Chapter 6 External Memory Computer Organization and Architecture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Storage & Accessories Product Catalogue
Storage and Accessories Product Catalogue www.verbatim.com ABOUT VERBATIM Verbatim is a group company of Mitsubishi Chemical, one of the world’s largest chemical companies. For almost 50 years, the Verbatim brand has been at the forefront of the evolution in data storage technology and remains one of the most recognisable and respected names in the industry. Not only is Verbatim the world’s No 1 supplier of optical media (Blu-ray, DVD and CD), it also markets external hard drive storage solutions, SSDs, USB drives, memory cards, and a wide range of related accessories. The company has a strong reputation as a trusted global supplier providing quality products backed up by a fast and reliable service. Verbatim also has a significant presence in the LED lighting market, where it develops and sells a wide range of LED lamps and luminaires for offices, hotels, restaurants and domestic use. Many of the lighting products have been developed by the Mitsubishi Chemical R&D team, resulting in LEDs with world class thermal management, high colour rendering and low glare. Another Verbatim business category to have benefited from this development expertise is 3D Printing, where Verbatim has recently introduced a range of high quality filaments incorporating unique materials from Mitsubishi Chemical. Further information on these two exciting business categories can be found on www.verbatim.com. OPTICAL MEDIA MDisc .................................4 Blu-ray ................................5 DVD ..................................5 CD ....................................6 Professional Optical Media ...............7 Optical Writers .........................8 CD/DVD Cases .........................8 OPTICAL FLASH MEMORY MEDIA USB Drives .............................9 Solid State Drives (SSD). .12 FLASH Flash Memory Cards. -
United States Patent (10) Patent N0.: US 7,290,102 B2 Lubbers Et A]
US007290102B2 (12) United States Patent (10) Patent N0.: US 7,290,102 B2 Lubbers et a]. (45) Date of Patent: Oct. 30, 2007 (54) POINT IN TIME STORAGE COPY 5,184,281 A 2/1993 Samarov et al. 5,513,314 A 4/1996 Kandasamy et al. (75) Inventors: Clark E. Lubbers, Colorado Springs, 5,815,371 A 9/ 1998 Jeiffies et a1~ CO (US); James M. Reiser, Colorado 5,815,649 A 9/1998 Utter et al' Springs’ CO (Us); Anuja Korgaonkars 5,822,777 A 10/1998 Les-hem et al. Colorado Springs CO Randy L 5,832,222 A 11/1998 DZladosZ et al. Roberson New £30m Richeg/ FL (US)_' 5,835,700 A 11/1998 Carbonneau et al. ’ ’ ’ 5,923,876 A 7/1999 Teague Robert G- Bean, Monument, CO (Us) 5,987,622 A 11/1999 L0 Verso et al. 5,996,089 A 11/1999 Mann et a1. (73) Assignee: Hewlett-Packard Development 6,033,639 A 3/2000 Schmidt et a1, Company, LP, Houston, TX (US) (Continued) ( * ) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U-S-C- 154(1)) by 360 days- Smart Storage Inc., “SmartStor In?NetTM; Virtual Storage for Today’s E-economy,” Sep. 2000. (21) Appl. N0.: 11/081,061 _ (Contlnued) (22) Filed: Mar‘ 15’ 2005 Primary ExaminerAiary Portka (65) Prior Publication Data (57) ABSTRACT US 2005/0160243 A1 Jul. 21, 2005 A storage system permits Virtual storage of user data by Related US. Application Data implementing a logical disk mapping structure that provides (63) Continuation of application NO‘ 10/080 961 ?led on access to user data stored on physical storage media and Oct 22 2001 HOW Pat NO 6 915 392 Winch is a methods for generating point-in-time copies, or snapshots, con?nue’ltion_il’l_ an of 2'‘ li'cat’ion ’NO ’09/872 597 of logical disks. -
16-Channel DAS with 16-Bit, Bipolar Input, Dual Simultaneous Sampling
16-Channel DAS with 16-Bit, Bipolar Input, Dual Simultaneous Sampling ADC Data Sheet AD7616 FEATURES APPLICATIONS 16-channel, dual, simultaneously sampled inputs Power line monitoring Independently selectable channel input ranges Protective relays True bipolar: ±10 V, ±5 V, ±2.5 V Multiphase motor control Single 5 V analog supply and 2.3 V to 3.6 V VDRIVE supply Instrumentation and control systems Fully integrated data acquisition solution Data acquisition systems (DASs) Analog input clamp protection GENERAL DESCRIPTION Input buffer with 1 MΩ analog input impedance First-order antialiasing analog filter The AD7616 is a 16-bit, DAS that supports dual simultaneous On-chip accurate reference and reference buffer sampling of 16 channels. The AD7616 operates from a single 5 V Dual 16-bit successive approximation register (SAR) ADC supply and can accommodate ±10 V, ±5 V, and ±2.5 V true bipolar Throughput rate: 2 × 1 MSPS input signals while sampling at throughput rates up to 1 MSPS Oversampling capability with digital filter per channel pair with 90.5 dB SNR. Higher SNR performance can Flexible sequencer with burst mode be achieved with the on-chip oversampling mode (92 dB for an Flexible parallel/serial interface oversampling ratio (OSR) of 2). SPI/QSPI/MICROWIRE/DSP compatible The input clamp protection circuitry can tolerate voltages up to Optional cyclic redundancy check (CRC) error checking ±21 V. T h e AD7616 has 1 MΩ analog input impedance, regardless Hardware/software configuration of sampling frequency. The single-supply operation, on-chip Performance filtering, and high input impedance eliminate the need for 92 dB SNR at 500 kSPS (2× oversampling) driver op amps and external bipolar supplies. -
