ABSTRACT MARTIN, STANTON LOWELL. Structural

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT MARTIN, STANTON LOWELL. Structural ABSTRACT MARTIN, STANTON LOWELL. Structural Characterization of Red clover necrotic mosaic virus by Small Angle Neutron Scattering and X-ray Crystallography. (Under the direction of Dr. Steven A. Lommel.) Understanding the fundamental structure of viruses has been a key objective in the discipline of virology since its inception. X-ray crystallography, and electron microscopy were the main techniques used for probing viral structures for most of the 20th century. Neutrons were also used in some cases. Over the years the techniques have been incrementally improved to the point where it is now possible to resolve viral structures at atomic or near atomic resolution. This in turn allows investigators to apply computational techniques such as molecular dynamic simulations to predict how changes in viral dynamics may be influenced by the various environment(s) in which viruses exist. To understand function it is essential to investigate changes in viral dynamics. This work began as a purely computational project aimed at understanding the structure of RCNMV using existing data. In the course of the project it became evident that not enough raw structural data was available to make the necessary inferences, so a quest to obtain a higher resolution structure was initiated. Two separate but related techniques were utilized: X-ray crystallography and neutron scattering. Chapter one of this thesis traces the history of the science of virology from its inception, and tells the story of how the discovery of X-rays caused a convergence of the disciplines of crystallography and virology resulting in significant advances in our understanding of viral structural biology. Chapter two reports our own experience with X- rays applied to the study of RCNMV. Chapter three traces the history of the neutron sciences. Ironically, some of the most important advances in the neutron sciences were made possible because of war related research. Chapter four reports our own experience with neutron scattering. Chapter five reports some of our own successes and failures in the quest for better understanding of our virion. Our own experience with its missteps, false starts, and occasional lucky breaks, seems to mimic the experience of thousands of scientists who, despite sometimes adverse circumstances and personal failures, managed collectively to advance the knowledge of structural virology over the last 150 years. Chapter six concludes with a report on the current stage of our research and outlines some of the recent breakthroughs in technology that guide our aspirations for future investigations. Structural Characterization of Red clover necrotic mosaic virus by Small Angle Neutron Scattering and X-Ray Crystallography by Stanton Lowell Martin A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Plant Pathology Raleigh, North Carolina 2012 APPROVED BY: ____________________________ ____________________________ Steven A. Lommel Stefan Franzen Committee Chair Committee Co-Chair ____________________________ ____________________________ James A. Moyer Ignazio Carbone ____________________________ Russell D. Wolfinger ii DEDICATION To my lovely wife and my two curious children iii BIOGRAPHY Stan Martin graduated from North Carolina State University with a Master’s Degree in Bioinformatics in 2002. He worked as a Bioinformatics Computing Consultant for North Carolina State University from 2002-2012. During his tenure as a Senior Bioinformatics Computing Consultant, he enrolled in the Ph.D. program in Plant Pathology at NCSU where he studied structural virology under the direction of Dr. Steven A. Lommel. iv ACKNOWLEDGMENTS Many people contributed to the development of this thesis. Besides the committee members, the author gratefully acknowledges the contribution of members of the NCSU biochemistry department, Dr. Robert Rose, Dr. Paul Swartz, and Dr. Flora Meilleur for their assistance with the X-ray crystallography work. Dr. William Heller and Dr. Lilin He of Oak Ridge National Laboratory assisted in the neutron scattering work. Mr. Richard Guenther, and Ms. Carol George assisted in virus purification and sample preparation for both the X-ray and neutron scattering studies. Dr. Tim Sit provided invaluable advice during both the experimental and reporting phases of this work. v TABLE OF CONTENTS LIST OF TABLES ............................................................................................................. viii LIST OF FIGURES ........................................................................................................... ix CHAPTER ONE: THE DEVELOPMENT OF STRUCTURAL VIROLOGY AND X-RAY CRYSTALLOGRAPHY.................................................................................................... 1 Beginnings of the Science of Virology .................................................................. 1 Crookes Tubes and Energy Rays ........................................................................... 5 The Discovery of X-Rays ...................................................................................... 6 The Genesis of Crystallography............................................................................. 10 The Development of X-Ray Crystallography ........................................................ 12 X-ray Crystallography and Virology ..................................................................... 19 Powder Diffraction of Tobacco mosaic virus ........................................................ 20 Theoretical Advances in Structural Virology ........................................................ 