Examples......................................................................................................................................... 5 Goal............................................................................................................................................................... 6 Invasive Species Council................................................................................................................. 6 Statute ........................................................................................................................................................... 6 Functions .....................................................................................................................................................
    [Show full text]
  • Disturbance and Recovery of Litter Fauna: a Contribution to Environmental Conservation
    Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis committee PhD promotors Prof. dr. Herbert H.T. Prins Professor of Resource Ecology Wageningen University Prof. dr. Steven de Bie Professor of Sustainable Use of Living Resources Wageningen University PhD supervisor Dr. Frank van Langevelde Assistant Professor, Resource Ecology Group Wageningen University Other members Prof. dr. Lijbert Brussaard, Wageningen University Prof. dr. Peter C. de Ruiter, Wageningen University Prof. dr. Nico M. van Straalen, Vrije Universiteit, Amsterdam Prof. dr. Wim H. van der Putten, Nederlands Instituut voor Ecologie, Wageningen This research was conducted under the auspices of the C.T. de Wit Graduate School of Production Ecology & Resource Conservation Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 21 October 2013 at 11 a.m. in the Aula Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation 114 pages Thesis, Wageningen University, Wageningen, The Netherlands (2013) With references, with summaries in English and Dutch ISBN 978-94-6173-749-6 Propositions 1. The environmental filters created by constraining environmental conditions may influence a species assembly to be driven by deterministic processes rather than stochastic ones. (this thesis) 2. High species richness promotes the resistance of communities to disturbance, but high species abundance does not.
    [Show full text]
  • Viral Diseases of Soybeans
    SoybeaniGrow BEST MANAGEMENT PRACTICES Chapter 60: Viral Diseases of Soybeans Marie A.C. Langham ([email protected]) Connie L. Strunk ([email protected]) Four soybean viruses infect South Dakota soybeans. Bean Pod Mottle Virus (BPMV) is the most prominent and causes significant yield losses. Soybean Mosaic Virus (SMV) is the second most commonly identified soybean virus in South Dakota. It causes significant losses either in single infection or in dual infection with BPMV. Tobacco Ringspot Virus (TRSV) and Alfalfa Mosaic Virus (AMV) are found less commonly than BPMV or SMV. Managing soybean viruses requires that the living bridge of hosts be broken. Key components for managing viral diseases are provided in Table 60.1. The purpose of this chapter is to discuss the symptoms, vectors, and management of BPMV, SMV, TRSV, and AMV. Table 60.1. Key components to consider in viral management. 1. Viruses are obligate pathogens that cannot be grown in artificial culture and must always pass from living host to living host in what is referred to as a “living or green” bridge. 2. Breaking this “living bridge” is key in soybean virus management. a. Use planting dates to avoid peak populations of insect vectors (bean leaf beetle for BPMV and aphids for SMV). b. Use appropriate rotations. 3. Use disease-free seed, and select tolerant varieties when available. 4. Accurate diagnosis is critical. Contact Connie L. Strunk for information. (605-782-3290 or [email protected]) 5. Fungicides and bactericides cannot be used to manage viral problems. 60-541 extension.sdstate.edu | © 2019, South Dakota Board of Regents What are viruses? Viruses that infect soybeans present unique challenges to soybean producers, crop consultants, breeders, and other professionals.
