Hindawi Publishing Corporation Journal of Mathematics Volume 2013, Article ID 207176, 8 pages http://dx.doi.org/10.1155/2013/207176

Research Article The Inverses of Block Toeplitz Matrices

Xiao-Guang Lv and Ting-Zhu Huang

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

Correspondence should be addressed to Xiao-Guang Lv; [email protected]

Received 30 December 2012; Accepted 26 March 2013

Academic Editor: Peter Grabner

Copyright Β© 2013 X.-G. Lv and T.-Z. Huang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the inverses of block Toeplitz matrices based on the analysis of the block cyclic displacement. New formulas for the inverses of block Toeplitz matrices are proposed. We show that the inverses of block Toeplitz matrices can be decomposed as a sum of products of block circulant matrices. In the scalar case, the inverse formulas are proved to be numerically forward stable, if the Toeplitz is nonsingular and well conditioned.

1. Introduction is nonzero, then the first and the last columns of the inverse βˆ’1 of the Toeplitz matrix are sufficient to reconstruct 𝑇 .In[6], Let an inverse formula can be obtained by the solutions of two 𝑇0 π‘‡βˆ’1 β‹…β‹…β‹… 𝑇1βˆ’π‘› equations (the so-called fundamental equations), where each [ ] [ 𝑇1 𝑇0 d 𝑇2βˆ’π‘›] right-hand side of them is a shifted column of the Toeplitz 𝑇=[ . . ] (1) [ . dd . ] matrix. Later, Ben-Artzi and Shalom [7], Labahn and Shalom . . [8], Huckle [9], Ng et al. [10], and Heinig [11]havestudied [π‘‡π‘›βˆ’1 π‘‡π‘›βˆ’2 β‹…β‹…β‹… 𝑇0 ] the Toeplitz matrix inverse formulas when the (1, 1)st entry be an 𝑛×𝑛block Toeplitz matrix with blocks of size π‘šΓ—π‘š. of the inverse of a Toeplitz matrix is zero. In [12], Cabay 𝑛 We use the shorthand 𝑇=(π‘‡π‘–βˆ’π‘—)𝑖,𝑗=1 for a block Toeplitz and Meleshko presented an efficient algorithm (NPADE) for matrix. The block Toeplitz systems 𝑇π‘₯ =𝑏 arise in a numerically computing PadeapproximantsinaweaklystableΒ΄ variety of applications in mathematics, scientific computing, fashion. As an application of NPADE, it has been shown that and engineering, for instance, image restoration problems itcanbeusedtocomputestably,inaweaksense,theinverse in image processing, numerical differential equations and of a Hankel or Toeplitz matrix. integral equations, time series analysis, and control theory [1– When π‘š>1, additional problems are encountered in 3]. If we want to solve more than one block Toeplitz linear obtaining the inverse formula of a block Toeplitz matrix. A system with the same coefficient matrix, then we usually well-known formula of Gohberg and Heinig can construct βˆ’1 solvefourorsospecialblocklinearsystemsinorderto 𝑇 ,providedthatthefirstandlastcolumnstogetherwith determine the block Toeplitz inverse formula that expresses the first and last rows of the inverse are known13 [ ]. In [14], βˆ’1 𝑇 as the sum of products of block upper and block lower a set of new formulas for the inverse of a block Hankel Toeplitz matrices. For example, Van Barel and Bultheel [4] or block Toeplitz matrix is given by Labahn et al. The gave an inverse formula for a block Toeplitz matrix and then formulas are expressed in terms of certain matrix Padeforms,Β΄ derived a weakly stable algorithm to solve a block Toeplitz which approximate a matrix power series associated with system of linear equations. The special structure of block the block . We refer the reader to [15, 16]for Toeplitz matrices has resulted in some closed formulas for the computation of Pade-HermiteΒ΄ and simultaneous PadeΒ΄ their inverses. systems in detail. In [7], Ben-Artzi and Shalom have proved In the scalar case, Gohberg and Semencul [5]haveshown that each inverse of a Toeplitz matrix can be constructed that if the (1, 1)st entry of the inverse of a Toeplitz matrix 𝑇 via three of its columns, and thus, a parametrization of the 2 Journal of Mathematics set of inverses of Toeplitz matrices is obtained. Then they equations with the same coefficient matrix 𝑇,wedecompose generalized these results to block Toeplitz matrices; see [17]. the inverses of block Toeplitz matrices as a sum of products In [18], Gemignani has shown that the representation of of block circulant matrices. From the point of view of the βˆ’1 𝑇 relies upon a strong structure-preserving property of computation, the formulas involving block circulants instead the Schur complements of the nonsingular leading principal of block upper or lower Toeplitz matrices are more attractive. submatrices of a certain generalized Bezoutian of matrix For example, in the scalar case, matrix-vector product by polynomials. a is roughly twice as fast as matrix-vector In this paper, we focus our attention to the inverses of product by a triangular Toeplitz matrix of the same size. block Toeplitz matrices with the help of the block cyclic In fact, the efficient multiplication of a Toeplitz matrix and displacement. In [19], Ammar and Gader have shown that a vector is achieved by embedding the Toeplitz matrix in the inverse of a Toeplitz matrix can be represented as sums of a circulant matrix of twice the size. The derivation of the products of lower triangular Toeplitz matrices and circulant formulas we present is based on the factor cyclic displacement matrices. The derivation of their results is based on the of block matrices. Later on, we give some corollaries about the idea of cyclic displacement structure. In [20], Gohberg and representations of the inverse matrices. The results generalize Olshevsky also obtained new formulas for representation of theGohberg-Olshevsky,Heinig-Rost,andBen-Artzi-Shalom matrices and their inverses in the form of sums of products of formulas. In the scalar case, we consider the stability of factor circulant, which are based on the analysis of the factor theToeplitzmatrixinverseformulas.Weshowthatifthe cyclic displacement of matrices. The results in applications to Toeplitz matrix is nonsingular and well conditioned, the Toeplitz matrices generalized the Gohberg-Semencul, Ben- inverse formulas are numerically forward stable. Artzi-Shalom, and Heinig-Rost formulas. Motivated by a We summarize briefly the content of our paper. Section 2 number of related results on Toepltiz inverse formulas, we reviews some fundamental concepts such as the factor cyclic study the representation of the inverses of block Toeplitz displacement structure of a and every square matrices. Since block Toeplitz matrices have similar displace- block matrix can be written as a sum of products of block ment structure as Toeplitz matrices, all results about Toeplitz circulant matrices. In Section 3, we decompose the inverses matrices extend quite naturally to block Toeplitz matrices. of block Toeplitz matrices as a sum of products of block At first, for purposes of presentation, we adopt some circulant matrices by solving four equations with the same notations that will be used throughout the paper. We denote coefficient matrix 𝑇. Some corollaries are also obtained in the π‘šΓ—π‘š by πΌπ‘š. 𝐸𝑖 (𝑖=0,1,...,π‘›βˆ’1)means this section. Wediscuss the stability of the inverse formulas of amatrixofdimensionπ‘šπ‘› Γ—π‘š in which the (𝑖 + 1)-th block scalar Toeplitz matrices in Section 4. Some remarks are given is the identity matrix πΌπ‘š, and the remaining blocks are all in Section 5. zeros. 𝐽 is called an 𝑛×𝑛block reverse identity matrix, if 𝐽 has the identity matrices on the block antidiagonal and zero elsewhere. Let 𝐴=(𝐴𝑖𝑗 ) be a block matrix or a block vector 2. The Factor Block Cyclic Displacement π‘šΓ—π‘š 𝐴󸀠 =(𝐴 ) with block size of . 𝑗𝑖 is said to be the block The inverse formulas derived in the next section depend on 𝐴 𝐢(π‘Ÿ, πœ‘) πœ‘ transpose of .By we denote the block -circulant some results of the factor block cyclic displacement of a block π‘Ÿ=[π‘Ÿ,...,π‘Ÿ ]σΈ€  with the first column 0 π‘›βˆ’1 with a block size of matrix. The focus of this section lies upon the definitions and π‘šΓ—π‘š;thatis,thematrixofformisdefinedby the properties of the factor block cyclic displacement of a block matrix. We start with the definition of the factor block π‘Ÿ πœ‘π‘Ÿ β‹…β‹…β‹… β‹…β‹…β‹… πœ‘π‘Ÿ 0 π‘›βˆ’1 1 cyclic displacement. [ . ] [ . ] Let π‘πœ‘ be the block πœ‘-cyclic lower defined by [ π‘Ÿ1 π‘Ÿ0 πœ‘π‘Ÿπ‘›βˆ’1 d . ] [ ] [ . . ] . [ . π‘Ÿ1 dd . ] (2) [ ] 0 β‹…β‹…β‹… β‹…β‹…β‹… 0 πœ‘πΌ [ . ] . dddπœ‘π‘Ÿπ‘›βˆ’1 [ ] [𝐼0dd 0 ] [π‘Ÿπ‘›βˆ’1 β‹…β‹…β‹… β‹…β‹…β‹… π‘Ÿ1 π‘Ÿ0 ] [ ] [ . ] [0𝐼dd . ] . (3) In this work, new formulas for the inverses of block [. . ] [. ddd . ] Toeplitz matrices are proposed. As is well known, any block . . 0β‹…β‹…β‹…0 𝐼 0 Toeplitz matrix 𝑇 has a property of block persymmetry, that [ ] σΈ€  is, 𝐽𝑇 𝐽=𝑇,where𝐽 is the block reverse identity matrix. Unfortunately, the matrix inverse does not hold this property. The block πœ‘-cyclic displacement of an 𝑛×𝑛block matrix 𝐴 This can explain why the Gohberg-He˘ınig formula [13] needs with blocks size of π‘šΓ—π‘šis defined as the first and last columns together with the first and last rows of the inverse for constructing the inverse. For a block 𝑇 𝑇 𝑇 σΈ€  Toeplitz matrix ,let 𝑐 and 𝑠 be its block circulant and βˆ‡πœ‘ (𝐴) =π΄βˆ’π‘πœ‘π΄π‘1/πœ‘,πœ‘=0.ΜΈ (4) block skew-circulant parts, respectively. The representation 𝑇=𝑇𝑐 ⋅𝐼+𝑇𝑠 ⋅𝐼shows that there will exist block circulant matrices 𝐴𝑖 (𝑖 = 1, 2) and 𝐡𝑖 (𝑖 = 1, 2) such that The number 𝛼= βˆ‡1(𝐴) is referred to as block πœ‘-cyclic βˆ’1 𝑇 =𝐴1𝐡1 +𝐴2𝐡2.Inthispaper,bysolvingfourlinear displacement rank of the block matrix 𝐴.Sinceallblock Journal of Mathematics 3