Use External Storage Devices Like Pen Drives, Cds, and Dvds
External Intel® Learn Easy Steps Activity Card Storage Devices Using external storage devices like Pen Drives, CDs, and DVDs loading Videos Since the advent of computers, there has been a need to transfer data between devices and/or store them permanently. You may want to look at a file that you have created or an image that you have taken today one year later. For this it has to be stored somewhere securely. Similarly, you may want to give a document you have created or a digital picture you have taken to someone you know. There are many ways of doing this – online and offline. While online data transfer or storage requires the use of Internet, offline storage can be managed with minimum resources. The only requirement in this case would be a storage device. Earlier data storage devices used to mainly be Floppy drives which had a small storage space. However, with the development of computer technology, we today have pen drives, CD/DVD devices and other removable media to store and transfer data. With these, you store/save/copy files and folders containing data, pictures, videos, audio, etc. from your computer and even transfer them to another computer. They are called secondary storage devices. To access the data stored in these devices, you have to attach them to a computer and access the stored data. Some of the examples of external storage devices are- Pen drives, CDs, and DVDs. Introduction to Pen Drive/CD/DVD A pen drive is a small self-powered drive that connects to a computer directly through a USB port. -
Cortex-A9 Single Core Microarchitecture
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18-600 Foundations of Computer Systems Lecture 10: “The Memory Hierarchy” John P. Shen & Gregory Kesden October 2, 2017 ➢ Required Reading Assignment: • Chapter 6 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron ➢ Recommended Reference: • Sec. 1 & Sec. 3: Bruce Jacob, “The Memory System: You Can't Avoid It, You Can't Ignore It, You Can't Fake It,” Synthesis Lectures on Computer Architecture 2009. 10/02/2017 (© John Shen) 18-600 Lecture #10 1 18-600 Foundations of Computer Systems Lecture 10: “The Memory Hierarchy” A. Memory Technologies B. Main Memory Implementation a. DRAM Organization b. DRAM Operation c. Memory Controller C. Disk Storage Technologies 10/02/2017 (© John Shen) 18-600 Lecture #10 2 From Lec #9 … Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Three Flow Paths of Superscalar Processors ➢ Wide Instruction Fetching ➢ Dynamic Branch Prediction I-cache Branch Instruction FETCH Flow Predictor Instruction ➢ Register Renaming Buffer ➢ Dynamic Scheduling DECODE ➢ Load Bypassing & Forwarding ➢ Speculative Memory Disamb. DISPATCH Integer Floating-point Media Memory Reservation Stations Memory Data EXECUTE Flow Reorder Buffer Register (ROB) Data COMMIT Flow Store D-cache Queue 10/02/2017 (© John Shen) 18-600 Lecture #10 3 From Lec #9 … Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Integrating Map Table with the ARF 9/27/2017 (©J.P. Shen) 18-600 Lecture #9 4 From Lec #9 … Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Reservation Station Implementation + info for executing instruction (opcode, ROB entry, RRF entry…) • Reservation Stations: distributed vs. -
The CLASP Application Security Process
The CLASP Application Security Process Secure Software, Inc. Copyright (c) 2005, Secure Software, Inc. The CLASP Application Security Process The CLASP Application Security Process TABLE OF CONTENTS CHAPTER 1 Introduction 1 CLASP Status 4 An Activity-Centric Approach 4 The CLASP Implementation Guide 5 The Root-Cause Database 6 Supporting Material 7 CHAPTER 2 Implementation Guide 9 The CLASP Activities 11 Institute security awareness program 11 Monitor security metrics 12 Specify operational environment 13 Identify global security policy 14 Identify resources and trust boundaries 15 Identify user roles and resource capabilities 16 Document security-relevant requirements 17 Detail misuse cases 18 Identify attack surface 19 Apply security principles to design 20 Research and assess security posture of technology solutions 21 Annotate class designs with security properties 22 Specify database security configuration 23 Perform security analysis of system requirements and design (threat modeling) 24 Integrate security analysis into source management process 25 Implement interface contracts 26 Implement and elaborate resource policies and security technologies 27 Address reported security issues 28 Perform source-level security review 29 Identify, implement and perform security tests 30 The CLASP Application Security Process i Verify security attributes of resources 31 Perform code signing 32 Build operational security guide 33 Manage security issue disclosure process 34 Developing a Process Engineering Plan 35 Business objectives 35 Process -