    [Show full text]
  • First Description of White Grub Betle, Maladera Insanabilis Brenske, 1894 (Coleoptera: Melolonthidae: Melolonthinae) from Erbil Governorate, Kurdistan Region – Iraq
    Plant Archives Vol. 19 No. 2, 2019 pp. 3991-3994 e-ISSN:2581-6063 (online), ISSN:0972-5210 FIRST DESCRIPTION OF WHITE GRUB BETLE, MALADERA INSANABILIS BRENSKE, 1894 (COLEOPTERA: MELOLONTHIDAE: MELOLONTHINAE) FROM ERBIL GOVERNORATE, KURDISTAN REGION – IRAQ Zayoor Zainel Omar Plant Protection Department, Khabat Technical institute, Erbil Polytechnic University-Erbil, Iraq. Abstract White grub beetle, Maladera insanabilis Brenske, 1894 is collected from the flowers of some ornamental plants in different localities of Erbil governorate, Kurdistan Region-Iraq, from the period, March till July / 2018. Diagnostic characters of the species are figured, Mandibles high sclerotized, irregular shaped, apical part with seven short teeth. apical part of galea with seven well developed teeth. Antenna brown consist of 10 ending in a unilateral three lamellate club sub-equal in length. Fore tibia flattened, bidentate. Parameres is a symmetrical, the left part is hook like, the end with a curved pointed apical tooth. Key words: Maladera insanabilis Brenske, 1894, Kurdistan Region-Iraq. Introduction Woodruff and Beck, 1989, Coca-Abia et al., 1993, Coca- Melolonthidae Samouelle, 1819 is one of large family Abia and Martin-Piera, 1998, Coca-Abia, 2000, Evans, of Scarabaeoidea, there are currently about 750 genera 2003). and 11.000 species recorded worldwide (Houston and The genus Maladera Mulsant and Rey, 1871 is one Weir, 1992 ). The identified of the family is well established of the largest groups consisting of more than 500 and is based on the following characteristics. Adult described species widely distributed in Palearctic, Oriental antennae are lamellate apex, the fore legs are adapted and Afrotropical regions (Ahrens, 2003).
    [Show full text]
  • Thesis, University of Amsterdam, the Netherlands
    UvA-DARE (Digital Academic Repository) Ecological effects of plant invasions van Hengstum, T. Publication date 2013 Document Version Final published version Link to publication Citation for published version (APA): van Hengstum, T. (2013). Ecological effects of plant invasions. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:01 Oct 2021 THOMAS VAN HENGSTUM van Hengstum, T. 2013. Ecological effects of plant invasions. PhD thesis, University of Amsterdam, The Netherlands. The research presented in this thesis was funded by the Dutch Organization for Scientific Research (NWO) as part of the ERGO program (838.06.111). ISBN: 978-90-821099-0-0 ECOLOGICAL EFFECTS OF PLANT INVASIONS Academisch proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof.
    [Show full text]
  • Morphology of the Immatures and Biology of Chinavia Longicorialis (Breddin) (Hemiptera: Pentatomidae)
    74 January - February 2009 SYSTEMATICS, MORPHOLOGY AND PHYSIOLOGY Morphology of the Immatures and Biology of Chinavia longicorialis (Breddin) (Hemiptera: Pentatomidae) VIVIANA C MATESCO, CRISTIANO F SCHWERTNER, JOCELIA GRAZIA Programa de Pós-Graduação em Biologia Animal, Depto. Zoologia, IB, Univ. Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bloco IV, Pr. 43435, Sl. 216, Porto Alegre, RS, 91501-970; [email protected]; acrosternum@ yahoo.com.br; [email protected]; Contribuição nº 570 do Depto. Zoologia – UFRGS Edited by Fernando Barbosa Noll – UNESP Neotropical Entomology 38(1):074-082 (2009) Morfologia dos Estágios Imaturos e Biologia de Chinavia longicorialis (Breddin) (Hemiptera: Pentatomidae) RESUMO - Chinavia longicorialis (Breddin) é encontrada apenas no Brasil, Argentina e Uruguai, sobre plantas hospedeiras de pelo menos três famílias diferentes. Adultos e ninfas dessa espécie foram coletados no Parque Estadual do Espinilho (Barra do Quaraí, RS) e na região da Serra do Sudeste (Canguçu e Caçapava do Sul, RS) e mantidos sob condições controladas (24 ± 1°C; UR 70 ± 10%; 12hL:12hE), alimentados com vagens verdes de feijão (Phaseolus vulgaris L.). Os ovos e as ninfas de primeiro ínstar de C. longicorialis são muito semelhantes àqueles das demais espécies de Chinavia; porém apresentando manchas alaranjadas na margem lateral dos segmentos torácicos. As manchas abdominais, a partir do terceiro ínstar, são nitidamente divididas pelas pseudo-suturas do abdome, o que constitui caráter diagnóstico para C. longicorialis. Ninfas do terceiro ao quinto ínstar apresentaram formas claras e escuras. Não foi observada sobreposição nas medidas de largura da cabeça entre diferentes estádios. O número de ovos por postura mais freqüente foi 14; sugere-se a adoção da moda como melhor estimativa para o tamanho das posturas em Pentatomidae.