Toeplitz matrices have a special structure, it is not difficult Proof. From computing the block πœ‘-cyclic displacement of to obtain that matrix 𝐴 defined by (4), it then follows that

π‘‚π‘‡βˆ’1 βˆ’πœ‘π‘‡π‘›βˆ’1 β‹…β‹…β‹… 𝑇1βˆ’π‘› βˆ’πœ‘π‘‡1 βˆ‡ (𝐴) =βˆ‡ (𝐢 ( , πœ‘)) [ 1 ] πœ‘ πœ‘ lr [ 𝑇 βˆ’ 𝑇 𝑂 β‹…β‹…β‹… 𝑂 ] [ 1 1βˆ’π‘› ] 𝛼 σΈ€  [ πœ‘ ] πœ‘ 1 βˆ‡ (𝑇) = [ ] + βˆ‡ ( βˆ‘ 𝐢(𝑔 ,πœ“)⋅𝐢(β„Ž , ) ) πœ‘ [ . . . ] πœ‘βˆ’πœ“ πœ‘ π‘š π‘š πœ‘ [ . . . ] π‘š=1 (10) [ 1 ] 𝑇 βˆ’ 𝑇 𝑂 β‹…β‹…β‹… 𝑂 𝛼 σΈ€  π‘›βˆ’1 πœ‘ βˆ’1 πœ‘ 1 [ ] = βˆ‘ βˆ‡πœ‘ (𝐢 π‘š(𝑔 ,πœ“)⋅𝐢(β„Žπ‘š, ) ). πœ‘βˆ’πœ“π‘š=1 πœ‘ 𝑇𝑛 βˆ’π‘‡ σΈ€  [ 1 ] 𝑛 [ 𝑇 βˆ’ 𝑇 ] πœ‘ 𝐴 [ ] [ 1 1βˆ’π‘› ] Note that the -cyclic displacement of any block matrix [π‘‡βˆ’1 βˆ’πœ‘π‘‡π‘›βˆ’1] [ πœ‘ ] πœ‘ =𝐸 β‹… [ ] + [ ] ⋅𝐸󸀠 , is a linear operator and two block -circulant matrices can 0 [ . ] [ . ] 0 . [ . ] commute; we obtain [ 1 ] [ 𝑇1βˆ’π‘› βˆ’πœ‘π‘‡1 ] 𝛼 σΈ€  π‘‡π‘›βˆ’1 βˆ’ π‘‡βˆ’1 πœ‘ 1 [ πœ‘ ] βˆ‡ (𝐴) = βˆ‘ βˆ‡ (𝐢 (𝑔 ,πœ“))⋅𝐢(β„Ž , ) . πœ‘ πœ‘βˆ’πœ“ πœ‘ π‘š π‘š πœ‘ (11) (5) π‘š=1 πœ‘ πœ“ where 𝑇𝑛 may be an arbitrary π‘šΓ—π‘šmatrix. Therefore, the πœ‘- By computing the block -cyclic displacement of block - 𝐢(𝑔 ,πœ“) π‘š cyclic displacement rank of a block Toeplitz matrix is at most cyclic matrix π‘š for all ,wehave 2π‘š. πœ‘ 𝛼 1 σΈ€  By straightforward computations, it is easy to see that the βˆ‡ (𝐴) = βˆ‘ βˆ‡ (𝐢 (𝑔 ,πœ“))⋅𝐢(β„Ž , ) βˆ‡ (𝐴) = 0 𝐴 πœ‘ πœ‘ πœ‘ π‘š π‘š equality πœ‘ holds if and only if is a block -circulant πœ‘βˆ’πœ“π‘š=1 πœ‘ matrix. For any invertible block matrix 𝐴 there exists a simple πœ‘ 𝛼 1 σΈ€  interrelation between the block -cyclic displacement of the = βˆ‘ 𝑔 ⋅𝐸󸀠 ⋅𝐢(β„Ž , ) π΄βˆ’1 πœ‘ 𝐴 π‘š 0 π‘š (12) inverse matrix and the block -cyclic displacement of . π‘š=1 πœ‘ This connection is given by 𝛼 σΈ€  σΈ€  1 βˆ’1 βˆ’1 βˆ’1 σΈ€  βˆ’ βˆ‘ 𝐸0 β‹… π‘”Μƒπ‘š ⋅𝐢(β„Žπ‘š, ) , βˆ‡πœ‘ (𝐴 )=𝐴 βˆ‡πœ‘ (𝐴) π‘πœ‘π΄ 𝑍 . 1/πœ‘ (6) π‘š=1 πœ‘