22 Spherical Viruses Studied by Single Crystal Diffraction Techniques ................... 25 Solution of the Tobacco mosaic virus Structure .................................................... 30 The Discovery of Synchrotron Radiation .............................................................. 32 Virus Crystal Structures Solved Using Synchrotron Radiation ............................. 37 Advances in Structural Virology (1990-present) ................................................... 45 References Cited .................................................................................................... 51 CHAPTER TWO: CRYSTALLIZATION AND PRELIMINARY X-RAY DIFFRACTION ANALYSIS OF RED CLOVER NECROTIC MOSAIC VIRUS ......................................... 64 Abstract .............................................................................................................................. 64 Introduction to RCNMV ........................................................................................ 65 Materials and Methods ........................................................................................... 67 Virus Propagation ...................................................................................... 67 Virus Purification ....................................................................................... 67 Virus Purity Assays.................................................................................... 69 Crystallization ............................................................................................ 69 Data Collection and Processing ................................................................. 71 Results and Discussion .......................................................................................... 73 Sample Characterization ............................................................................ 73 RCNMV Crystals ....................................................................................... 75 Conclusions ............................................................................................................ 76 References Cited .................................................................................................... 78 CHAPTER THREE: THE DEVELOPMENT OF NEUTRON SCATTERING AND ITS CONTRIBUTION TO STRUCTURAL VIROLOGY ...................................................... 80 The Discovery of the Neutron................................................................................ 80 The Quest for Neutrons .......................................................................................... 82 Effect of World War II on the Development of Neutron Sciences ........................ 83 Nuclear Reactors Used in Science ......................................................................... 88 Application of Neutron Sciences to Biology ......................................................... 91 Neutron Scattering and Virology ........................................................................... 93 References Cited .................................................................................................... 96 vi CHAPTER FOUR: THE INTERNAL STRUCTURE OF THE RED CLOVER NECROTIC MOSAIC VIRUS AND THE ROLE OF DIVALENT CATIONS IN THE VIRUS LIFECYCLE ...................................................................................................................... 99 Abstract .................................................................................................................. 100 Introduction ............................................................................................................ 101 Results .................................................................................................................... 106 Discussion .............................................................................................................
Recommended publications
  • Survey of Swine Disease, Management and Biosecurity Practices of Hawai‘I Swine Farms
    SURVEY OF SWINE DISEASE, MANAGEMENT AND BIOSECURITY PRACTICES OF HAWAI‘I SWINE FARMS A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ANIMAL SCIENCE DECEMBER 2018 By Brittany Amber Castle Thesis Committee: Halina Zaleski, Chairperson Jenee Odani Rajesh Jha Keywords: Swine, Hawai‘i, agriculture ACKNOWLEDGEMENTS I would like to express my deepest gratitude to Dr. Zaleski, my advisor and chair, for her patient guidance and earnest encouragement. Also, thank you for asking for the hard questions which helped me widen my research and thinking. I could not have imagined a better advisor and mentor during my master’s program. I would like to offer my special thanks to the rest of my thesis committee, Dr. Odani and Dr. Jha, for their insightful comments, encouragement, and useful critique of this research. I would like to thank Naomi Ogasawara, the previous graduate student who started this project and who helped lay the groundwork for everything I did. I am particularly grateful for the assistance given to me by Travis Heskett, Laura Ayers, and all the employees of the Hawai‘i Department of Agriculture that provided endless knowledge and my samples for this project. I would like to thank Dr. Fabio Vannucci and the University of Minnesota Veterinary Diagnostic Laboratory their support and sample analysis. Finally, I wish to thank my family and friends for their support, love, and encouragement throughout my study. ii ABSTRACT Although swine diseases and parasites cause significant losses to producers in Hawai‘i, limited information is available on changing disease patterns and related farm practices.