    [Show full text]
  • Heteroptera: Hemiptera ) from Chhattisgarh, India
    BISWAS et al.: On an account of Pentatomoidea.....from Chhattisgarh, India ISSN 0375-1511211 Rec. zool. Surv. India : 114(Part-2) : 211-231, 2014 ON AN ACCOUNT OF PENTATOMOIDEA (HETEROPTERA: HEMIPTERA ) FROM CHHATTISGARH, INDIA B. BISWAS, M. E. HASSAN, KAILASH CHANDRA, SANDEEP KUSHWAHA** AND PARAMITA MUKHERJEE Zoological Survey of India, M-Block, New Alipore, Kolkata-700053, India ** Zoological Survey of India, Central Zone Regional Centre, Vijay Nagar, Jabalpur-482002 INTRODUCTION SYSTEMATIC ACCOUNT The pentatomids are commonly known as Family I PENTATOMIDAE “shield bugs” or “stink bugs” as their bodies are Subfamily PENTATOMINAE usually covered by a shield shaped scutellum covering more than half of the abdomen, tibia with Tribe ANTESTINI weak or no spine, 5 segmented antennae which Genus 1. Antestia Stal, 1864 gives its family name and most of them emit an 1. Antestia anchora (Thunberg) unpleasant odour, offensive in nature, produced by a pair of glands in the thorax and is released through *2. Antestia cruciata (Fabricius) openings in the metathorax. Although majority Genus 2. Plautia Stal, 1867 of these bugs are plant sucking, the members *3. Plautia crossota (Fabricius) belonging to the family Asopinae are wholly or partially predaceous. Pentatomoidea is one of the Tribe AGONOSCELIDINI largest superfamilies of Heteroptera comprising of Genus 3. Agonoscelis Spin, 1837 1301 genera and 7182 species distributed in sixteen 4. Agonoscelis nubilis (Fabricius) families all over the world (Henry, 2009). Of these, family Pentatomidae alone represents 896 genera Tribe CARPOCORINI and 4722 species distributed in eight subfamilies Genus 4. Gulielmus Distant, 1901 (Pentatominae, Asopinae, Podopinae, Edessinae, 5. Gulielmus laterarius Distant Phyllocephalinae, Discocephalinae, Cyrtocorinae and Serbaninae).
    [Show full text]
  • The Asiatic Garden Beetle, Maladera Castanea (Arrow 1913) (Coleoptera; Scarabaeidae), a White Grub Pest New to Florida
    Entomology Circular Number 425 Florida Department of Agriculture and Consumer Services November 2012 Division of Plant Industry FDACS-P-01823 The Asiatic Garden Beetle, Maladera Castanea (Arrow 1913) (Coleoptera; Scarabaeidae), a White Grub Pest New to Florida Paul E. Skelley1 INTRODUCTION: The Asiatic garden beetle, Maladera castanea (Arrow), has been a pest in the northeastern United States since the 1920s. Generally not as abundant or damaging as the Japanese beetle (Popillia japonica Newman), the Asiatic garden beetle is occasionally numerous enough to cause damage to turf, gardens and field crops, as well as simply being a nuisance. The discovery of the Asiatic garden beetle in Florida was not unexpected. This is the first report of this pest beetle in the lower southeastern U.S. coastal plain. IDENTIFICATION: Asiatic garden beetles (Fig. 1a-b) can be confused with native species of scarab beetles in the genus Serica. In general, Asiatic garden beetles are recognized by their robust body, 8-9 mm in length, reddish- brown color with iridescent sheen, hidden labrum, antenna with 10 segments (not 8-9), and strongly flattened hind tibia with apical spurs separated by the tarsal articulation. If in doubt, the long male genitalia with the large movable apical hook is distinctive (Fig. 1c-d, dissection required). Identification keys including adult Asiatic garden beetle can be found in Harpootlian (2001) for South Carolina and Evans (2002) for the entire U.S. Larvae are white grubs that are distinguished from other known U.S. scarabs by their maxilla being laterally swollen and bulbous. Identification of larval Asiatic garden beetles can be made with the key of Ritcher (1966).
    [Show full text]