From the previous equation, we know that the block πœ‘-cyclic 𝑔̃󸀠 π‘š = 1,...,𝛼 βˆ’1 where π‘š for are the first row of the displacement rank of the inverse matrix 𝐴 isthesameas σΈ€  block πœ‘-circulant matrices 𝐢(π‘”π‘š,πœ‘),respectively.Since𝐸0 β‹… that of 𝐴.Moreover,thepreviousequationalsoallowsusto σΈ€  σΈ€  𝐢(β„Žπ‘š,1/πœ‘) =β„Ž , it is easy to observe that the sum of the make use of the block πœ‘-cyclic displacement technique for the π‘š 𝛼 βˆ‘π›Ό 𝑔 β„ŽσΈ€  calculation of the inverse matrix. We will study the inverses first terms in the previous equality is equal to π‘š=1 π‘š π‘š. of block Toeplitz matrices with the help of the block cyclic In the following, we need to show that the sum of the last 𝛼 terms in the previous equality is equal to the . displacement. We need the following result. 𝑛 βˆ’1 σΈ€  Using the fact that π‘πœ‘ =πœ‘πΌand π‘πœ‘ =𝑍1/πœ‘,wecheck Theorem 1. If the block πœ‘-cyclic displacement of 𝐴 is given as π‘›βˆ’1 the sum π‘˜ βˆ’1 βˆ’1 βˆ’1 βˆ’π‘˜ βˆ‘π‘πœ‘ (𝑇 βˆ’π‘πœ‘π‘‡ π‘πœ‘ )π‘πœ‘ =0. (13) 𝛼 σΈ€  σΈ€  π‘˜=0 π΄βˆ’π‘πœ‘π΄π‘1/πœ‘ = βˆ‘ π‘”π‘šβ„Žπ‘š, (7) π‘š=1 Thus we obtain where 𝑔𝑖 and β„Žπ‘– (𝑖 = 1,...,π‘š) are 𝑛×1block vectors with π‘›βˆ’1 π‘˜ βˆ’1 βˆ’1 βˆ’1 βˆ’π‘˜ blocks of size π‘šΓ—π‘š,then βˆ‘π‘πœ‘ (𝑇 βˆ’π‘πœ‘π‘‡ π‘πœ‘ )π‘πœ‘ π‘˜=0 πœ‘ 𝛼 1 σΈ€  𝐴= ( ,πœ‘)+ ( βˆ‘ (𝑔 ,πœ“)β‹… (β„Ž , ) ) π‘›βˆ’1 𝛼 C lr πœ‘βˆ’πœ“ C π‘š C π‘š πœ‘ (8) π‘˜ σΈ€  βˆ’π‘˜ π‘š=1 = βˆ‘ βˆ‘ π‘πœ‘π‘”π‘šβ„Žπ‘šπ‘πœ‘ π‘˜=0 π‘š=1 (14) or 𝛼 1 σΈ€  𝛼 σΈ€  = βˆ‘ 𝐢(𝑔 ,πœ‘)⋅𝐢(β„Ž , ) πœ“ 1 π‘š π‘š πœ‘ 𝐴=C (𝑙𝑐, πœ‘) + ( βˆ‘ C (π‘”π‘š,πœ‘)β‹…C(β„Žπ‘š, ) ), (9) π‘š=1 πœ“βˆ’πœ‘ π‘š=1 πœ“ =0. where C(π‘™π‘Ÿ, πœ‘) is a block πœ‘-circulant matrix with the same last 𝐴 (𝑙𝑐, πœ‘) πœ‘ 𝛼 σΈ€  σΈ€  𝛼 block row as that of and C is the block -circulant By comparing βˆ‘π‘š=1 𝐸0 β‹…π‘”Μƒπ‘š ⋅𝐢(β„Žπ‘š,1/πœ‘) with βˆ‘π‘š=1 𝐢(π‘”π‘š,πœ‘)β‹… 𝐴 σΈ€  𝛼 σΈ€  σΈ€  matrix with the same last block column as that of . 𝐢(β„Žπ‘š,1/πœ‘) ,weobtainβˆ‘π‘š=1 𝐸0 β‹… π‘”Μƒπ‘š ⋅𝐢(β„Žπ‘š,1/πœ‘) =0. 4 Journal of Mathematics

Finally, we discuss why 𝐢(lr,πœ‘) is the block πœ‘-circulant Substituting (16)and(18) into the previous equality and with the same last block rows as the matrix 𝐴.Weknowthat computing, we obtain the last block row of the matrix 𝐢(π‘”π‘š,πœ“) is independent of 𝛼 the number πœ“.Inviewofβˆ‘π‘š=1 𝐢(π‘”π‘š,πœ‘)⋅𝐢(β„Žπ‘š,1/πœ‘)=0,the π‘₯0 last block rows of the matrix 𝐴 and C (lr,πœ‘)are the same. [ ] [ π‘₯1 ] Equation (8) is now completely proved. A similar argu- βˆ‡ (π‘‡βˆ’1)=πœ‘[ ] πœ‘ [ . ] ment shows that (9)canbeobtainedfrom(7). . [π‘₯π‘›βˆ’1] 3. Inverses of Block Toeplitz Matrices 1 1 βˆ’1 σΈ€  β‹…(π‘‡π‘›βˆ’1 βˆ’ π‘‡βˆ’1,...,𝑇1 βˆ’ 𝑇1βˆ’π‘›,𝑇𝑛)𝑇 𝑍1/πœ‘ In this section, we focus our attention to new formulas on the πœ‘ πœ‘ inverses of block Toeplitz matrices. It is easy to find that any 𝑒0 block Toeplitz matrix has a property of block persymmetry, [ ] 𝐽𝑇󸀠𝐽=𝑇 𝐽 [ 𝑒1 ] that is, ,where is the block reverse identity matrix. βˆ’πœ‘[ ] β‹…(0,...,0,𝐼 )β‹…π‘‡βˆ’1𝑍󸀠 [ . ] π‘š 1/πœ‘ Unfortunately, the matrix inverse does not have this property. . ˘ This can explain why the Gohberg-HeΔ±nig formula [13] needs [π‘’π‘›βˆ’1] the first and last block columns together with the first and last blockrowsoftheinversetoconstructit.UnliketheGohberg- π‘₯0 [ ] Semencul formula [5], it only needs the first and the last [ π‘₯1 ] (1, 1) = [ ] (𝑒̃ ,πœ‘π‘’Μƒ ,...,πœ‘π‘’Μƒ ) columnsoftheinverseifthe st entry of the inverse is [ . ] π‘›βˆ’1 0 π‘›βˆ’2 nonzero. . π‘₯ Let [ π‘›βˆ’1] σΈ€  𝑇(π‘₯ ,π‘₯ ,...,π‘₯ ) =𝐸, (15) 𝑒0 0 1 π‘›βˆ’1 0 [ ] [ 𝑒1 ] (π‘₯Μƒ , π‘₯Μƒ ,...,π‘₯Μƒ )𝑇=𝐸󸀠 , βˆ’ [ ] (π‘₯Μƒ ,πœ‘π‘₯Μƒ ,...,πœ‘π‘₯Μƒ ). 0 1 π‘›βˆ’1 π‘›βˆ’1 (16) [ . ] π‘›βˆ’1 0 π‘›βˆ’2 . σΈ€  [π‘’π‘›βˆ’1] 𝑇(𝑒0,𝑒1,...,π‘’π‘›βˆ’1) (21) 1 1 σΈ€  (17) =(𝑇𝑛,𝑇1 βˆ’ 𝑇1βˆ’π‘›,...,π‘‡π‘›βˆ’1 βˆ’ π‘‡βˆ’1) , πœ‘ πœ‘ Theorem 2. Let 𝑇 be a block Toeplitz matrix given by (1).If πœ‘ =0ΜΈ 1 1 (15)–(18) are solvable for some and an arbitrary matrix (𝑒̃ , 𝑒̃ ,...,𝑒̃ ) 𝑇=(𝑇 βˆ’ 𝑇 ,...,𝑇 βˆ’ 𝑇 ,𝑇 ) . 𝑇 π‘š 0 1 π‘›βˆ’1 π‘›βˆ’1 πœ‘ βˆ’1 1 πœ‘ 1βˆ’π‘› 𝑛 𝑛 of order ,then (18) (a) 𝑇 is invertible; For convenience, we will write π‘₯, π‘₯,Μƒ 𝑒 and 𝑒̃ as βˆ’1 σΈ€  σΈ€  (b) 𝑇 can be denoted as π‘₯=(π‘₯0,π‘₯1,...,π‘₯π‘›βˆ’1) , π‘₯=(Μƒ π‘₯Μƒ0, π‘₯Μƒ1,...,π‘₯Μƒπ‘›βˆ’1) , (19) 𝑒=(𝑒,𝑒 ,...,𝑒 )σΈ€ , 𝑒=(Μƒ 𝑒̃ , 𝑒̃ ,...,𝑒̃ )σΈ€ . πœ‘ 0 1 π‘›βˆ’1 0 1 π‘›βˆ’1 π‘‡βˆ’1 = ( (π‘₯, πœ“) β‹… (𝐽𝑒,Μƒ πœ‘) πœ‘βˆ’πœ“ C C From (5), (6), (15), and (17), by simple computations we (22) obtain the following equality: πœ‘βˆ’πœ“ βˆ’C (𝑒 βˆ’ 𝐸0,πœ“)β‹…C (𝐽π‘₯,Μƒ πœ‘)) , βˆ’1 βˆ’1 βˆ’1 σΈ€  πœ‘ βˆ‡πœ‘ (𝑇 )= βˆ’π‘‡ βˆ‡πœ‘ (𝑇) π‘πœ‘π‘‡ 𝑍1/πœ‘