    [Show full text]
  • Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography
    Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography Workshop at the 2017 NSLS-II and CFN Users’ Meeting, Brookhaven National Laboratory, Upton, NY, May 15, 2017 Organizers: Michael Wall, [email protected] (LANL), Robert Sweet, [email protected] (NSLS-II, BNL), Nozomi Ando, [email protected] (Princeton University), James S. Fraser, [email protected] (University of California, San Francisco), George N. Phillips, Jr., [email protected] (Rice University) X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins. Leading researchers in diffuse scattering gathered May 15, 2017 for a one-day workshop at the NSLS-II Users’ Meeting. A major focus of the workshop was to provide a roadmap to the acquisition of reliable data by surveying measurement methods and discussing the increase in measurement accuracy enabled by improved detectors, experimental methods, and data integration. Another major focus was to survey examples of information that can be extracted about the behavior of biomolecules that would guide the thinking of biochemists and biologists. A number of talks addressed the measurement of diffuse-scattering data and advances in the modeling of the data in terms of conformational variation. Below we give a short synopsis of each talk, and at the end an analysis of the results of the workshop in total.
    [Show full text]
  • Seneca Valley Virus
    SENECA VALLEY VIRUS Prepared for the Swine Health Information Center By the Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University DRAFT January, 2016 SUMMARY Etiology • Seneca Valley virus (SVV, also known as Senecavirus A) is a small, non-enveloped picornavirus discovered incidentally in 2002 as a cell culture contaminant. • Only a single species is classified in the genus Senecavirus. The family Picornaviridae also contains foot- and-mouth disease virus (FMDV) and swine vesicular disease virus (SVDV). Cleaning and Disinfection • The efficacy of most disinfectants against SVV is not clearly known. Because vesicular diseases are clinically indistinguishable, disinfection protocols for FMDV should be followed even if SVV is suspected. This includes use of: sodium hydroxide, sodium carbonate, 0.2% citric acid, aldehydes, and oxidizing disinfectants including sodium hypochlorite. • Below are EPA-approved disinfectants USDA lists effective for FMD on page 30 http://www.aphis.usda.gov/animal_health/emergency_management/downloads/fad_epa_disinfectants.pdf. Be sure to follow labeled directions. EPA Reg. No. Product Name Manufacturer Active Ingredient(s) 1677-129 Oxonia Active Ecolab, Inc. Hydrogen peroxide Peroxyacetic acid 6836-86 Lonza DC 101 Lonza, Inc. Alkyl dimethyl benzyl ammonium chloride Didecyl dimethyl ammonium chloride Octyl decyl dimethyl ammonium chloride Dioctyl dimethyl ammonium chloride 10324-67 Maquat MQ615-AS Mason Chemical Company Alkyl dimethyl benzyl ammonium chloride Didecyl dimethyl ammonium chloride Octyl decyl dimethyl ammonium chloride Dioctyl dimethyl ammonium chloride 70060-19 Aseptrol S10-TAB BASF Catalysts, LLC Sodium chlorite Sodium dichloroisocyanurate dehydrate 70060-30 Aseptrol FC-TAB BASF Catalysts, LLC Sodium chlorite Sodium dichloroisocyanurate dehydrate 71654-6 Virkon S E.I.
    [Show full text]
  • Mathematical Virology Reidun Twarock
    INFERENCE / Vol. 5, No. 3 Mathematical Virology Reidun Twarock ymmetry is ubiquitous in nature. It occurs in icosahedron from, 4, 8, and 20 equilateral triangles, respec- snowflakes, crystals, and molecules; and it is cen- tively. tral to our understanding of subatomic particles. Both the icosahedron and its dual, the dodecahedron, SAlthough the importance of symmetry in chemistry and possess icosahedral symmetry, and together they com- physics is widely appreciated, its significance in biology prise the largest rotational symmetry group in three is often underestimated. Viruses are notable examples of dimensions.3 Given a set of identical building blocks biological systems in which symmetry plays a pivotal role. under a repeating pattern of assembly, it is an icosahe- Mathematical techniques directed at understanding their drally symmetric shape that optimizes container volume. structure and symmetry have a transformative potential Since viruses are under selective pressure to package their both within virology and biology as a whole. genetic material efficiently, it is no surprise that evolution has forced their convergence to icosahedrally symmetric iral genomes are packaged in protein containers shapes. known as viral capsids. These containers function like Trojan horses, facilitating the release of the nlike other types of rotational symmetries in viralV genome into host cells and providing protection from three dimensions, icosahedral symmetry is non- host defense mechanisms between rounds of infection. In crystallographic: it is not possible to tessellate a their simplest form, viral capsids are less than 20 nano- Uthree-dimensional physical space using a single icosahe- meters (nm) in diameter and encapsulate short genomic drally symmetric shape without creating gaps or overlaps.