ENGLISH ➄ MS-DOS CD-ROM Extensions Available
CHAPTER 5 GENERAL DESCRIPTION 5.1 FEATURE SUMMARY ➀ Embedded ATAPI Interface. ➁ Automatic Loading with tray. ➂ Horizontal and Vertical Installation. (Vertical : Vertical installation type only, 12 cm Disc only) ➃ Both DVD & CD-R/RW media readable or writable ENGLISH ➄ MS-DOS CD-ROM Extensions Available. ➅ 5 1/4” Half Height Design. 5.2 SYSTEM SET UP The ATAPI Devices are selected by the Address field in the Drive Select Register. When a single Device is attached to the interface, it shall be set as Device 0. When the ATAPI Device is attached along with an ATA Mass Storage Device, the ATAPI Device will be set as Device 1 and respond as a Slave. 5.3 POWER SAVING ➀ When the drive waits for a command from the Host for more than two minutes, then the drive enters Power Save Mode. Laser and Spindle motor stop. ➁ Re-start is automatic when the Host Command is received or eject button is pushed. NOTE : • ATAPI : AT Attachment Packet Interface. • MS-DOS and MS Windows are trademarks or registered trademarks of Microsoft Corporation. • IBM PC-AT is a registered trademark of International Business Machines Corporation. A-9 CHAPTER 6 SPECIFICATION SUMMARY 6.1 PERFORMANCE ➀ Disc diameter 12cm, 8cm (CD-ROM / DVD-ROM) ➁ Disc speed CD-ROM (CAV mode) *1 8560 r/min DVD (CAV mode) 6895 r/min ➂ Data capacity CD : 703 / 797 Mbytes [ typical ] (Mode 1/ Mode 2) (79 min and 58 sec disc) DVD : 4.7 Gbytes (DVD-R) 4.7 Gbytes (Single Layer) 8.5 Gbytes (Dual Layer) 9.4 Gbytes (Single Layer Double Side) ➃ Data transfer Rate CD reading CD-ROM (CAV mode) 2597 ~ 6000 -
IS 13737 (1993): Isoinformation Technology
इंटरनेट मानक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public. “जान का अधकार, जी का अधकार” “परा को छोड न 5 तरफ” Mazdoor Kisan Shakti Sangathan Jawaharlal Nehru “The Right to Information, The Right to Live” “Step Out From the Old to the New” IS 13737 (1993): ISOInformation Technology - 130 mm Rewritable optical disk cartridges for information interchange [LITD 16: Computer Hardware, Peripherals and Identification Cards] “ान $ एक न भारत का नमण” Satyanarayan Gangaram Pitroda “Invent a New India Using Knowledge” “ान एक ऐसा खजाना > जो कभी चराया नह जा सकताह ै”ै Bhartṛhari—Nītiśatakam “Knowledge is such a treasure which cannot be stolen” IS 13737 : 1993 ISO/IEC 10089 : 1991 CONTENTS Page NationalForeword..........,..........................................‘.““““’ . (vii) 1 Scope 1 2 Conformance 1 3 Normative references 1 4 Conventions and notations 1 5 List of acronyms 2 6 Definitions 2 2 6. I case 2 6.2 Clamping Zone 6.3 -
1. Background This Paper Is About a Method for Recovering Data from Floppy Disks That Are Failing Due to “Weak Bits”
A Method for Recovering Data From Failing Floppy Disks with a Practical Example Dr. Frederick B. Cohen, Ph.D. and Charles M. Preston Fred Cohen & Associates and California Sciences Institute Abstract: As floppy disks and other similar media age, they have a tendency to lose data because of the reduction in retention of electromagnetic fields over time associated with various environmental degradation factors. In attempting to read these disks, the coding techniques used to write them can be exploited along with the proposed fault mechanisms to demonstrate that repetitions of read attempts under proper conditions yield valid data subject to specific error modes. In many cases those errors can be partially or completely reversed by analysis of read results. A practical example involving a case of substantial legal value is used as an example of the application of these methods. Keywords: weak bits, floppy disks, digital forensics, coding, field density loss, the birthday problem, error inversion 1. Background This paper is about a method for recovering data from floppy disks that are failing due to “weak bits”. It describes a repetitive read technique that has successfully recovered data from failing floppy disks in forensic cases and describes analysis of the results of such repetitive reads in terms of yielding forensically sound data values. These techniques are not new or particularly unique; however, they are not widely published and analysis necessary to support their use in legal matters has not been found elsewhere. The particular matter used as an example in this analysis involved a floppy disk that was more than 15 years old and that contained the only copy of a binary assembled version of a software program that was subject to intellectual property claims of sufficient value to warrant recovery beyond the means normally used by commercial recovery firms. -
Care and Handling of Cds and Dvds