π‘₯0 [ ] [ π‘₯1 ] πœ“( =πœ‘)ΜΈ =βˆ’[ ] where is an arbitrary number. [ . ] . Proof. (a) Assume that there exists nonzero vector 𝑝 of [π‘₯π‘›βˆ’1] dimension π‘šπ‘› such that 𝑇𝑝 =0.Thenbycomputing(16) (βˆ’π‘‡ ,𝑇 βˆ’πœ‘π‘‡ ,...,𝑇 βˆ’πœ‘π‘‡)𝑍 𝑝=0 β‹…(βˆ’π‘‡π‘›,π‘‡βˆ’1 βˆ’πœ‘π‘‡π‘›βˆ’1,...,𝑇1βˆ’π‘› βˆ’πœ‘π‘‡1) (20) and (18), we have 𝑛 βˆ’1 π‘›βˆ’1 1βˆ’π‘› 1 πœ‘ and (πΌπ‘š,0,...,0)π‘πœ‘π‘=0. These imply βˆ‡πœ‘(𝑇)π‘πœ‘π‘=0. ⋅𝑍 π‘‡βˆ’1𝑍󸀠 σΈ€  πœ‘ 1/πœ‘ Since βˆ‡πœ‘(𝑇) = π‘‡πœ‘ βˆ’π‘ 𝑇𝑍1/πœ‘,weobtainπ‘‡π‘πœ‘π‘=0.A π‘˜ similar argument shows that π‘‡π‘πœ‘π‘ = 0 (π‘˜= 2,3,...,π‘›βˆ’1). 𝑒0 [ ] π‘‡π‘π‘˜ 𝑝 = 0 (π‘˜= 0,1,...,π‘›βˆ’1) [ 𝑒1 ] Premultiplying the equalities πœ‘ βˆ’ [ ] β‹…(𝐼 ,0,...,0)⋅𝑍 π‘‡βˆ’1𝑍󸀠 . (π‘₯Μƒ , π‘₯Μƒ ,...,π‘₯Μƒ ) [ . ] π‘š πœ‘ 1/πœ‘ by 0 1 π‘›βˆ’1 , we can conclude that all elements of the . vector are equal to zero. Therefore, the invertibility of 𝑇 is now 𝑒 [ π‘›βˆ’1] proved. Journal of Mathematics 5

(b) According to Theorem 1,weget writtenasasumofproductsofblockskew-circulantmatrices and block circulant matrices. σΈ€  βˆ’1 πœ‘ 1 𝑇 =𝐢(lr,πœ‘)+ (𝐢 (π‘₯, πœ“) 1/πœ‘β‹… 𝐢(πœ‘π‘ 𝑒,Μƒ ) πœ‘βˆ’πœ“ πœ‘ π‘₯ βˆ’π‘₯ β‹…β‹…β‹… βˆ’π‘₯ { 0 π‘›βˆ’1 1 {[ ] σΈ€  {[ . ] 1 1 { π‘₯1 π‘₯0 d . Μƒ βˆ’1 [ ] +𝐢 (𝑒, πœ“) 1/πœ‘β‹… 𝐢(πœ‘π‘ π‘₯, ) ). 𝑇 = {[ . ] πœ‘ 2 {[ . ddβˆ’π‘₯ ] {[ . π‘›βˆ’1] (23) { . {[π‘₯π‘›βˆ’1 . π‘₯1 π‘₯0 ] 𝐢( ,πœ‘) πœ‘ lr is the block -circulant matrix with the same last 𝑒̃ 𝑒̃ β‹…β‹…β‹… 𝑒̃ π‘‡βˆ’1 π‘›βˆ’1 0 π‘›βˆ’2 block row as that of .Itisnotdifficulttoseethat [ ] 𝐢( ,πœ‘) = 𝐢(πœ‘π‘ π‘₯,Μƒ 1/πœ‘)σΈ€  =𝐢(𝐽π‘₯,Μƒ πœ‘) [ . ] lr 1/πœ‘ . After computations [π‘’Μƒπ‘›βˆ’2 π‘’Μƒπ‘›βˆ’1 d . ] and arrangement, we obtain the formula (22)ontheinverses Γ— [ . ] [ . dd𝑒̃ ] of block Toeplitz matrices. [ . 0 ] . [ 𝑒̃0 . π‘’Μƒπ‘›βˆ’2 π‘’Μƒπ‘›βˆ’1] Remark 3. In fact, the inverse formula (22)isageneralization (25) of the formula of Gohberg and Olshevsky [20], where they 𝑒0 βˆ’2πΌπ‘š βˆ’π‘’π‘›βˆ’1 β‹…β‹…β‹… βˆ’π‘’1 consider scalar Toeplitz matrices. Since the matrix inverse [ ] [ . ] does not hold the property of persymmetry, in the block case, [ 𝑒1 𝑒0 βˆ’2πΌπ‘š d . ] βˆ’1 βˆ’ [ ] for constructing 𝑇 we need to solve four linear equations [ . ] [ . ddβˆ’π‘’π‘›βˆ’1 ] with the same coefficient matrix 𝑇. Labahn et al. also gave . this conclusion in terms of certain matrix Padeforms[Β΄ 14]. [ π‘’π‘›βˆ’1 . 𝑒1 𝑒0 βˆ’2πΌπ‘š] π‘₯Μƒ π‘₯Μƒ β‹…β‹…β‹… π‘₯Μƒ Remark 4. For the inverse formula (22), we take an interest π‘›βˆ’1 0 π‘›βˆ’2 } πœ‘=1 πœ“=0 [ ]} in two particular cases. When and ,theinverse [ . ]} [π‘₯Μƒπ‘›βˆ’2 π‘₯Μƒπ‘›βˆ’1 d . ]} formula (22)canbewrittenas Γ— [ ] . [ . ]} [ . ddπ‘₯Μƒ0 ]} π‘₯ 0 β‹…β‹…β‹… 0 } { 0 . } {[ ] [ π‘₯Μƒ . π‘₯Μƒ π‘₯Μƒ ]} {[ . ] 0 . π‘›βˆ’2 π‘›βˆ’1 {[ π‘₯1 π‘₯0 d . ] π‘‡βˆ’1 = [ ] {[ . ] {[ . dd 0 ] { This is a generalization of the formula of Ammar and Gader . [21], where they considered the Hermitian Toeplitz matrix. {[π‘₯π‘›βˆ’1 . π‘₯1 π‘₯0] σΈ€  σΈ€  σΈ€  𝑒̃ 𝑒̃ β‹…β‹…β‹… 𝑒̃ Let 𝑦=(𝑦0,𝑦1,...,π‘¦π‘›βˆ’1) ,𝑧 = (𝑧0,𝑧1,...,π‘§π‘›βˆ’1) , 𝑦̃ = π‘›βˆ’1 0 π‘›βˆ’2 σΈ€  [ . ] (𝑦̃ , 𝑦̃ ,...,𝑦̃ ) and 𝑧̃ =(𝑧̃0, 𝑧̃1,...,π‘§Μƒπ‘›βˆ’1) be the solutions [𝑒̃ 𝑒̃ d . ] 0 1 π‘›βˆ’1 [ π‘›βˆ’2 π‘›βˆ’1 . ] 𝑇𝑦 =𝐸 ,𝑇𝑧 =𝐸 , 𝑦̃󸀠𝑇=𝐸󸀠 Γ— [ ] of the equations π‘˜ π‘˜+1 π‘›βˆ’π‘˜βˆ’1, [ . ] ΜƒσΈ€  σΈ€  [ . dd𝑒̃0 ] and 𝑧 𝑇=πΈπ‘›βˆ’π‘˜βˆ’2 for some integer π‘˜(0≀ π‘˜ ≀ π‘›βˆ’1), . 𝑦 𝑦̃ 𝑒̃ . 𝑒̃ 𝑒̃ respectively. In addition, π‘›βˆ’1 and 0 are both nonsingular, [ 0 . π‘›βˆ’2 π‘›βˆ’1] π‘¦Μƒβˆ’1 βˆ‘π‘›βˆ’1 𝑦̃ 𝑇 =βˆ‘π‘›βˆ’1 𝑇 𝑦 π‘¦βˆ’1 0β‰€π‘˜β‰€π‘›βˆ’2 (24) 0 𝑖=1 𝑖 βˆ’π‘›+𝑖 𝑖=1 βˆ’π‘– π‘–βˆ’1 π‘›βˆ’1 for and Μƒβˆ’1 Μƒβˆ’1 π‘›βˆ’1 Μƒ βˆ’1 π‘›βˆ’1 βˆ’1 𝑒0 βˆ’πΌπ‘š 0β‹…β‹…β‹…0 (1/πœ‘)𝑦0 + 𝑦0 βˆ‘π‘–=1 π‘¦π‘–π‘‡βˆ’π‘›+𝑖 =(1/πœ‘)π‘¦π‘›βˆ’1 + βˆ‘π‘–=1 π‘‡βˆ’π‘–π‘¦π‘–βˆ’1π‘¦π‘›βˆ’1 [ . ] for π‘˜=π‘›βˆ’1. [ . ] π‘›βˆ’1 [ 𝑒1 𝑒0 βˆ’πΌπ‘š d . ] π‘˜<π‘›βˆ’1 𝑇 =𝑇 +(1/πœ‘)βˆ‘ 𝑇 𝑦 π‘¦βˆ’1 = βˆ’ [ ] For ,wehave 𝑛 0 𝑖=1 βˆ’π‘– π‘–βˆ’1 π‘›βˆ’1 [ . ] 𝑇 +(1/πœ‘)π‘¦Μƒβˆ’1 βˆ‘π‘›βˆ’1 π‘˜Μƒ 𝑇 [ . dd 0 ] 0 0 𝑖=1 𝑖 βˆ’π‘›+𝑖.Thenweobtain . [ π‘’π‘›βˆ’1 . 𝑒1 𝑒0 βˆ’πΌπ‘š] 1 𝑇𝑒 =𝑇 (𝑍 π‘¦βˆ’π‘§)π‘¦βˆ’1 π‘₯Μƒ π‘₯Μƒ β‹…β‹…β‹… π‘₯Μƒ πœ‘ πœ‘ π‘›βˆ’1 π‘›βˆ’1 0 π‘›βˆ’2 } [ . ]} [π‘₯Μƒ π‘₯Μƒ d . ]} [ π‘›βˆ’2 π‘›βˆ’1 . ] πœ‘π‘¦π‘›βˆ’1 Γ— [ . ]} . [ ] [ . ddπ‘₯Μƒ ]} 1 [ 0 ] [ . 0 ]} = 𝑇 [ ] π‘¦βˆ’1 } [ . ] π‘›βˆ’1 . πœ‘ . [ π‘₯Μƒ0 . π‘₯Μƒπ‘›βˆ’2 π‘₯Μƒπ‘›βˆ’1]} [ 0 ] So we obtain that the inverse of a block Toeplitz matrix can 0 be represented as a sum of products of block lower triangular [ ] 1 [ 𝑦0 ] 1 Toeplitz matrices and block circulant matrices. This is a + 𝑇 [ ] π‘¦βˆ’1 βˆ’ π‘‡π‘§π‘¦βˆ’1 [ . ] π‘›βˆ’1 π‘›βˆ’1 generalization of the formula of Ammar and Gader [19]. And πœ‘ . πœ‘ when πœ‘=1and πœ“=βˆ’1,theinverseformula(22)canbe [π‘¦π‘›βˆ’2] 6 Journal of Mathematics