    [Show full text]
  • ) Anguilla Anguilla Isolate from a Diseased European Eel
    Characterization of a Novel Picornavirus Isolate from a Diseased European Eel ( Anguilla anguilla) Dieter Fichtner, Anja Philipps, Marco Groth, Heike Schmidt-Posthaus, Harald Granzow, Malte Dauber, Matthias Platzer, Sven M. Bergmann, Daniela Schrudde, Andreas Sauerbrei and Roland Zell J. Virol. 2013, 87(19):10895. DOI: 10.1128/JVI.01094-13. Downloaded from Published Ahead of Print 24 July 2013. Updated information and services can be found at: http://jvi.asm.org/content/87/19/10895 http://jvi.asm.org/ These include: REFERENCES This article cites 47 articles, 20 of which can be accessed free at: http://jvi.asm.org/content/87/19/10895#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new on October 28, 2013 by Friedrich-Loeffler-Institut articles cite this article), more» Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Characterization of a Novel Picornavirus Isolate from a Diseased European Eel (Anguilla anguilla) Dieter Fichtner,a Anja Philipps,b* Marco Groth,c Heike Schmidt-Posthaus,d Harald Granzow,a Malte Dauber,e Matthias Platzer,c Sven M. Bergmann,a Daniela Schrudde,a Andreas Sauerbrei,b Roland Zellb Institute of Infectology, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germanya; Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Jena, Germanyb; Genome Analysis, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germanyc; Centre for Fish and Wildlife Health, Institute of Animal Pathology, University of Bern, Bern, Switzerlandd; Institute for Virus Diagnostics, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germanye A novel picornavirus was isolated from specimens of a diseased European eel (Anguilla anguilla).
    [Show full text]
  • Senecavirus A- a Study in Immunogenicity, Seroprevalence, Pathogenesis, and Transmission Elizabeth Rose Houston Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Senecavirus A- a study in immunogenicity, seroprevalence, pathogenesis, and transmission Elizabeth Rose Houston Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Veterinary Medicine Commons, and the Virology Commons Recommended Citation Houston, Elizabeth Rose, "Senecavirus A- a study in immunogenicity, seroprevalence, pathogenesis, and transmission" (2019). Graduate Theses and Dissertations. 17209. https://lib.dr.iastate.edu/etd/17209 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Senecavirus A- a study in immunogenicity, seroprevalence, pathogenesis, and transmission by Elizabeth Houston A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Veterinary Preventive Medicine Program of Study Committee: Pablo Piñeyro, Major Professor James Roth Eric Burrough Luis Giménez-Lirola The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible
    [Show full text]
  • Physics of Viral Dynamics
    REVIEWS Physics of viral dynamics Robijn F. Bruinsma1, Gijs J. L. Wuite2 and Wouter H. Roos 3 ✉ Abstract | Viral capsids are often regarded as inert structural units, but in actuality they display fascinating dynamics during different stages of their life cycle. With the advent of single-particle approaches and high-resolution techniques, it is now possible to scrutinize viral dynamics during and after their assembly and during the subsequent development pathway into infectious viruses. In this Review, the focus is on the dynamical properties of viruses, the different physical virology techniques that are being used to study them, and the physical concepts that have been developed to describe viral dynamics. Capsids Humans and other animals, as well as plants, are plagued and new methods of analysis and numerical modelling. Protein shells that surround the by infections caused by viruses. These are parasites that We first review some of the dynamic methods that viral genome. cannot reproduce by themselves and that are incapable are being applied to study the assembly of empty viral of metabolic activity. Instead, after viruses infect cells, capsids, then focus on the role of genome molecules Triangulation numbers Classification system, they alter cellular molecular machinery so that it pro- (RNA/DNA) during assembly, followed by a discussion developed by Caspar and duces new viruses, which are then released into the envi- of studies of the steady-state dynamics of assembled Klug, for icosahedral viruses. ronment. This sequence of events, the viral life cycle, is viruses. BOx 2 summarizes several experimental tech- T-numbers are integers and schematically discussed in BOx 1.