A GUIDE FOR LIBRARIANS AND ARCHIVISTS Care and Handling of CDs and DVDs by Fred R. Byers, October 2003 Council on Library and Information Resources National Institute of Standards and Technology Care and Handling of CDs and DVDs A Guide for Librarians and Archivists by Fred R. Byers October 2003 Council on Library and Information Resources Washington, DC ii iii About the Author Fred R. Byers has been a member of the technical staff in the Convergent Information Systems Division of the Information Technology Laboratory at the National Institute of Standards and Technology (NIST) for more than six years. He works with the Data Preservation Group on optical disc reliability studies; previously, he worked on the localization of defects in optical discs. Mr. Byers’ background includes training in electronics, chemical engineering, and computer science. His latest interest is in the management of technology: he is currently attending the University of Pennsylvania and expects to receive his Executive Master’s in Technology Management (EMTM) degree in 2005. Council on Library and Information Resources The Council on Library and Information Resources is an independent, nonprofit organization dedicated to improving the management of information for research, teaching, and learning. CLIR works to expand access to information, however recorded and preserved, as a public good. National Institute of Standards and Technology Founded in 1901, the National Institute of Standards and Technology is a nonregulatory federal agency within the Technology Administration of the U.S. Department of Commerce. Its mission is to develop and promote measurement, standards, and technology to enhance productivity, facilitate trade, and improve the quality of life. -
Reliable Storage Media for Electronic Records a Guide for Government Agencies
Illinois Secretary of State October 2014 Reliable Storage Media for Electronic Records A Guide for Government Agencies Modern computer systems use a wide variety of storage media to store and access electronic data. What media is used depends on a number of factors, but cost, speed of access and ease of use are common drivers of selection decisions. Often overlooked are concerns of long-term reliability and sustainability. Electronic records are vulnerable to degradation or loss if not maintained in an appropriate storage environment which takes into consideration media reliability and guards against technological obsolescence. To say that media is reliable is to indicate that it can be trusted to preserve and provide access to data stored on it over time. While no storage medium can guarantee reliability and sustainability, certain media formats have distinct advantages over others in this regard. Understanding a media format’s strengths, weaknesses and expected life span allows IT managers to appropriately protect the data stored on that media. No storage media alone can ensure the preservation of electronic records. Selecting appropriate media is one part of a greater preservation strategy which includes using sustainable file formats, actively managing files over time, planning for future technology change and securing adequate resources to support preservation activities. The below factors should play a part in the selection of any storage media for electronic records. 1) Durability: Durability is a factor representing the ability of electronic storage media to withstand wear and environmental conditions. Corruption (data rot) can occur as the electrical charge, magnetic orientation, or physical material degrades, causing unintended changes or loss of data. -
External Memory
William Stallings Computer Organization and Architecture 6th Edition Chapter 6 External Memory Types of External Memory • Magnetic Disk —RAID —Removable • Optical —CD-ROM —CD-Recordable (CD-R) —CD-R/W —DVD • Magnetic Tape Magnetic Disk • Disk substrate coated with magnetizable material (iron oxide…rust) • Substrate used to be aluminium • Now glass —Improved surface uniformity – Increases reliability —Reduction in surface defects – Reduced read/write errors —Lower flight heights (See later) —Better stiffness —Better shock/damage resistance Read and Write Mechanisms • Recording and retrieval via conductive coil called a head • May be single read/write head or separate ones • During read/write, head is stationary, platter rotates • Write — Current through coil produces magnetic field — Pulses sent to head — Magnetic pattern recorded on surface below • Read (traditional) — Magnetic field moving relative to coil produces current — Coil is the same for read and write • Read (contemporary) — Separate read head, close to write head — Partially shielded magneto resistive (MR) sensor — Electrical resistance depends on direction of magnetic field — High frequency operation – Higher storage density and speed Inductive Write MR Read Data Organization and Formatting • Concentric rings or tracks —Gaps between tracks —Reduce gap to increase capacity —Same number of bits per track (variable packing density) —Constant angular velocity • Tracks divided into sectors • Minimum block size is one sector • May have more than one sector per block Disk Data Layout