𝑇 πœ‘(𝑇 βˆ’π‘‡)𝑦 βˆ’1 π‘›βˆ’1 π‘›βˆ’1 βˆ’1 0 𝑛 0 π‘›βˆ’1 𝑦̃ βˆ‘ 𝑦̃ π‘‡βˆ’π‘›+𝑖 = βˆ‘ π‘‡βˆ’π‘–π‘¦π‘–βˆ’1𝑦 for 0β‰€π‘˜β‰€π‘›βˆ’2and [ ] [ ] 0 𝑖=1 𝑖 𝑖=1 π‘›βˆ’1 [ 𝑇1 ] 1 [ βˆ’π‘‡βˆ’π‘›+1π‘¦π‘›βˆ’1 ] (1/πœ‘)π‘¦Μƒβˆ’1 + π‘¦Μƒβˆ’1 βˆ‘π‘›βˆ’1 𝑦̃ 𝑇 =(1/πœ‘)π‘¦βˆ’1 + βˆ‘π‘›βˆ’1 𝑇 𝑦 π‘¦βˆ’1 = [ ] + [ ] 0 0 𝑖=1 𝑖 βˆ’π‘›+𝑖 π‘›βˆ’1 𝑖=1 βˆ’π‘– π‘–βˆ’1 π‘›βˆ’1 [ . ] [ . ] π‘˜=π‘›βˆ’1 𝑇 . πœ‘ . for ,then is invertible and [π‘‡π‘›βˆ’1] [ βˆ’π‘‡βˆ’1π‘¦π‘›βˆ’1 ] βˆ’1 1 βˆ’1 σΈ€  𝑇 = (𝐢 (π‘₯, πœ“)𝑦 ⋅𝐢(𝐽̃0 (π‘πœ‘π‘¦βˆ’Μƒ 𝑧),πœ‘))Μƒ βˆ’1 1 βˆ’1 1 βˆ’1 πœ‘βˆ’πœ“ Γ—π‘¦π‘›βˆ’1 + πΈπ‘˜+1π‘¦π‘›βˆ’1 βˆ’ πΈπ‘˜+1π‘¦π‘›βˆ’1 (28) πœ‘ πœ‘ βˆ’1 βˆ’πΆ((π‘πœ“π‘¦βˆ’π‘§)π‘¦π‘›βˆ’1,πœ“)⋅𝐢(𝐽π‘₯,Μƒ πœ‘)) . 𝑇𝑛 [ 1 ] [𝑇 βˆ’ 𝑇 ] Corollary 5 shows how to construct the inverse of a block [ 1 βˆ’π‘›+1] [ πœ‘ ] Toeplitz matrix, provided that the first block column and last = [ ] , [ . ] block row, along with two successive block columns and block [ . ] [ 1 ] rows of the inverse, are given. More precisely, the choice of 𝑇 βˆ’ 𝑇 π‘˜=π‘›βˆ’1gives that πΈπ‘˜+1 =𝐸0 and πΈπ‘›βˆ’π‘˜βˆ’2 =πΈπ‘›βˆ’1.Thismeans π‘›βˆ’1 πœ‘ βˆ’1 [ ] that 𝑧=π‘₯and 𝑧=Μƒ π‘₯Μƒ. As a consequence, we have the following 1 result. 𝑒̃󸀠𝑇= π‘¦Μƒβˆ’1 (𝑦̃󸀠𝑍 βˆ’ 𝑧̃󸀠)𝑇 πœ‘ 0 πœ‘ Corollary 6. Let 𝑇 be the block Toeplitz matrix given by σΈ€  1 βˆ’1 (1).If (15) and (16), 𝑇𝑦 =𝐸 π‘›βˆ’1,and𝑦̃ 𝑇=𝐸0σΈ€  are = 𝑦̃0 (0,...,0,πœ‘π‘¦Μƒ0)𝑇 Μƒ πœ‘ solvable, in addition, π‘¦π‘›βˆ’1 and 𝑦0 are both nonsingular, βˆ’1 π‘›βˆ’1 π‘›βˆ’1 βˆ’1 𝑦̃ βˆ‘ 𝑦̃ π‘‡βˆ’π‘›+π‘˜ =βˆ‘ π‘‡βˆ’π‘–π‘¦π‘–βˆ’1𝑦 ,then𝑇 is invertible and 1 1 0 π‘˜=1 π‘˜ π‘˜=1 π‘›βˆ’1 + π‘¦Μƒβˆ’1 (𝑦̃ ,...,𝑦̃ ,0)βˆ’ π‘¦Μƒβˆ’1𝑧̃󸀠𝑇 0 1 π‘›βˆ’1 1 πœ‘ πœ‘ π‘‡βˆ’1 = (𝐢 (π‘₯, πœ“)𝑦 ⋅𝐢(π½Μƒβˆ’1 (𝑍󸀠 π‘¦βˆ’Μƒ π‘₯),πœ‘))Μƒ πœ‘βˆ’πœ“ 0 πœ‘ =(π‘‡π‘›βˆ’1,...,𝑇1,𝑇0) (29) βˆ’πΆ ((𝑍 π‘¦βˆ’π‘₯)π‘¦βˆ’1 ,πœ“)⋅𝐢(𝐽π‘₯,Μƒ πœ‘)) . 1 πœ“ π‘›βˆ’1 + π‘¦Μƒβˆ’1 (βˆ’π‘¦Μƒ 𝑇 ,...,βˆ’π‘¦Μƒ 𝑇 ,πœ‘π‘¦Μƒ (𝑇 βˆ’π‘‡)) πœ‘ 0 0 βˆ’1 0 βˆ’π‘›+1 0 𝑛 0 Corollary 6 is a generalization of the well-known formula 1 1 of Gohberg and He˘ınig. In [13], the authors have shown that + π‘¦Μƒβˆ’1𝐸󸀠 βˆ’ π‘¦Μƒβˆ’1𝐸󸀠 πœ‘ 0 π‘›βˆ’π‘˜βˆ’1 πœ‘ 0 π‘›βˆ’π‘˜βˆ’1 the first and last block columns together with the first and last block rows of the inverse are sufficient to construct the inverse βˆ’1 1 1 𝑇 . In addition, we decompose the inverses of block Toeplitz =(𝑇 βˆ’ 𝑇 ,...,𝑇 βˆ’ 𝑇 ,𝑇 ). π‘›βˆ’1 πœ‘ βˆ’1 1 πœ‘ βˆ’π‘›+1 𝑛 matrices as a sum of products of block circulant matrices. (26) 4. Stability Analysis βˆ’1 For π‘˜=π‘›βˆ’1,wehave𝑇𝑛 βˆ’π‘‡0 =(1/πœ‘)π‘¦π‘›βˆ’1 + (1/πœ‘) βˆ‘π‘›βˆ’1 𝑇 𝑦 π‘¦βˆ’1 =(1/πœ‘)π‘¦Μƒβˆ’1 +(1/πœ‘)π‘¦Μƒβˆ’1 βˆ‘π‘›βˆ’1 𝑦̃ 𝑇 In the scalar case, the inverse formula (22)inSection 3 is π‘˜=1 βˆ’π‘– π‘–βˆ’1 π‘›βˆ’1 0 0 π‘˜=1 π‘˜ βˆ’π‘›+π‘˜. just the well-known formula of Gohberg and Olshevsky; see A similar argument shows that Theorem 3.1 in [20]. Hence, solving two linear systems are sufficient to reconstruct the inverse of the Toeplitz matrix 𝑇𝑛 βˆ’1 σΈ€  σΈ€  [ 1 ] 𝑇 .Letπ‘₯=(π‘₯0,π‘₯1,...,π‘₯π‘›βˆ’1) and 𝑒=(𝑒0,𝑒1,...,π‘’π‘›βˆ’1) be [𝑇 βˆ’ 𝑇 ] [ 1 βˆ’π‘›+1] the solutions of (15)and(17), respectively. In the scalar case, [ πœ‘ ] 𝑇𝑒 = [ ] , formula (22)canbewrittenas [ . ] [ . ] [ 1 ] (27) βˆ’1 πœ‘ π‘‡π‘›βˆ’1 βˆ’ π‘‡βˆ’1 𝑇 = (𝐢 (π‘₯, πœ“) β‹… 𝐢 (𝑒,πœ‘) [ πœ‘ ] πœ‘βˆ’πœ“ (30) 1 1 πœ‘βˆ’πœ“ 𝑒̃󸀠𝑇=(𝑇 βˆ’ 𝑇 ,...,𝑇 βˆ’ 𝑇 ,𝑇 ). βˆ’πΆ (𝑒 βˆ’ 𝐸 ,πœ“)⋅𝐢(π‘₯,πœ‘)), π‘›βˆ’1 πœ‘ βˆ’1 1 πœ‘ βˆ’π‘›+1 𝑛 πœ‘ 0