    [Show full text]
  • DNA Could Trap Viruses Irfan* Department of Microbiology, King Saud University, Saudi Arabia
    & Bioch ial em OPEN ACCESS Freely available online b ic ro a c l i T M e f c h o n l o a Journal of n l o r g u y o J ISSN: 1948-5948 Microbial & Biochemical Technology Short Communication DNA could trap viruses Irfan* Department of Microbiology, King Saud University, Saudi Arabia INTRODUCTION also be used as a type of "virus trap." If they we have a tendency tore to be coated with virus-binding molecules at the inside, they have To date, there aren't any powerful antidotes towards maximum to be prepared to bind viruses tightly and consequently be capable virus infections. Scientists have now evolved a brand new approach: of take them out of circulation. For this, however, the hole our they engulf and neutralize viruses with nano-pills tailor-made from bodies might even should very own sufficiently large openings thru genetic cloth the use of the DNA origami method. The approach that viruses gets into the shells. has already been examined towards hepatitis and adeno-related viruses in mobileular cultures. It might also show a hit towards "None of the gadgets that we had engineered victimization corona viruses. deoxyribonucleic acid artwork generation at that factor might were prepared to engulf a whole virus -- they had been simply too small," There are antibiotics towards risky bacteria, but few antidotes to deal with acute infectious agent infections. Some infections can says Hendrik Dietz in retrospect. "Building solid hole our bodies of be averted via way of means of vaccination however growing new this length changed into a huge challenge.
    [Show full text]
  • Abstracts of Special Session Presentations Biology of Plant Pathogens
    Abstracts of Special Session Presentations Biology of Plant Pathogens Aquatic Plant Pathology Development of an indigenous pathogen for management of the submersed freshwater macrophyte Hydrilla verticillata. J. F. SHEARER. Fungal pathogens: Their role in the ecology of floating and submerged U.S. Army Corps of Engineers, Research and Development Center, freshwater plants. R. CHARUDATTAN. Plant Pathology Dept., University Vicksburg, MS. Phytopathology 95:S120. Publication no. P-2005-0003-SSA. of Florida, Gainesville, FL. Phytopathology 95:S120. Publication no. P-2005- Hydrilla verticillata 0001-SSA. (L.f.) Royle (hydrilla) is considered one of the three most important aquatic weeds in the world. Plant infestations can impede navi- Freshwater plants encompass a diverse group of morphologically and gation, clog drainage or irrigation canals, affect water intake systems, interfere taxonomically dissimilar plants adapted to life in a highly unstable habitat. with recreational activities, and disrupt wildlife habitats. The plant is an These plants can be emergent and free-floating, emergent and rooted, fully excellent competitor in aquatic habitats because it can photosynthesize at low submerged and free-floating, or fully submerged and rooted. A variety of light levels, has wide environmental tolerances, and produces several types of fungi in the Oomycota, Chytridiomycota, Anamorphic fungi, Ascomycota, extended survival propagules. The indigenous fungal pathogen, Mycolepto- and Basidiomycota cause diseases on these plants. While pathogenic fungi can discus terrestris (Gerd.) Ostazeski, (Mt) has shown significant potential for regulate plant population density by limiting plant growth and seedling use as a bioherbicide for management of hydrilla. Liquid fermentation recruitment, opportunistic parasites accelerate senescence of older growth and methods have been developed and patented that yield stable, effective recycle nutrients from dead tissues.
    [Show full text]
  • Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis
    Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis, Weakness, and Paralysis among Weaned Pigs, Hungary Ákos Boros, Mihály Albert, Péter Pankovics, Hunor Bíró, Patricia A. Pesavento, Tung Gia Phan, Eric Delwart, Gábor Reuter A large, highly prolific swine farm in Hungary had a 2-year nervous system (CNS) involvement were reported re- history of neurologic disease among newly weaned (25- to cently in mink, human, bovine, ovine, and swine hosts 35-day-old) pigs, with clinical signs of posterior paraplegia (the latter in certain cases of AII type congenital tremors) and a high mortality rate. Affected pigs that were necropsied (5,6,12–14). Most neuroinvasive astroviruses belong to had encephalomyelitis and neural necrosis. Porcine astrovi- the Virginia/Human-Mink-Ovine (VA/HMO) phyloge- rus type 3 was identified by reverse transcription PCR and in netic clade and cluster with enteric astroviruses identi- situ hybridization in brain and spinal cord samples in 6 ani- mals from this farm. Among tissues tested by quantitative RT- fied from asymptomatic or diarrheic humans and animals PCR, the highest viral loads were detected in brain stem and (15,16). Recent research shows that pigs harbor one of the spinal cord. Similar porcine astrovirus type 3 was also detect- highest astrovirus diversities among mammals examined ed in archived brain and spinal cord samples from another 2 (3,15,20). Porcine astroviruses (PoAstVs) were identified geographically distant farms. Viral RNA was predominantly mainly from diarrheic fecal specimens, less commonly restricted to neurons, particularly in the brain stem, cerebel- from respiratory specimens, although the etiologic role of lum (Purkinje cells), and cervical spinal cord.
    [Show full text]
  • An Emerging Pathogen Causing Vesicular Disease in Pigs
    Med. Weter. 2019, 75 (6), 323-328 DOI: dx.doi.org/10.21521/mw.6200 323 Artykuł przeglądowy Review Senecavirus A: An emerging pathogen causing vesicular disease in pigs WIESŁAW NIEDBALSKI, ANDRZEJ FITZNER Department of Foot-and-Mouth Disease, National Veterinary Research Institute, Wodna 7, 98-220 Zduńska Wola, Poland Received 23.08.2018 Accepted 26.10.2018 Niedbalski W., Fitzner A. Senecavirus A: An emerging pathogen causing vesicular disease in pigs Summary Senecavirus A (SVA) is a single representative species of the Senecavirus genus within the family Picornaviridae. This review presents the current knowledge regarding SVA epidemiology, transmission, pathogenesis, clinical signs, differential diagnosis and control measures. SVA is not debilitating, but significant because of its resemblance to acute, highly contagious and economically devastating viral diseases, such as FMD. The incubation period of SVA is 4-5 days, the viremia period is short, lasting 3 to 10 days post infection (dpi). SVA shedding lasts up to 28 days. SVA can be shed by oral and nasal secretions and by faeces. The virus excretion peak occurs between 1 and 5 dpi, especially in oral secretions, which contain higher virus loads relative to nasal secretions and faeces. SVA lesions are found most frequently on the snout, lips and tongue, as well as on hooves, specifically, on coronary bands, dewclaws, hoof pads and in interdigital space. The vesicles quickly rupture to form ulcers that may be covered by serofibrinous exudates. The ulcers begin to repair in 7 days, and the regeneration of epithelium is usually complete within 2 weeks. Since clinical lesions induced by SVA are indistinguishable from those observed in other vesicular diseases of swine, accurate and reliable laboratory differential diagnosis is critical to the precise identification of the infectious agent.
    [Show full text]
  • Symposium to Honor Eminent FSU Scientist ­ Florida State University News FLORIDA STATE UNIVERSITY NEWS the OFFICIAL NEWS SOURCE of FLORIDA STATE UNIVERSITY
    1/9/2017 Symposium to honor eminent FSU scientist ­ Florida State University News FLORIDA STATE UNIVERSITY NEWS THE OFFICIAL NEWS SOURCE OF FLORIDA STATE UNIVERSITY Symposium to honor eminent FSU scientist BY: KATHLEEN HAUGHNEY (MAILTO:[email protected]) | PUBLISHED: JANUARY 5, 2017 (HTTP://NEWS.FSU.EDU/NEWS/SCIENCE‑TECHNOLOGY/2017/01/05/SYMPOSIUM‑ HONOR‑EMINENT‑FSU‑SCIENTIST/) | 1:34 PM | SHARE: A symposium to honor a retired Florida State professor who made major contributions to the world of structural biology is attracting an unprecedented number of members of the National Academy of Sciences to Tallahassee. The Caspar Structural Biology Symposium, to be held Jan. 7‑8 at Florida State University, honors Donald Caspar, professor emeritus of biological science at Florida State, who will also turn 90 during the symposium. “Don Caspar is a legend in the structural biology field,” said Piotr Fajer, director of the Institute of Molecular Biophysics at Florida State. “All of these people coming here is a tribute to him.” The event features 15 members of the National Academy of Sciences who will discuss the latest developments in the field and technologies such as Donald Caspar, professor emeritus of biological science at Florida State x‑ray crystallography and electron microscopy. “I don’t think there’s been a conference that attracted this many academy members to Tallahassee before,” Fajer said. FSU Professor of Biophysics Kenneth Taylor, who uses electron microscopy to study the tiniest muscle filaments in the body, will also be among the speakers. Andrew Brown, author of a biography on J.D. Bernal, a pioneer in x‑ray crystallography in structural biology, will wrap up the symposium with a talk on Sunday.
    [Show full text]