βˆ’1 πœ‘ =0ΜΈ πœ“( =πœ‘)ΜΈ As a result, we obtain that 𝑒 = (1/πœ‘)(π‘πœ‘π‘¦βˆ’π‘§)𝑦 and where and is an arbitrary number. For conve- π‘›βˆ’1 βˆ’1 σΈ€  βˆ’1 σΈ€  σΈ€  nience, we rewrite 𝑇 as 𝑒̃ =(1/πœ‘)𝑦0 (𝑦̃ π‘πœ‘ βˆ’ 𝑧̃ ) are the solutions of (17)and(18), respectively. This result together with Theorem 2 yields the πœ‘ π‘‡βˆ’1 ≐ (𝐢 𝐢 βˆ’πΆ 𝐢 ) . following corollary. πœ‘βˆ’πœ“ 11 12 21 22 (31) Corollary 5. 𝑇 Let be the block Toeplitz matrix given by (1). In this section, we want to show that the evaluation of some 𝑇𝑦 =𝐸 ,𝑇𝑧 =𝐸 , 𝑦̃󸀠𝑇=𝐸󸀠 If (15) and (16), π‘˜ π‘˜+1 π‘›βˆ’π‘˜βˆ’1, scalar inverse formulas in Section 3 is forward stable. An σΈ€  σΈ€  and 𝑧̃ 𝑇=πΈπ‘›βˆ’π‘˜βˆ’2 are solvable for some integer π‘˜(0 ≀ algorithm is called forward stable if for all well-conditioned π‘˜β‰€n βˆ’1),inaddition,π‘¦π‘›βˆ’1 and 𝑦̃0 are both nonsingular, problems, the computed solution π‘₯Μ‚ is close to the true Journal of Mathematics 7

solution π‘₯ in the sense that the relative error β€–π‘₯ βˆ’ π‘₯β€–Μ‚ 2/β€–π‘₯β€–2 is subtracting the matrices, and 𝐺 represents the error of the small. In the matrix computation, roundoff errors occur. Let multiplication by πœ‘/(πœ‘ βˆ’. πœ“) For the error matrices Δ𝐢11, 𝑛,𝑛 2 𝐴, 𝐡 ∈𝐢 and π›ΌβˆˆπΆ;ifweneglectthe𝑂(πœ€ ) terms, then for Δ𝐢12, Δ𝐢21,andΔ𝐢22,wehave any floating-point arithmetic with machine πœ€,there σ΅„© σ΅„© σ΅„© σ΅„© 󡄩Δ𝐢 σ΅„© ≀ Μ‚πœ€σ΅„©πΆ σ΅„© ≀ Μ‚πœ€βˆšπ‘›π‘β€–π‘₯β€– , are σ΅„© 11󡄩𝐹 σ΅„© 11󡄩𝐹 2 (𝛼𝐴) =𝛼𝐴+𝐸, σ΅„© σ΅„© Μ‚σ΅„© σ΅„© Μ‚βˆš fl 󡄩Δ𝐢12󡄩𝐹 ≀ πœ€σ΅„©πΆ12󡄩𝐹 ≀ πœ€ 𝑛𝑀‖𝑒‖2, √ σ΅„¨πœ‘βˆ’πœ“σ΅„¨ (36) ‖𝐸‖𝐹 β‰€πœ€|𝛼|‖𝐴‖𝐹 β‰€πœ€ 𝑛 |𝛼|‖𝐴‖2, σ΅„© σ΅„© σ΅„© σ΅„© 󡄨 󡄨 󡄩Δ𝐢21σ΅„© ≀ Μ‚πœ€σ΅„©πΆ21σ΅„© ≀ Μ‚πœ€βˆšπ‘›(󡄨 󡄨 +𝑁‖𝑒‖2), 𝐹 𝐹 󡄨 πœ‘ 󡄨 fl (𝐴+𝐡) =𝐴+𝐡+𝐸, (32) σ΅„© σ΅„© Μ‚σ΅„© σ΅„© Μ‚βˆš 󡄩Δ𝐢22󡄩𝐹 ≀ πœ€σ΅„©πΆ22󡄩𝐹 = πœ€ 𝑛𝑀‖π‘₯β€–2. ‖𝐸‖𝐹 β‰€πœ€β€–π΄+𝐡‖𝐹 β‰€πœ€βˆšπ‘›β€–π΄+𝐡‖2, It follows that fl (𝐴𝐡) =𝐴𝐡+𝐸, ‖𝐸‖𝐹 β‰€πœ€π‘›β€–π΄β€–πΉβ€–π΅β€–πΉ. ‖𝐸‖2 ≀ ‖𝐸‖𝐹 See [22]. According to the floating-point arithmetic, we have σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© the following result. β‰€πœ€π‘›(󡄩𝐢11󡄩𝐹󡄩𝐢12󡄩𝐹 + 󡄩𝐢21󡄩𝐹󡄩𝐢22󡄩𝐹) 󡄨 󡄨 Theorem 7. Let 𝑇 be a nonsingular Toeplitz matrix given by 2 σ΅„¨πœ‘βˆ’πœ“σ΅„¨ β‰€πœ€π‘›π‘€β€–π‘₯β€–2 (󡄨 󡄨 +2𝑁‖𝑒‖2), (1) with π‘š=1and let it be well conditioned then the inversion 󡄨 πœ‘ 󡄨 formula (30) is forward stable for πœ‘ =0ΜΈ and a given number σ΅„© βˆ’1σ΅„© πœ“( =πœ‘)ΜΈ ‖𝐹‖ β‰€πœ€βˆšπ‘›σ΅„©π‘‡ σ΅„© , . 2 σ΅„© σ΅„©2 (37)

Proof. Assume that we have computed the solutions π‘₯Μ‚, 𝑒̂ ‖𝐺‖2 ≀ ‖𝐺‖𝐹 in the inverse formula (30)whichareperturbedbythe πœ‘ σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© normwise relative errors bounded by Μ‚πœ€ β‰€πœ€ (󡄩𝐢 σ΅„© 󡄩𝐢 σ΅„© + 󡄩𝐢 σ΅„© 󡄩𝐢 σ΅„© ) πœ‘βˆ’πœ“ σ΅„© 11󡄩𝐹󡄩 12󡄩𝐹 σ΅„© 21󡄩𝐹󡄩 22󡄩𝐹 β€–π‘₯Μ‚β€– ≀ β€–π‘₯β€– (1+Μ‚πœ€) , ‖𝑒̂‖ ≀ ‖𝑒‖ (1+Μ‚πœ€) . 2 2 2 2 (33) 󡄨 󡄨 πœ€π‘›π‘€πœ‘ σ΅„¨πœ‘βˆ’πœ“σ΅„¨ ≀ β€–π‘₯β€–2 (󡄨 󡄨 +2𝑁‖𝑒‖2). Let 𝑁=max{1, πœ“} and 𝑀=max{1, πœ‘}.Then,wehave πœ‘βˆ’πœ“ 󡄨 πœ‘ 󡄨 σ΅„© σ΅„© √ 󡄩𝐢11󡄩𝐹 ≀ 𝑛𝑁‖π‘₯β€–2, After adding all these error bounds, we have σ΅„© σ΅„© σ΅„© σ΅„© √ σ΅„©Μ‚βˆ’1 βˆ’1σ΅„© πœ‘ 2 󡄩𝐢12󡄩𝐹 ≀ 𝑛𝑀‖𝑒‖2, 󡄩𝑇 βˆ’π‘‡ σ΅„© ≀ (2Μ‚πœ€π‘› + πœ€π‘› +πœ€π‘›) σ΅„© σ΅„©2 πœ‘βˆ’πœ“ σ΅„© σ΅„© πœ‘βˆ’πœ“ 2 󡄨 󡄨 󡄩𝐢 σ΅„© ≀ βˆšπ‘›( ) +𝑛𝑁2‖𝑒‖2 σ΅„¨πœ‘βˆ’πœ“σ΅„¨ σ΅„© 21󡄩𝐹 2 ×𝑀‖π‘₯β€–2 (󡄨 󡄨 +2𝑁‖𝑒‖2) πœ‘ (34) 󡄨 πœ‘ 󡄨 (38) 󡄨 󡄨 σ΅„¨πœ‘βˆ’πœ“σ΅„¨ ≀ βˆšπ‘› 󡄨 󡄨 + βˆšπ‘›π‘β€–π‘’β€– , πœ€βˆšπ‘›πœ‘σ΅„© βˆ’1σ΅„© 󡄨 󡄨 2 + 󡄩𝑇 σ΅„© . 󡄨 πœ‘ 󡄨 πœ‘βˆ’πœ“σ΅„© σ΅„©2 σ΅„© σ΅„© 󡄩𝐢 σ΅„© ≀ βˆšπ‘›π‘€β€–π‘₯β€– . σ΅„© 22󡄩𝐹 2 Note that π‘₯ and 𝑒 are the solutions of (15)and(17), β€–π‘₯β€– β‰€β€–π‘‡βˆ’1β€– ‖𝑒‖ β‰€β€–π‘‡βˆ’1β€– ‖𝑓‖ π‘₯Μ‚ 𝑒̂ respectively; then 2 2 and 2 2 2, By using the perturbed solutions , ,theinverseformula 𝑓=(𝑇,𝑇 βˆ’(1/πœ‘)𝑇 ,...,𝑇 βˆ’(1/πœ‘)𝑇 )σΈ€  (30) can be expressed as where 𝑛 1 1βˆ’π‘› π‘›βˆ’1 βˆ’1 .Thus, the relative error is βˆ’1 πœ‘ σ΅„© σ΅„© Μ‚ Μ‚ Μ‚ Μ‚ Μ‚ σ΅„© βˆ’1 βˆ’1σ΅„© 𝑇 = fl ( (𝐢11𝐢12 + 𝐢21𝐢22)) 󡄩𝑇̂ βˆ’π‘‡ σ΅„© πœ‘βˆ’πœ“ σ΅„© σ΅„© πœ‘ 2 σ΅„© σ΅„© 2 ≀ (2Μ‚πœ€π‘› + πœ€π‘› +πœ€π‘›) σ΅„©π‘‡βˆ’1σ΅„© πœ‘βˆ’πœ“ πœ‘ σ΅„© σ΅„©2 = ( ((𝐢 +Δ𝐢 )(𝐢 +Δ𝐢 ) fl πœ‘βˆ’πœ“ 11 11 12 12 󡄨 󡄨 √ σ΅„¨πœ‘βˆ’πœ“σ΅„¨ σ΅„© βˆ’1σ΅„© σ΅„© σ΅„© πœ€ π‘›πœ‘ ×𝑀(󡄨 󡄨 +2𝑁󡄩𝑇 σ΅„© 󡄩𝑓󡄩 )+ . 󡄨 πœ‘ 󡄨 σ΅„© σ΅„©2 2 πœ‘βˆ’πœ“ (35) +(𝐢21 +Δ𝐢21)(𝐢22 +Δ𝐢22)) ) (39) πœ‘ 𝑇 β€–π‘‡βˆ’1β€– ‖𝑓‖ =π‘‡βˆ’1 + (Δ𝐢 𝐢 +𝐢 Δ𝐢 +Δ𝐢 𝐢 As is well conditioned, thus, 2 is finite. Obviously, 2 πœ‘βˆ’πœ“ 11 12 11 12 21 22 is finite. Therefore, the formula (30) presented in this section is forward stable. +𝐢21Δ𝐢22 +𝐸+𝐹)+𝐺. For example, there are two particular cases of the inverse Here, 𝐸 is the matrix containing the error which results from formula (30). When πœ‘=1and πœ“=βˆ’1,theinverseformula βˆ’1 computing the matrix products, 𝐹 contains the error from 𝑇 = (1/2)(𝐢(π‘₯, βˆ’1) β‹… 𝐢(𝑒, 1) 0βˆ’ 𝐢(𝑒2𝐸 ,βˆ’1)β‹… 𝐢(π‘₯,1)), 8 Journal of Mathematics

βˆ’1 which denotes 𝑇 as a sum of products of skew-circulant [7] A. Ben-Artzi and T. Shalom, β€œOn inversion of Toeplitz and close and circulant matrices, is numerically forward stable for a to Toeplitz matrices,” and its Applications,vol.75, well-conditioned and nonsingular Toeplitz matrix 𝑇.Infact, pp.173–192,1986. this is the formula of Ammar and Gader in [21]. And when [8] G. Labahn and T. Shalom, β€œInversion of Toeplitz matrices πœ‘=1and πœ“=0, this is the formula of Ammar and with only two standard equations,” Linear Algebra and its βˆ’1 Gader in [19]. The inverse formula 𝑇 =(𝐢(π‘₯,0)⋅𝐢(𝑒,1)βˆ’ Applications,vol.175,pp.143–158,1992. 𝐢(𝑒0 βˆ’πΈ ,0)⋅𝐢(π‘₯,1))in which skew-circulant matrices are [9] T. Huckle, β€œComputations with Gohberg-Semencul-type for- replaced by upper triangular factors is also forward stable, if mulas for Toeplitz matrices,” Linear Algebra and its Applications, 𝑇 is nonsingular and well conditioned. vol. 273, pp. 169–198, 1998. We also find that even when πœ“=∞and a given number [10] M. K. Ng, K. Rost, and Y.-W. Wen, β€œOn inversion of Toeplitz πœ‘ =0ΜΈ ,theinverseformula(30) is still numerically forward matrices,” Linear Algebra and its Applications,vol.348,pp.145– stable. A similar argument can show that the inverse formulas 151, 2002. in Corollaries 5 and 6 for the scalar case are all numerically [11] G. Heinig, β€œOn the reconstruction of Toeplitz matrix inverses forward stable when 𝑇 is nonsingular and well conditioned. from columns,” Linear Algebra and its Applications,vol.350,pp. 199–212, 2002. [12] S. Cabay and R. Meleshko, β€œA weakly stable algorithm for PadeΒ΄ 5. Concluding Remarks approximants and the inversion of Hankel matrices,” SIAM Journal on Matrix Analysis and Applications,vol.14,no.3,pp. In this paper, with the help of the block cyclic displace- 735–765, 1993. ment, the inverses of block Toeplitz matrices are discussed. [13]I.C.GohbergandG.Ha˘ınig, β€œInversion of finite Toeplitz New formulas for inversion of block Toeplitz matrices are matrices consisting of elements of a noncommutative algebra,” obtained, which can be decomposed in a sum of products RevueRoumainedeMathematiquesΒ΄ Pures et AppliqueesΒ΄ ,vol.19, of block circulant matrices. In the scalar case, we analyze pp. 623–663, 1974. the stability of the inverse formulas. In addition, it should [14] G. Labahn, D. K. Choi, and S. Cabay, β€œThe inverses of block be remarked that any mention of matrix PadeformsforΒ΄ Hankel and block Toeplitz matrices,” SIAMJournalonComput- representing inverses of Toeplitz matrices could also be given ing,vol.19,no.1,pp.98–123,1990. in terms of solving block linear systems. Also the proofs of [15]S.Cabay,A.R.Jones,andG.Labahn,β€œComputationofnumer- theinversesformulasin[14] could also be extended to prove ical Pade-HermiteΒ΄ and simultaneous Padesystems.I.NearΒ΄ the inverse formulas in this work. inversion of generalized Sylvester matrices,” SIAM Journal on Matrix Analysis and Applications,vol.17,no.2,pp.248–267, 1996. Acknowledgments [16] S. Cabay, A. R. Jones, and G. Labahn, β€œComputation of This research is supported by NSFC (61170311), 973 Program numerical Pade-HermiteΒ΄ and simultaneous PadeΒ΄ systems. II. A weakly stable algorithm,” SIAMJournalonMatrixAnalysisand (2013CB329404), and Sichuan Province Sci. & Tech. Research Applications,vol.17,no.2,pp.268–297,1996. Project (2012GZX0080). The authors are grateful to the [17] A. Ben-Artzi and T. Shalom, β€œOn inversion of block Toeplitz unknown referee for pertinent comments, especially for matrices,” Integral Equations and Operator Theory,vol.8,no.6, suggesting four references, which contributed substantially to pp. 751–779, 1985. this revised work. [18] L. Gemignani, β€œSchur complements of Bezoutians and the inversion of block Hankel and block Toeplitz matrices,” Linear References Algebra and its Applications,vol.253,pp.39–59,1997. [19] G. Ammar and P. Gader, β€œA variant of the Gohberg-Semencul [1] R. H.-F. Chan and X.-Q. Jin, An Introduction to Iterative formula involving circulant matrices,” SIAM Journal on Matrix Toeplitz Solvers,vol.5ofFundamentals of Algorithms,Society Analysis and Applications,vol.12,no.3,pp.534–540,1991. for Industrial and Applied Mathematics (SIAM), Philadelphia, [20] I. Gohberg and V. Olshevsky, β€œCirculants, displacements and Pa,USA,2007. decompositions of matrices,” Integral Equations and Operator [2]M.K.Ng,Iterative Methods for Toeplitz Systems, Numerical Theory,vol.15,no.5,pp.730–743,1992. Mathematics and Scientific Computation, Oxford University [21] G. Ammar and P.Gader, β€œNew decompositions of the inverse of Press, New York, NY, USA, 2004. atoeplitzmatrix,”inProceedings of the International Symposium [3] X.-Q. Jin, Developments and Applications of Block Toeplitz MTNS-89: Signal Processing, Scattering and Operator Theory, Iterative Solvers,vol.2ofCombinatorics and Computer Science, and Numerical Methods, vol. 3, pp. 421–428, Birkhaauser,Β¨ Kluwer Academic, Dordrecht, The Netherlands, 2002. Boston, Mass, USA, 1990. [4] M. Van Barel and A. Bultheel, β€œA lookahead algorithm for [22] G. H. Golub and C. F. Van Loan, Matrix Computations,vol. the solution of block Toeplitz systems,” Linear Algebra and its 3ofJohns Hopkins Series in the Mathematical Sciences,Johns Applications,vol.266,pp.291–335,1997. Hopkins University Press, Baltimore, Md, USA, 2nd edition, [5]I.C.GohbergandA.A.Semencul,β€œTheinversionoffinite 1989. Toeplitz matrices and their continual analogues,” Matematich- eskie Issledovaniya,vol.7,no.2,pp.201–223,1972. [6] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-Like Matrices and Operators,vol.19ofMathematical Research, Birkhaauser,Β¨ Berlin, Germany, 1984. Advances in Advances in Journal of Journal of Operations Research Decision Sciences Applied Mathematics Algebra Probability and Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

The Scientific International Journal of World Journal Differential Equations Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Submit your manuscripts at http://www.hindawi.com

International Journal of Advances in Combinatorics Mathematical Physics Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Journal of Journal of Mathematical Problems Abstract and Discrete Dynamics in Complex Analysis Mathematics in Engineering Applied Analysis Nature and Society Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

International Journal of Journal of Mathematics and Mathematical Discrete Mathematics Sciences

Journal of International Journal of Journal of Function Spaces Stochastic Analysis Optimization Hindawi Publishing Corporation Hindawi Publishing Corporation Volume 2014 Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014